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Abstract. Due to the increasing importance of EMC
problems through the last years there is a great interest
in measurement devices such as GTEM-cells (Giga(Hz)-
TEM cells). They promise to allow compact and low-cost
emission- as well as susceptibility tests up to very high fre-
quencies. Expensive measurement procedures in open-area
test sites or within semi-anechoic chambers would become
obsolete in many cases. To estimate the quality and reliability
of GTEM-cell measurements it is necessary to have detailed
knowledge about the processes within the cell and, in par-
ticular, about the interactions between the cell and the DUT
(device under test). Due to the high frequency and the cell’s
dimensions a purely numerical simulation while using stan-
dard techniques such as Finite Element Method, Method of
Moments (MoM) or the Finite-Differ-Time-Domain (FDTD)
method is inefficient and unnecessary since the GTEM-cell
is a mostly empty homogeneous TEM-waveguide. Analyt-
ical models allow only the investigation of empty cells. As
will be outlined in the following, a suitable way to reduce the
numerical complexity of the general problem is the use of a
hybrid method, such as the combination of a modal analysis
with the MoM.

1 Two-dimensional model

To begin with a simple model for the GTEM-cell, we shall
analyze the related two-dimensional problem: Consider a
perfectly electrically conducting (PEC) DUT, located in the
interior of a wedge with PEC walls, where the DUT, the
wedge and a (line) source distribution do not depend of the
direction parallel to the wedge’s edge. This two-dimensional
problem is well suited for the evaluation of the algorithm;
Moreover it allows an insight into the processes within such
a cell, in particular the undesired interaction between the cell
and the DUT can be studied systematically. And, it is noted
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that the method can be generalized to the three-dimensional
case.

2 Hybrid modal-analysis and method-of-moments ap-
proach

There is only a very small part of the cell occupied by the
DUT, while the main part is empty. To take advantage of
this fact, we first split the cell into three domains as shown in
Fig. 1.

Using a plane polar coordinate system(R, ϕ) with the ori-
gin at the wedge’s edge, the domainsI , II andIII are de-
fined as seen from Fig. 1. DomainsI and II are empty,
while domainIII surrounds the DUT. The electromagnetic
field component perpendicular to the plane shown is denoted
by 9 and must satisfy the scalar Helmholtz equation

19(R ) + κ29(R ) = 0 (1)

within the domains and the Dirichlet- or the Neumann-
condition at the boundaries
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where n̂ is the normal outward-directing unit vector at the
boundary of the cell. Furthermore,9 has to be continu-
ous through the interfacesC1 andC2 between the domains.
A time-factore+jωt is assumed and omitted throughout the
analysis.

For PartI andII of the cell, we describe9 by means of
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Figure 1. Subdivision of the cell

within the domains and the Dirichlet- or the Neumann-condition at the boundaries
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= 0 (Dirchlet condition) (2)

∂Ψ(~R )
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= 0 (Neumann condition), (3)

where n̂ is the normal outward-directing unit vector at the boundary of the cell. Furthermore, Ψ has to be
continuous through the interfaces C1 and C2 between the domains. A time-factor e+jωt is assumed and omitted
throughout the analysis.

For Part I and II of the cell, we describe Ψ by means of a modal analysis
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where the sine and the cosine functions are to be used for the Dirichlet- and for the Neumann-case, respectively.
H

(1)
nπ
α

and H
(2)
nπ
α

represent Hankel functions of the first and second kind, respectively, and κ = ω
√
ε0µ0 is the

free-space wave number. aI incn , aII incn are the known amplitudes of the incident fields, whereas the amplitudes
aI scn , aII scn of the scattered fields are to be determined. While exploiting Green’s second identity and provided
that there are no sources within domain III (susceptibility test) we represent Ψ within domain III by

∮
C(F )

[
G(~R , ~R ′)

∂

∂n′
ΨIII(~R ′)−ΨIII(~R ′)

∂

∂n′
G(~R , ~R ′)

]
ds′ =


ΨIII(~R ) for ~R ∈ F
1
2ΨIII(~R ) for ~R ∈ C(F )

0 for ~R 6∈ F
(6)

where C = C1 +C2 +C3, n̂′ is the normal outward-directing unit vector on C and G(~R , ~R ′) denotes the free-
space Green’s function. If the field point in (6) matches the boundary C, we obtain a field integral equation.
Since in the Dirichlet case it holds ∮

