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Abstract. Many adiabatic logic families make use of multi
phase trapezoidal or sinusoidal power clocks to recover the
energy stored in the load capacitances. A key aspect for
the evaluation of the performance of adiabatic logic is then
the study of a system that includes the power clock gener-
ator. A four-phase trapezoidal power clock generator, ac-
cording to the requirements of the most promising architec-
tures, namely the ECRL and PFAL, has been designed and
simulated. The proposed circuit, realized with a double-well
0.25µm CMOS technology and external inductors, is a reso-
nant generator designed to oscillate at a frequency of 7 MHz,
which is within the optimum frequency range for adiabatic
circuits realized with this CMOS technology. The genera-
tor has been simulated with the equivalent load of fifty 1-bit
adders and the operating behavior of a 4-bit adder has been
evaluated. The key aspects of a generator for adiabatic logic
are its power consumption and the phase relationships be-
tween its output signals. The proposed generator has a con-
version efficiency higher than 80%, and it is robust with re-
spect to variations of technology parameters. The four power
supplies exhibit the correct relationship of phase also in the
presence of no equally distributed loads.

1 Introduction

Power consumption is a crucial requirement of present and
future circuits and systems since the increasing demand of
portable electrical applications makes the tradeoff of com-
puting power versus battery life time more critical. Further-
more, the number of gates per chip area is constantly increas-
ing, while the gate switching energy does not decrease at the
same rate, so power consumption rises and heat removal be-
comes more difficult and expensive. Then, to limit the power
consumption, alternative solutions at each level of abstrac-
tion are proposed.
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In static CMOS, any circuit can be described as a load ca-
pacitor and two switches that connect it alternately to the
power supply or to ground, and hence abruptly modify its
voltage. If the constant power supply is replaced by a time
variable power clock, with a rise time longer than the time
constant of the charging path (Athas et al., 1994), the switch-
ing operation can be accomplished with ideal vanishing dis-
sipation. Furthermore, when the capacitor is connected to the
decreasing power clock, its charge flows back to the power
source. Circuits that fulfill the low power requirements re-
covering the energy through time variable power supplies
(power clocks) are called “adiabatic”. In literature, choos-
ing different power clocks and methods to control the switch-
ing, many multi-phase adiabatic families have been proposed
by exemplifying the operating principle with simple circuits
and emphasizing the energy saving with respect to standard
CMOS. Although these studies illustrate important aspects of
the logic circuits, they usually are not comprehensive since
the energy dissipated in the DC/AC converter that generates
the multi-phase clock is often not taken into account. In some
papers the converter is not considered ideal, but the designed
solutions have not very high efficiency (Moon and Jeong,
1998) or the generated signals differ from the optimal wave-
form for the adiabatic circuits (Maksimovic and Oklobdzija,
1995; Moon and Jeong, 1996, 1998).

We believe that a key aspect in the evaluation of the po-
tential of adiabatic logic families is the performance of a
complete system, including the power clock generator and
the interface with conventional CMOS logic. In this pa-
per, a high efficiency power supply generator is presented,
which can be used for logic circuits implemented using three
adiabatic families, namely ECRL (Moon and Jeong, 1996,
1998), PFAL (Vetuli et al., 1996; Blotti et al., 2000), and 2N-
2N2P (Kramer et al., 1995; Liu and Lau, 1998). These fam-
ilies require, as power supplies, four trapezoidal waveforms
equally spaced in phase.

The paper is organized as follows: in Sect. 2 some oscil-
lators proposed in literature are overviewed, illustrating ad-
vantages and drawbacks of each architecture. In Sect. 3 the
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new oscillator and its amplitude and frequency expressions
are introduced. In Sect. 4 the simulation results, such as con-
version efficiency and sensibility to parameter variations, are
reported. In Sect. 5 an alternative solution is evaluated.

2 Overview of adiabatic oscillators

The main requirements for a DC/AC converter for adiabatic
circuits are the capability to recover the energy stored in the
load capacitances, and a high power-conversion efficiency,
defined as the ratio of the load power to the total DC supply
power. Oscillators based on LC resonant circuits can meet
these requirements, and therefore ensure that the complete
adiabatic system provides significant power saving with re-
spect to its standard CMOS counterpart. In the few schemes
appeared in the literature, the adiabatic logic is usually rep-
resented by its equivalent load, i.e. a resistanceRe and a
capacitanceCe. In the 1N single-phase power clock gener-
ator (Maksimovic and Oklobdzija, 1995) (see Fig. 1) an in-
ductanceL connects the DC power supply to the logic, that
has a nMOSFET in parallel. The oscillator generates only
one sinusoidal phaseϕ0 and needs a square waveform con-
trol signal ctr. The outputϕ0 has the same frequency as
the control signal, and its amplitude is determined by thectr

duty cycle. When the output signal frequency is close to the
resonant frequency, the generator has a conversion efficiency
around 70%.

