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A novel bottom-left packing genetic algorithm for analog module
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L. Zhang and U. Kleine
Otto-von-Guericke University of Magdeburg, IESK, PO Box 4120, D-39016 Magdeburg, Germany

Abstract. This paper presents a novel genetic algorithm for placement phase. Due to analog constraints such as match-
analog module placement. It is based on a generalizatioing requirements, it is usually preferred to build more or
of the two-dimensional bin packing problem. The geneticless complex clusters of devices, hereafter called modules
encoding and operators assures that all constraints of ther macro-cells, which are parameterized for the processed
problem are always satisfied. Thus the potential problemsub-circuits. The objective of placement is to position the
of adding penalty terms to the cost function are eliminated,modules appropriately so that the chip area and the total wire
so that the search configuration space decreases drasticallgngth of the interconnections are minimized under certain
The dedicated cost function covers the special requirementsonstraints.

Of analog integrated CirCUitS. A fraCtionaI faCtoriaI eXperi- Many heuristic Strategies for modu|e p|acement based on
ment was conducted using an orthogonal array to study th@erative improvement have been published so far, such as
algorithm parameters. A meta-GA was applied to determineforce-directed, min-cut, passive resistive optimization, simu-
the optimal parameter values. The algorithm has been testegted annealing (SA) (Su et al., 2001; Plas et al., 2001) and
with several local benchmark circuits. The experimental re-genetic algorithm (GA) (Shahookar and Mazumder, 1990;
sults show this promising algorithm makes the better perfor-gspensen and Mazumder, 1994). Among them, SA and
mance than simulated annealing approach with the satisfacsa are the latest and most promising techniques. SA is
tory results comparable to manual placement. widely used in the domain of both digital and analog (Cohn
et al., 1994, Plas et al., 2001) circuits. Although it yields
good placement solutions, it is a very time-consuming pro-
cess. In contrast, GA has been mainly applied for digital cir-
cuits. This paper describes a GA application in analog circuit

The significant tendency of system-on-chip (SoC) intensifiesPlacement. It is organized as follows. Section 2 introduces

the booming market share of mixed-signal integrated circuitsth® design flow with the use of DesignAssistant in which this
(ICs). Although most of the functions in such an integrated placement approach is included. Section 3 describes the im-

system are performed with digital circuitry, analog circuits Plementation of this adaptive strategy. Section 4 gives the
are always needed as an interface to the external, continuoufarameter optimization with fractional factorial experiment
valued world. The design of digital portion can be tackled @1d meta- GA. Section 5 shows experimental results and the
with modern cell-based tools (Wang et al., 2000) for synthe-conclusion is drawn finally.

sis, mapping and physical design. The analog counterpart,

however, is still routinely designed by hand. The layout of
analog circuits is intrinsically more difficult than the digi- DesianAssistant

tal one. To address this problem, an automated layout too? g

called ALADIN (Automatic Laout Design Aid for Analog . ] ] .

Integrated Circuits) (Zhang et al., 2000) is currently beingA deS|gn env!ronment called DeslgnASS|stant (Wolf et. al.,
developed for analog experts who can and must bring theit998) is provided in ALADIN which eases analog design-
specific knowledge into the synthesis process in order to cre€"™s for their silicon compilation. The DesignAssistant is in-

ate high quality layouts. The focus of this paper is on thetegrated in a commercial design framework. Its Graphical
User Interface (GUI) executes external programs, such as the

Correspondence td.. Zhang module generator, the placer and the router, to create layouts
(lihong@ipe.et.uni-magdeburg.de) automatically. In Fig. 1 the design flow in the DesignAssis-
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Fig. 2. Representation of BLGA with one phenotyfa, the corre-

Fig. 1. Design Flow with DesignAssistant. sponding two genotypé®) (c).

tant is illustrated, where the shadowed block is the subject Obether with the corresponding phenotypes. A binary tree
this paper. (V,E),V ={cy, ..., ¢y}, in which thei’th node corresponds
to the celli, representing the absolute positions of all cells.
Two kinds of edges exist: top-edgé&s and right-edges,,

3 Algorithm implementation so that

The GA is a search strategy based on the mechanicsofnaty, _ ¢ g, E NE, =0 1)

ral selection and natural reproduction in a biological system.