C

G(~R , ~R ′)
∂

∂n′
ΨIII(~R ′)ds′

∣∣∣∣∣∣
C3

= 0 (7)

Fig. 1. Subdivision of the cell

9II (R ) =

∞∑
n=0

aII inc
n H

(1)
nπ
α

(κR)
sin

cos

(nπ

α
ϕ
)

+

∞∑
n=0

aII sc
n H

(2)
nπ
α

(κR)
sin

cos

(nπ

α
ϕ
)

, (4)

where the sine and the cosine functions are to be used for the
Dirichlet- and for the Neumann-case, respectively.H
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n of the scattered
fields are to be determined. While exploiting Green’s second
identity and provided that there are no sources within domain
III (susceptibility test) we represent9 within domainIII
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where C = C1 + C2 + C3, n̂′ is the normal outward-
directing unit vector onC andG(R ,R ′) denotes the free-
space Green’s function. If the field point in Eq. (5) matches
the boundaryC, we obtain a field integral equation. Since in
the Dirichlet case it holds∮
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and in the Neumann case we have
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on the boundaryC3 only one part of the two in the integrand
of Eq. (5) is non-zero in each case; This unknown part is

approximated by a set of sub-domain basis functionsfi in
the following form:
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OnC1 andC2, 9III and(∂/∂n′)9III are due to the continu-
ity conditions obtained directly as Fourier series from Eq. (3)
and (4).

Using the MoM (Harrington, 1993) we transform the prob-
lem into a matrix equation. If the coupling-integrals involve
only the sub-domain expansions onC3, the closed form of
the free-space Green’s function

G(R ,R ′) =
1
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∣∣) . (9)

is employed, whereH (2)
0 is an Hankelfunction of zero order.

The testing onC3 is performed with usual point-matching.
For the evaluation of the coupling-integrals involvingC1 and
C2 we use the modal expansion of the free-space Green’s
function
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1
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with the abbreviations

R< = min(R, R′) ; R> = max(R, R′) (11)

andJn as a Bessel function. The testing onC1 andC2 is per-
formed due to the Galerkin formalism, i.e. testing functions
cosnπ

α
ϕ and sinnπ

α
ϕ are employed. This procedure allows

an analytical evaluation of the related integrals; The con-
vergence is ensured because of the behavior of the cylinder
functions and of the coupling-integrals. The numerical so-
lution of the obtained system of linear equations yields the
coefficientsci of the sub-domain basis functions onC3 and,
directly, the scattered-field’s modal coefficientsaI sc

n , aII sc
n

in Eq. (3) and (4).

3 Validation and numerical results

The consistency of the proposed method has been success-
fully validated for the case of an empty cell by inserting the
problem-adapted Green’s function of the wedge, i.e., where
the boundary conditions onC3 are automatically fulfilled.
We analytically derive the expected result:aI sc

n = aII inc
n

andaII sc
n = aI inc

n . Moreover, this result is also the objec-
tive for the numerical evaluation of the empty-cell case: Thus
this case is well suited for numerical studies to find the opti-
mal parameters and to estimate the number of relevant modes
and sub-domain basis functions.

Figure 2 shows the field inside a cell as compared with
the field in free space for a frequency of 5 GHz. In Fig. 2
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Fig. 2. Field for an incident TEM-Mode of 5 GHz and for a cylindric scatterer with 5 cm radius. In(a) the field is calculated inside a cell
using the described hybrid method. The length of the cell is 2 m and the opening angle is 30◦. In (b) a reference solution for free space is
shown. A multipole expansion has been used for the calculation. The difference between these two results is presented in(c). For both, cell
and free space, a Neumann boundary condition is used.

Fig. 3. Normalized surface current on the cylindric scatterer for
different frequencies (f R = const). The source is located inα =

0◦ direction. The cylindrical scatterer is located atR =1.5 m and
ϕ = 15◦. The length of the cell is 2m and the opening angle is 30◦.

we can observe a standing wave between the cell boundaries.
This effect causes an error in the surface current as shown in
Fig. 3. Figure 4 shows in which way the normalized integral
error of the surface current depends on the frequency. This
shows that the coupling between the DUT and cell may cause
an error in the surface current from 10% to 60%.
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