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Abstract. We study the influence of both the electromagnetic
source singularity and electromagnetic cavity resonances on
the current distribution of a dipole antenna within a rectan-
gular cavity. These two types of electromagnetic singulari-
ties are triggered by the radius of the dipole antenna and the
quality factor of the enclosing cavity, respectively. The key
element of our investigation is a novel representation of the
electromagnetic Green’s function for a lossy rectangular cav-
ity. It allows to directly obtain the current distribution on the
antenna by means of the method of moments. As a result it is
recognized that a dominating source singularity, i.e., a small
antenna radius, can inhibit resonating effects, even if a cav-
ity resonance is excited and the quality factor of the cavity is
high.

1 Introduction

Many EMC problems involve the investigation of electro-
magnetic coupling within metallic or resonating structures
(Tesche et al., 1997; Lee, 1995). This is obvious for electric
and electronic devices that are inside of a metallic enclosure
and appear as victims of Electromagnetic Interference (EMI).
Also complex systems, like aircrafts or cars, for example, of-
ten contain sensitive electric and electronic equipment within
resonating metallic compartments. In these cases the electro-
magnetic interference process canconsiderably differfrom
that in free space. This difference can be explained by the no-
tion of electromagnetic singularities: If we consider an elec-
tric charge distribution we encounter the well-known singu-
larity in the source region which is due to the singular behav-
ior of the Coulomb field. This type of singularity is present
both if the charge distribution is located in free space and if
the charge distribution is enclosed by a cavity. Therefore the

Correspondence to:F. Gronwald
(Frank.Gronwald@et.uni-magdeburg.de)

mathematical methods for dealing with the singularity in the
source region are the same for both free space and the inside
of a cavity. A difference between free space and the inside of
a cavity occurs, however, if radiation fields are considered.
In free space, radiation fields carry a finite amount of energy
and exhibit no singularities. If radiation fields are enclosed
by a cavity they form discrete bound states, the modes. In
frequency domain the energy of a mode is bounded by the
quality factor of the cavity and tends to infinity in the lossless
case. This singular behavior of a resonance has no analogue
in free space.

Since the electromagnetic coupling gets very strong close
to an electromagnetic singularity it is clear that the strength
of a singularity will largely determine the behavior of an
EMC-relevant coupling process within a cavity. In this con-
text it needs to be mentioned that besides the quality factor,
which triggers the strength of a resonance, there will be a
second cut-off parameter which triggers the source singular-
ity. In our model, where we focus on a dipole antenna, this
parameter will be given by the antenna radius. It is then in-
teresting to observe the effect of varying the quality factor or
the antenna radius. It will be recognized that a strong source
singularity, corresponding to a small wire radius, will qual-
itatively impress a “free space behavior” of electromagnetic
quantities while a strong resonance, corresponding to a high
quality factor, will lead to a resonating behavior which does
not resemble that of free space.

In the next Sect. 2 we will introduce the model of an active
dipole antenna within a rectangular cavity and outline how
to establish an appropriate integral equation for the antenna
current. The influence of the quality factor and the antenna
radius on the Green’s function of the cavity will be studied.
Finally, in Sect. 3, the antenna current on the dipole antenna
will be obtained by the method of moments and subsequently
be discussed.
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Fig. 1. Sketch of the dipole antenna within the rectangular cavity.

2 Hallén’s integral equation and the Green’s function of
the cavity

There are two standard integral equations which can be used
to determine the current on a wire antenna. These arePock-
lington’s equationandHallén’s equation(Nakano, 1996). In
the following we focus on Hallén’s equation since it contains
the Green’s functionGA for the vector potential as kernel.
This kernel is easier to calculate than the one of Pockling-
ton’s equation. It is one of our goals to efficiently solve
Hallén’s equation within a rectangular cavity by means of
the method of moments.