In Fig. 2 is reported the 2N2P two-phase power clock gen-
erator (Maksimovic and Oklobdzija, 1995; Moon and Jeong,
1996, 1998; Ye and Roy, 2001), which provides two sinu-
soidal clocks and requires only one inductor. If control sig-
nals are external, the frequency is easily enforced and with
some additional circuitry two oscillators can be merged into
a 4-phase generator. In this case, the conversion efficiency is
around 40–50% (Moon and Jeong, 1996).

Because the adiabatic loads driven by the oscillator out-
puts are different and time variable (Kim et al., 2001), the
circuit cannot be completely balanced with external capac-
itances, therefore a phase error up to 5% may occur in the
output waveforms. If outputs are used as internal control sig-
nals, i.e. ifc1 = ϕ1 andc2 = ϕ2, the circuit complexity and
occupied area are reduced, but also the conversion efficiency
decreases (Liu and Lau, 1998).

3 Shifting oscillator

The oscillator proposed in this paper is realized as a ring of
four low-power 90-degree shifters, as shown in Fig. 3. Each
shifter is realized with a CMOS inverter and an LC resonant
circuit, so that the energy is transferred between reactive el-
ements while the DC power supply only delivers the energy
dissipated on the resistance and on the diodes.

Each output of the oscillator drives a stage of the adiabatic
circuit, represented in Fig. 3 by its equivalent load, i.e. a
resistanceRe and a capacitanceCe. The inductors are ex-
ternal to the chip. The output amplitude regulation between
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Fig. 1. The 1N generator.
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Fig. 2. The 2N2P generator.

0 V andVdd is achieved with Schottky diodes, whose lowVγ

ensures moderate energy dissipation when diodes are in con-
duction. The proper configuration of the reactive elements
provides the required phase delay. Therefore, when the cir-
cuit oscillates, the four outputs have the same frequency and
a quarter-period shift, as required by the considered adiabatic
architectures.

To properly dimension the elements of the oscillator, let
us consider its analytical transfer function. The ring transfer
function is the product of four identical single-stage trans-
fer functions, therefore Barkhausen criterion is met when
a single-stage transfer function has a gain equal to 1 and a
phase delay equal tokπ/2. In a small signal approximation,
the expression of a single-stage transfer function is:

ϕ1(s)

ϕ0(s)
=

−Re rds (gmp + gmn)

rds + Re + (L + rds Re Ce)s + Re Ce Ls2
(1)

whererds is the small signal output resistance of the MOS-
FETs, andgmp andgmn are the pMOSFET and nMOSFET
transconductances, respectively. By enforcing a phase of
3π /2, we obtain the following expressions for the frequency
and for the gain value:
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Fig. 3. Schematic of the 4-phase shifter oscillator.
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 Fig. 4. Waveforms of the 4-phase power clock generator.
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In our simulation, a standard double-well 0.25µm CMOS
technology and a DC supply voltage of 1.8 V are considered.
Re andCe are chosen as the equivalent impedance seen by
the power supply of fifty 1-bit adders, soRe is 2 M� and
Ce is 500f F . Since the considered adiabatic families with
this technology process have the optimal frequency range be-
tween 1 and 10 MHz (Amirante et al., 2001), the clock fre-
quency is chosen equal to 7 MHz. From Eq. (2), the induc-
tance value is derived to be equal to 1 mH. Since the transfer
function is based on a simplified circuit that does not con-
sider the effect of diodes, the gain value must be larger than
1 to ensure oscillation. Nevertheless high gain values lead to
square waveforms and to longer period of diode conduction,
therefore the optimum gain is found between 1.5 and 3. To
reduce dissipation on the channel resistance, the pMOSFET
W/L ratio is 10 times larger than of the nMOSFET W/L.

4 Simulation results

The circuit functionality has been simulated with PSpice.
The conversion efficiencyη, defined as the ratio of the en-
ergy dissipated on the load to the total energy delivered by
the DC supply, is one of the most important parameters of
the generator, since energy dissipation is the main concern
of adiabatic architectures. The oscillator, driving the equiv-
alent load of the adiabatic system (Re, Ce), shows a con-
version efficiency of 85%. The time relationship among the

power clock phases is another important specification, since
between the input signals and the power clock a 90 degree
delay must be present . The phase error is defined as the
distance in degrees between the real waveform and the theo-
retical one. In the nominal conditions the proposed oscillator
has a maximum phase error of 0.9 degrees.

The threshold voltages of the n- and p-MOSFETs are
VT n = 0.44 V andVTp = −0.43 V, respectively. Increased
efficiency can be obtained with higher threshold voltage de-
vices. For this reason, also the possibility to develop the cir-
cuit with high VT MOSFETs has been considered, and the
simulation results withVT n = −VTp = 0.9 V are presented.