It differs from the other stochastic search techniques by beingeach node has at most one outgoing top-edge and at most
able to encode and exploit past information efficiently during one outgoing right-edge. All edges are oriented away from
asearch. the root of the tree. Lat;; € E denote an edge from to c;

and let(c}’, c,.yl) and(c}”, ;") denote the coordinates of the
lower left and upper right corners of, respectively. Then
The conventional chromosomal representation of the GA isfiiéhf Of)’sﬁ’n) tIT eesﬁz ntg?t p(;eldiifh:t !:Jslaced above (or to the
based on bit-string (Shahookar and Mazumder, 1990). A GA ! ype. '
for the two-dimensional bin packing problem has been de- vl yros xl
Veii € E:c, >c; ife;ekE;, c
veloped by Kroeger et al. (1991). Esbensen and Mazumder "/ R =a ey & i
(1994) used this representation for the digital circuit place- The tree is decoded as follows. The cells are placed one
ment. In this paper a bottom-left GA (BLGA) for the analog by one in a rectangular area with horizontal length W and
module placement is developed based on comprehensive exsfinite vertical length. Each cell is moved as far down and

tensions and modifications of the genetic encoding and Opthen as far left as possible. The cells are placed in ascend-
erators found in the above work (Esbensen and Mazumdeting order according to their priorities defined by one-to-one

1994, Kroeger et al., 1991) In GA a distinction is made be'functionp -V > {On _ 1} Any node has h|gher priority

tween genotype and phenotype of an individual. Here the gethan its predecessor in the tree. In Fig. 2 the priorities are
netic encoding is inspired by the two-dimensional bin pack-jndicated at the top right hand of each node. The orientation

ing problem, which is the problem of compactly packing a (j e, transformation and reflection) of each cell is defined by
number of rectangular blocks into a bin with a fixed width the functiono : v — {0, 1, 2...7}, which is also part of the

and infinite height in such a way that the distance from thegenotype.

top edge of the highest placed block to the bottom edge of

the bin is minimized. The standard algorithm for this prob- 3.2  Genetic operators

lem places each block at a time at the downmost and then at

the leftmost position. The placement algorithm is based onGiven two individualsr andg, the crossover operator gener-

a generalization of this scheme. The solution space considates a new feasible descendant individualTwo proposals

ered by the algorithm is restricted to the set of all possibleare given. The operations are illustrated in Fig. 3. Through-

BL-placements. out this section, a superscript specifies which individual the
Assume that the given problem hasellscy, ..., ¢c,. An marked property belongs to. The experimental results are

example genotype with = 6 cells is shown in Fig. 2 to- given in Sect. 5. In the first proposd; (i.e., edge set of the

3.1 Genetic encoding

> Cl)_cr if ejj € E, (2)
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The second proposal differs from the first one by the con-
struction of the remaining cellg — V;, which inherits from

B by the ordered extension. In detail, the concatenation tries
to follow the structure of8 first of all. If impossible, ran-
domly add to any free position ¢f. In Fig. 3d the node is
added to the left of the nodg, instead of the left of the node

D in Fig. 3c. As well the nodet is added to the left of the
nodeD, instead of the left of the nodg in Fig. 3c.