We consider a center fed, straight dipole antenna, compare
Fig. 1. In a cartesian coordinate system we align the antenna
with thez-axis and position the center of the antenna atz =

z0. The antenna is excited by aslice generatorthat is char-
acterized by the electric source fieldEq

z (z) = V0δ(z − z0).
If furthermore a thin-wire approximation is employed it is
found that Halĺen’s equation acquires the form∫ L/2

−L/2
GA(z, z′)I (z′)dz′

=

−
j

η

(
A cos(k(z − z0)) +

V0

2
sin(k|z − z0|)

)
. (1)

Here the symbolη denotes the intrinsic impedance of the
surrounding medium,η =

√
µ/ε, andk denotes the possibly

complex wavenumber,k = ω/c . The integral extends over
the length of the antenna which is denoted byL. In Eq. (1)
the unknowns are the current distributionI (z) and the inte-
gration constantA. These unknowns are to be determined by
the method of moments.

If the antenna is placed in free space the Green’s function
GA(z, z′) is given by the Green’s function of free space. Due
to the thin-wire approximation, which is valid if the wire ra-
dius ρ is much smaller than the wavelengthλ, ρ � λ, we
haveGA(z, z′) −→ GA

red(z, z
′) with the “reduced kernel”

GA
red(z, z

′) =
1

4π

e−jk
√

ρ2+(z−z′)2√
ρ2 + (z − z′)2

. (2)

If the antenna is not placed in free space but put within a cav-
ity it still is possible to obtain the current distributionI (z)

from Hallén’s equation Eq. (1). However, then it is neces-
sary to use the Green’s function of the cavity as kernel, i.e.,
GA(z, z′) −→ GA

cav(z, z
′) (Tai, 1994).

For a given cavity it is of paramount importance to find
a representation of the Green’s functionGA

cav(z, z
′) which

is numerically accurate and efficient in both the source re-
gion, wherez −→ z′, and the resonance region. The stan-
dardmode-representationusually fails to be efficient in the
source region where convergence becomes very slow. Com-
plementary to the mode-representation is the so-calledray-
representation. It has good convergence properties in the
source region but usually fails to be efficient in the resonance
region. The complementary behavior of mode- and ray-
representation already has been discussed in detail (Felsen,
1984). There the usage of hybridray-mode-representations
was promoted in order to combine the mutual advantages
of both ray- and mode-representation. For the case of a
rectangular cavity an explicit ray-mode-representation was
investigated (Wu and Chang, 1988) and already exhibited
several advantages. In a different approach a ray-mode-
representation for a rectangular cavity was constructed (Park
et al., 1988) on the basis of the Ewald sum technique (Ewald,
1921). A comparison has shown that the latter representation
is extremely accurate and efficient if compared to other rep-
resentations (Gronwald et al., 2002). However, the advan-
tageous representation of Park et al. (1988) is not valid for
complex wavenumbers. Therefore we will base in the follow-
ing our numerical analysis on a representation of the Green’s
function of a rectangular cavity which generalizes this repre-
sentation to complex wavenumbers (Gronwald, 2002).

For the electromagnetic vector potential the dyadic
Green’s function of a rectangular cavity, which is aligned
with thex−, y− andz−axis and is of dimensionsa, b, and
c, respectively, is of the form

G
A

= GA
xx x̂x̂ + GA

yy ŷŷ + GA
zz ẑẑ. (3)

Let us focus for concreteness on theGA
zz component. It was

shown (Gronwald, 2002) that this component can be written
in the form

GA
zz = GA

zz1 + GA
zz2 (4)

where

GA
zz1 =

µ

8abc

∞∑
m,n,p=−∞

7∑
i=0

Azz
i

exp
(
−

k2
0−k2

4E2

)
k2

0 − k2

exp
(
j (k0xXi + k0yYi + k0zZi)

)
(5)

and

GA
zz2 =

µ

8π

∞∑
m,n,p=−∞

7∑
i=0

Azz
i[exp(jkRi,mnp)erfc(Ri,mnpE + jk/2E)

Ri,mnp

+

exp(−jkRi,mnp)erfc(Ri,mnpE − jk/2E)

Ri,mnp

]
(6)
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Here the coefficientAzz
i is defined by

Azz
i =

{
+1 , i = 0, 1, 6, 7
−1 , i = 2, 3, 4, 5

, (7)