To evaluate not only the conversion efficiency of the oscil-
lator, but also to evaluate the quality of the generated power
clocks, a more complete adiabatic system is simulated. The
system is made up of the proposed oscillator, of the synchro-
nizers for the external inputs (Fischer et al., 2002), and of a
4-bit pipelined Ripple Carry Adder realized in ECRL logic.
With this load the oscillator presents a conversion efficiency
of 82.3% with the highVT MOSFETs, and of 75.6% with the
normalVT MOSFETs. In both cases the output waveforms
are close to be trapezoidal and exhibit the correct relationship
of phase (Fig. 4).

The power conversion efficiency has been evaluated when
variations of the value of a single reactive parameter occur.
Since the inductances are external elements characterized by
a tolerance range around the nominal value, our simulations
take in account the worst case of technological parameter
shift, whereas the capacitive load on each phase is deter-
mined by the logic function that the phase itself drives, and
its value is usually a function of time, therefore the simulated
capacitor conditions must predict the behavior of the circuit
in case of the worst operating variations.

The simulation results reported in Table 1 are obtained
modifying the value of one reactive element in a single shifter
stage (whose modified value is reported in brackets), and
leaving unaltered the values of all other reactive parameters.

Using highVT devices, a 30% variation of one capaci-
tance value causes a reduction of the conversion efficiency
of less than 2.3%, while the frequency variation is less than
3%. With a 30% variation of the value of a single inductance,
the efficiency is reduced by less then 1%, and the frequency
variation amounts to 5%. The phase error of the oscillator
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Table 1. Simulation results of the oscillator driving the adiabatic logic gate implemented with high (left) and low (right)VT MOSFETs

VT [V] L [mH] C [fF] η [%] f [MHz] VT [V] L [mH] C [fF] η [%] f [MHz]

0.9 1 500 82.3 7.13 0.4 1 500 75.6 7.14
0.9 1 500 (650) 80.0 6.94 0.4 1 500 (650) 74.0 6.94
0.9 1 500 (350) 81.9 7.35 0.4 1 500 (350) 75.2 7.40
0.9 1 (1.3) 500 81.4 6.93 0.4 1 (1.3) 500 72.9 7.96
0.9 1 (0.7) 500 81.6 7.48 0.4 1 (0.7) 500 74.0 7.54

with the nominal load presents is only 1 degree, while its
worst case performance in presence of parameter variations
amounts to 5.8 degrees. The oscillator with highVT devices
is therefore not only characterized by higher efficiency value
than the solution with lowVT devices, but also by better ro-
bustness against parameter variations.

5 Alternative solution without Schottky diodes

Since Schottky diodes are not usually available in a standard
CMOS process, alternative solutions have been investigated,
in particular, the possibility to replace the diodes with MOS-
FETs. In this alternative design, the diodesd1andd2(Fig. 3)
are replaced by a pMOSFET and a nMOSFET, respectively,
with their gates connected to their sources. The conver-
sion efficiency of this solution simulated with an equivalent
load amounts to 76%, instead of the 85% obtained with the
Schottky diodes. Moreover, this implementation also ex-
hibits other drawbacks: the clipping of the output waveforms
is not accurate, therefore the power-clocks reach voltages
lower than 0 V and higher thanVdd (−0.7 V; 2.6 V), and
the waveforms are almost sinusoidal rather than trapezoidal.
To reduce these effects, the diodes are replaced by lowVT

MOSFETs (VT = 0.2 V) whose sources are connected to volt-
age references (Vref,p = 1.3 V; Vref,n = 0.5 V). In this case,
the efficiency amounts to 76%, and the dynamic range of the
power supplies is comparable to the results obtained with the
implementation using Schottky diodes (−0.3 V; 2.1 V).

6 Conclusions

A high conversion efficiency oscillator capable to generate
the 4-phase trapezoidal power-clocks required by many adi-
abatic logic families has been presented. The generator uti-
lizes Schottky diodes and shows operation at 7 MHz, which
is within the optimum frequency range for the considered
0.25µm CMOS technology. To evaluate the performance
of a complete adiabatic system, the oscillator has been simu-
lated driving a pipelined 4-bit adder. The generator produces
almost trapezoidal output signals, without the need for any
auxiliary control circuit, and it has a conversion efficiency
higher than 80%. The robustness to technological and oper-
ational parameter variations has been characterized. In case
of a 30% variation of a reactive element value, the conver-
sion efficiency decreases only by 2%, while the frequency

variation amounts to less than 5%. In addition, the genera-
tor exhibits a low energy dissipation even if the load capac-
itances are not equally distributed on the phases. To avoid
the use of Schottky diodes, an alternative solution using low
VT MOSFETs has been discussed, together with its cost in
terms of circuit complexity. In this case, the conversion ef-
ficiency amounts to 76%. The proposed oscillator, with its
high efficiency and its almost ideal trapezoidal waveforms,
gives to the adiabatic logic the possibility to compete with
static CMOS logic in low power applications.
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