Five different mutation operators are developed. Each per-
forms some random change in the given genotype. When
performing each of these mutations, a part of the genotype
has to be decoded to check if the mutated individual satisfies
all constraints. A mutation is only performed if it does not
cause any constraint violations. The purpose of the inver-
sion operator is to weaken the linkage among genes. Given
a genotype, the inversion operator computes a new genotype
by rearranging the components in such a way that their mu-

() offspring (the 1st (d)offspring (the 2nd tual distances changes, while at the same time assuring that
proposal) proposal) the corresponding phenotype is still the same. The inversion

operator selects a subtree at random and moves it to another
Fig. 3. Crossover operators. free position in such a way that no constraints are violated

and so that the corresponding phenotype is still the same. An
example of this is shown is Fig. 2b and c. This genotype tree

descendany) is constructed as follows. From the cell tree is generated by moving the subtree rooted at the fade

of a, a connected subset
T, = (V, E,), Vs C V,E; C E® (3) 3.3 Cost function

is chosenTy is chosen at random but subject to the constraintThe cost function is the goodness criterion of searched con-
that decodindl in the order defined by (i.e., priority of figurations. It consists of four parts, which are given in
individual @), using Eq. (7).

/ . po og)
c € Vsl¥e' € VS/{C} 1 P(e) < PT(C) (4) C = (Qait_areaCail_area + 9N _areaCN _area + AP _areaCp_area

as root, causes no constraint violations. In Fig. 3, the chosert®4_areaCA_area + &D_areaCD_area) + tnetsCrers
T; is indicated by the dashed line. Initially” is defined  +o,, 4/ Cusp_rar )
to be E;. Hence,y has inherited all cells itvy; from «. The
remaining cellsd/ —V; are then inherited from by extension  «* is a weight factor for the corresponding ca@st, which
of EY. The cell tree ofg is traversed in ascending order balances the importance of all the possible considerations
according t&. Atany node it is checked if the corresponding according to different design requirements. The first is the
cell ¢ belongs toVy, that is, whether it has been placedyin  area cost which is made up of the whole area, NWELL and
already. If so, the cell is skipped. Otherwiseis added to  PWELL region areas, analog and digital region areas. They
the cell tree ofy by extendingE” randomly. The orientation  will help to decrease the whole area. Moreover they could
of any cell is inherited unaltered together with the cell itself. make NWELL and PWELL regions relatively concentrated
That is, in order to ease the fabrication. And analog and digital re-
gions are separated from each other so that the constraints
for mixed signal circuits can be imposed. The second is
the net-length cos€,.;s, in which priority coefficient can
be specified for each net. For analog circuits the significance
of different nets is distinct. Some sensitive nets, for instance
differential input signal nets, should be as short as possible in
order to decrease the parasitic capacitance and crosstalk. The
more sensitive one net is, the higher its priority coefficient is
defined. Linear or exponential operations can be chosen on
Vei € Vs, Yej €V —Vy: PY(ci) < PY(c)) the net priority. Five approaches, ?n_cluding half-_perimeter,
Vei, ¢j € Vs PYe;) < P(cj) = PY(¢;) < P (c)) ce_n_ter-of-ma_ss, complete graph, minimum spanning tree ar_1d
minimum steiner tree, are developed for the net-length esti-
Vei, cjeV =Vi: PPe)) < PPcj) = mation so that analog designers can choose for the trade-off
P (ci) < PV (c)) (6) between accuracy and efficiency (Sait and Youssef, 1995).

@ if ceV
ty(c)_{tﬂ(c) if ceV—V, ®)

PY should correspond to the order in which the cells were
placed when creatin§”. SinceP is a bijection, the follow-
ing constraints in Eq. (6) uniquely determings:



194 L. Zhang and U. Kleine: A novel bottom-left packing genetic algorithm

Algorithm BLGA() Algorithm meta-GA()

(M: the population size.) (M: the population size.)