The lengthRi,mnp represents the distance between a source
and its mirror sources atr ′

= (x′, y′, z′) to an observation
point atr = (x, y, z). It is given by

Ri, mnp =√
(Xi + 2ma)2 + (Yi + 2nb)2 + (Zi + 2pc)2, (8)

with

Xi =

{
x − x′ , i = 0, 1, 2, 3
x + x′ , i = 4, 5, 6, 7

, (9)

Yi =

{
y − y′ , i = 0, 1, 4, 5
y + y′ , i = 2, 3, 6, 7

, (10)

Zi =

{
z − z′ , i = 0, 2, 4, 6
z + z′ , i = 1, 3, 5, 7

. (11)

The componentsk0x , k0y , andk0z are defined by the vector
k0 according to

ko := (k0x, k0y, k0z) := (mπ/a, nπ/b, pπ/c). (12)

Finally, we introduced in Eq. (6) the complementary error
function erfc(z).

The termGA
zz1 in Eq. (5) constitutes amode partwhile

the termGA
zz2 in Eq. (6) constitutes aray part. Thea priori

undetermined parameterE adjusts the contributions of each
of both terms to the sum in Eq. (4). IncreasingE makesGA

zz1
contribute more to the sum and decreases the influence of
GA

zz2 while decreasingE makesGA
zz2 contribute more to the

sum and decreases the influence ofGA
zz1. From a numerical

point of view it is best to chooseE such that the decay of
both series is balanced.

Let us plot the Green’s functionGA
zz(z, z

′) for illustration.
We characterize the dimensions of the cavity bya = b =

c = 1 and introduce a line within this cube which is given
by x = a/2, y = b/2, andz ∈ [c/4, 3c/4]. As observation
point we chooser = (a/2, b/2, c/2) and take source points
r ′

= (a/2, b/2, z′) with z′
∈ [c/4, 3c/4]. We also need to

specify a wave number. We choose for this examplek =

2π(1 − j/(2Q))/(2/
√

6). This corresponds to a resonance
frequency of the cavity withλ = 2/

√
6. The letterQ denotes

the quality factor.
It is seen in the upper diagram of Fig. 2 that for a rela-

tively low quality factor ofQ = 40 the Green’s function of
the cavity resembles the Green’s function of free space. If
we increase the quality factor it is seen that a rather extended
part of an oscillation builds up. This is due to the choice of
wavenumber which corresponds to a resonance frequency of
the cavity. Larger quality factors, which correspond to fewer
losses, lead to larger amplitudes that can arbitrarily exceed
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Fig. 2. Plot of the absolute value of the functionGA
zz(

c
2, z′)/µ0.

The upper diagram displays plots for various quality factorsQ and
a fixed radius which is given byρ/λ = 10−3. The relative position
relates to the interval [c/4,3c/4]. The lower diagram focuses on the
observation point at relative position 50. The corresponding three
plots are obtained by keeping the quality factor fixed at a value of
Q = 1000 and using different values for the ratioρ/λ.

the peak in the source region of free space which, in turn,
is determined by the antenna radius. Smaller quality factors
lead to an decrease of the oscillation such that in this case
the curve resembles the situation of free space. The same
decrease is observed if we shift the frequency off resonance.
That the peak in the source region is indeed triggered by the
wire radius is shown in the lower diagram of Fig. 2. There
a fixed quality factorQ = 1000 is chosen. It is seen that
on top of the oscillation we have no peak for a relatively
large antenna radius but can generate arbitrarily large peaks
by choosing the antenna radius to be smaller and smaller.

From this short investigation of the cavities Green’s func-
tion we may close this section by the following simple state-
ment: Cavity effects become important close to resonance
and for high quality factors.The actual value of a “high”
quality factor is determined by the singular behavior in the
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Fig. 3. Subdivision of the dipole antenna in 2M − 1 equally spaced
intervals of lengthh = L/(2M − 1). The slice generator is located
between theM − 1th andMth interval.

source region: If the oscillations in the Green’s function, that
are due to a resonance, become comparable in amplitude to
the peak in the source region, then it is expected that cavity
effects will play a major role in the electromagnetic coupling
process.

3 Method of moments solution and numerical results

We now solve Halĺens Eq. (1) by the method of moments. To
this end we subdivide the dipole antenna in 2M − 1 equally
spaced intervals of lengthh = L/(2M − 1), with a delta gap
generator between the(M − 1)th andMth interval, compare
Fig. 3. This introduces a slight asymmetry which is accept-
able ifh is sufficiently small.

As basis functions we use pulse functionsPk(z). For fixed
k the functionPk(z) equals unity within thekth interval and
is zero otherwise. The unknown electric current is expanded
according to

I (z) ≈

2M−1∑
k=1

αkPk(z) . (13)

Inserting this expansion in Eq. (1) and using the midpointszk

of the 2M − 1 intervals as matching points leads to a linear
system of 2M − 1 equations for the unknownsα2 . . . α2M−2,
A. The coefficientsα1, α2M−1 are set to zero in order to
fulfill the boundary condition of vanishing current at the ends
of the antenna. The system of equations explicitly is given by

2M−1∑
k=1

Ajkak = bj (14)

with

ak := (α2, . . . , α2M−2, A)k, bj := −
jV0

2η
sin(k|zj |), (15)

and

Aj (2M−1) :=
j

η
cos(kzj ), Ajk :=

∫ zk+h/2

zk−h/2
GA

zz(zj , z
′)dz′.(16)

for k = 1 . . . 2M − 2.
The matrix elementsAjk of Eq. (16) can either be numer-

ically evaluated or analytically approximated. Once this is
done the linear Eq. (14) is straightforwardly solved such that
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Fig. 4. Distribution of the absolute value of the current on a
dipole antenna within a rectangular cavity. The normalized length
is L/λ = 1 and the antenna radius is given byρ/λ = 10−3.

the currentI (z) is obtained via Eq. (13). In this way we
now calculate the current on a dipole antenna for various val-
ues of the quality factor. The antenna is placed atx = a/2,
y = b/2, and extends alongz ∈ [−L/2 + c/2, L/2 + c/2].
The choice of parameters is the same as the one that was used
to obtain the upper diagram of Fig. 2. Furthermore, we nor-
malize the slice generator and setV0 = 1. The corresponding
results are displayed in Fig. 4.

For the low quality factorQ = 40 we expect in view of the
upper diagram of Fig. 2, which shows adominating source
singularity, that the current distribution of the antenna within
the cavity is similar to that in free space, even though we ex-
cite a resonance frequency of the cavity. This is indeed the
case: The current distribution is approximately sinusoidal,
with a deviation at the center of the antenna which can be
attributed to the slice generator. This feature is well-known
from the method of moment analysis of a dipole antenna in
free space (Elliott, 1981). If we increase the quality factor the
resulting current distribution no longer resembles the current
distribution of free space but is characterized by an increas-
ing maximum at the center of the dipole antenna, while the
former maxima of the sinusoidal distribution decrease. It is
clear that this current distribution corresponds to adominat-
ing resonance.

With this computation of the current distribution the
boundary value problem of an active dipole antenna within
a rectangular cavity is completely solved. The electromag-
netic field inside the cavity can straightforwardly be obtained
by means of the cavity’s Green’s function.

In summary, there are two major points that can be seen
from this example: First, it is decisive to find an efficient rep-
resentation of the electromagnetic Green’s function if cou-
pling phenomena within a cavity are considered. The effi-
ciency and accuracy of the proposed representation in Sect. 2,
which is valid for a rectangular cavity, is of orders of magni-
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tudes better than the standard mode representation. It is this
circumstance that makes a method of moment solution fea-
sible. Second, it is important to understand the dominating
influence of both the source singularity and the resonances.
Both types of singularities are triggered by a certain param-
eter. While a dominating source singularity leads to an elec-
tromagnetic coupling which resembles that of free space it is
a dominating resonance which exhibits cavity effects. This
insight is also useful for analytical calculations that are based
on iteration or perturbative methods, where dominating first-
order solutions are required.
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