Begin Begin

1 input macro-cell geometry and net-list; 1 set M as 20 and the generation sum as 100;

2 initialize the first population randomly; 2 initialize the first population randomly;

3 evaluate the fitness; 3 evaluate the fitness;

4 while not (stopCriterion()) 4 while not (stopCriterion())

5 foreach (M * crossoverRate) 5 foreach (M)

6 choose the first parent based on rank selection; 6 make two random trials and select two parents from

7 choose the second parent randomly; the population with the probability proportional to

8 do crossover to generate one offspring; fitness;

9 endfor 7 perform crossover by selecting each parameter

10 choose M individuals with the largest fitness among the randomly from either parent with equal probability;
combined set of parents and offspring; 8 mutate offspring with 0.8 probability by selecting a

11 foreach (M) parameter at random and adding to it a random

12 do mutation based on mutationRate; number within the range of [0, 10];

13 do inversion based on inversionRate; 9 endfor

14 endfor 10 choose M individuals with the largest fitness among the

15 endwhile combined set of parents and offspring;

16 output the best member; 11  endwhile

End 12 select the fittest set of parameters from the final population;

End

Fig. 4. Outline of BLGA.
Fig. 5. Outline of the meta-GA.

The third is the aspect-ratio coSt;p 4, which is used to study about inter-correlation between two factors. The exper-
control the shape of the final layout. Designers can define thément design is depicted in Tabled, means crossover rate,
ideal width-length ratio or exact width value. The more the mr means mutation raté; means inversion raté/ means
real layout shape differs from the ideal definition, the more population size and means the combination of two factors.
penalty is brought about. The graphic input window of the Three columns (4, 7 and 11) are left for error estimation.

cost function is provided in the DesignAssistant. For the crossover and inversion rates, three levels are cho-
sen as (0.2, 0.55, 0.85). (0.05, 0.1, 0.2) are chosen for the
3.4 Algorithm outline levels of the mutation rate. Two groups of experiments were

performed in order to cover a wide range for the population
The algorithm outline is depicted in Fig. dtopCriterion() size, one with (10, 35, 60) and the other with (40, 70, 100).
makes the evolution process terminated if no improvementThe cost and execution time are taken as the search target,
has been observed for a predefined number of consecutivehere the cost is the primary consideration and execution
generations or a fixed number of generations is over. A fit-time is secondary. As a result, the correlation between pa-
ness is the reciprocal of the corresponding cost. rameters is found quite weak. The population size becomes

insignificant to the cost if it is more than 60. The crossover

and mutation rates are sensitive for the search. Even though
4 Parameter optimization the inversion rate is insensitive to the cost, itis 0.25 optimally

with the consideration of its effect on the execution time. So
Since the operators are of paramount importance to the ovethe optimal value or ranges for the four parameters are set
all performance of the algorithm, their parameters, includingas follows. The population size was set as 60, the mutation
the population size, crossover, mutation and inversion rates;ange was from 0 to 0.1, the crossover rate from 0.55to 1 and
have to be investigated with care. The study of the correlathe inversion rate from 0.20 to 0.55.
tion and sensitivity helps to shrink the regarded ranges and
set up the exact optimal parameters in the problem of analog.2 Parameter determination
module placement.

Because the levels in the orthogonal array are limited, it is
4.1 Parameter analysis rough to depend on it determining the parameter exact val-

ues. Furthermore although the result in Sect. 4.1 gives the
The fractional factorial experiment is an important techniqueweak correlation between two parameters, it is preferable to
in Robust Design (Park, 1996). A Taguchi orthogonal ar-take the correlation into account when determining parame-
ray L»7(3%3) is employed to construct the fractional factorial ter exact values. So a meta-GA (Shahookar and Mazumder,
experiment. The population size, crossover, mutation andl990) depicted in Fig. 5 was employed to determine the exact
inversion rates are taken as the factors. The reason why tmte values. The individuals in the population of the meta-GA
choose such an array with 13 columns is to give a deliberateonsist of three integers in the range of [0, 10], represent-
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Table 1. Design of the fractional factorial experiment

Exp.No. 1 2 3 4 5 6 7 8 9 10 11 12 13

cr mr crfmr ir crtir mr¥ir M cr*M mr*M ir*m
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 2 2 2 2 2 2 2 2
27 3 3 2 1 3 2 1 2 1 3 1 3 2

Table 2. Comparison among distinct algorithms Table 3. Comparison among distinct algorithms

SA BLGA1 BLGA2 circuitl circuit2 circuit3  Average
Crmean 11799 11823 11698 cr 0.775 0.82 0.865 0.82
Circuit 1 (o 176 46 39 mr 0.01 0.02 0.01 0.013
Tmean(s) 846 213 222 o ir 0.235 0.41 0.41 0.352
Ty (s) 210 40 69 initCost 12453 82276 220330
endCost 11731 77992 203704
Ciean 86653 83487 82122
Circuit 2 Co 3087 2925 2165
Timean(s) 5068 3897 2848 e
Ts (s) 783 163 1031 & ‘ !
i ' Bl
Conean 215720 220740 216350 o — BLGA2
Circuit 3 Co 13554 4224 3932 |
Tmean(s) 1143 2586 3222 |
To (5) 4 280 461 ) T
] |
gl I\ i
ing the crossover rate, inversion rate, and mutation rate of '.‘
BLGA. The fitness of an individual (a BLGA with a certain -l |
parameter combination) is taken to be the fitness of the bes! *
placement that the meta-GA can find in the entire run, using e o oo TR S
these parameters. In meta-GA, the population size was 20
and the algorithm was run for 100 generations. The crossover ¢

b bl 1 8] 5EI]0 1060 1_5IOO 2000
probability was 1.

Generations {or Accpeted States)

Fig. 6. Convergence schedules of different algorithms.
5 Experimental results

Because so far the analog benchmark circuits are unavailableeep the diversity during the evolution, the selection based
for the synthesis purpose, three local circuits are used to evaln fitness rank is applied instead of the fitness-based such
uate the above algorithms. Each algorithm is executed for te@s roulette wheel selection (Kroeger et al., 1991). The con-
times so that the mean and standard deviation are used fofergence schedule is depicted in Fig. 6. Since the costs of
evaluation. The cost value is superior to the execution time BLGA1 and BLGA2 are the best cost in each generation, the
As the focus here is on the comparison of algorithms, thevariance amplitude is smoother than SA in the whole view.
simple half-perimeter estimation is applied for all the trials.  The representation of BLGA improves the searching effi-
In order to demonstrate the efficiency of GA, one optimiza- ciency so that the search need not cover a wide scope as SA
tion with SA was also performed. The results are depicted inbut with more accuracy. The results with the Meta-GA for
Table 2 including SA, BLGA1 means with the first crossover the three circuits are given in Table 3. Finally the best pa-
proposal and BLGA2 means with the second crossover prorameter set is the crossover rate of 0.82, the mutation rate of
posal. 0.023 and the inversion rate of 0.235. The program is writ-
The result shows SA is generally poorer than BLGA while ten inC + + running under Solaris-UNIX in a Sun-Ultra60
need more execution time. The BLGA2 works marginally workstation. The weight factors in the cost function are set
better than BLGAL. So finally the second proposal, i.e., theas follows: a4 grea = 2, @Nyrea = 0.2, dprea = 0.2,
close inheritance crossover scheme is applied. In order tea,rea = 0.2,p,rea = 0.2, Apers = 10, andoggp,ar = 5.
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A A meta-GA is applied to determine the exact parameter val-
E F ues. The experimental results show that this approach with
& JEWJP the optimized parameters contributes high design efficiency

with the satisfactory result, which is comparable to the man-
ual counterpart.
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the analog module placement has been introduced. By using
the notion of bin-packing, a genetic encoding has been devel-
oped in which most constraints of the problem are implicitly
represented. As a consequence, each individual always sat-
isfies constraints. The advantage of the proposed strategy is
that it allows a more accurate estimation of the layout quality
with the configuration space shrunk dramatically, since the
use of penalty terms have been avoided. Special constraints
for analog integrated circuits are included in the cost func-
tion. The fractional factorial experiment with an orthogonal
array is employed in order to study the algorithm parameters.

Fig. 7. Schematiqa) and placement layoyb) with BLGA2 of a
common mode feedback optional amplifier.



