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Abstract. Using results from the theory of planar fields formula is very useful. It allows the computation bfby
and complex functions it is shown that for lossless homoge-means ol = euC~1.
neous multiconductor transmission lines the computation of

the matrices of capacitance and inductance coefficients can The Wgak [;omtr:n the Julit n;err]mqngd argumentaftfllon is the
be reduced to the solution of some special Dirichlet boung-2Ssumption that the matrix of the inductance coefficients

ary value problems. Additionally, a function theoretic proof exists. Elementary approaches for the computatidn, é.g.

is given for the relationshipC = euE between these ma- qpphcatlon of Biot-Savart's !aw gtc._, d(.) nqt work because
(i) the surface current density distribution is unknown and

trices. (ii) it is impossible to guarantee that the magnetic field does
not penetrate the conductors although they are assumed to
be perfectly conducting. But more sophisticated methods are
1 Introduction also difficult to apply.

Besides of rare exceptions the standard textbook representa- By means of the theory of planar fields and complex func-

tions of transmission line equations for two-conductor trans-tion theory (Henrici, 1974; Lawrentjew and Schabat, 1967)

mission lines start with a finite LC-ladder network as a mode|We present a direct proof of the identitf" = euE. Start-

for a lossless transmission line. The system of transmissiofd With the above mentioned solutionssofpecial Dirich-

line equations is then developed by means of some questior€t boundary value problems we construct first ofratiom-

able limit processes. plex basis potgntials for the set of all tra.nsversall electrostatic
Let A denote a multiconductor transmission line consist- fi€lds OnA. Since the cross section of is a multiply con-

ing of n+ 1 perfect conductors embedded in a perfectly insy-nected domain it is necessary for this construction to intro-
lating, homogeneous dielectric with permittivieyand per- ducen suitable branch cuts. The complex potential for any
meability . The propagation of TEM waves ok can be transversal electrostatic field @gncan then be represented as

described in terms of voltages and currents by means of th& lineéar combination of these complex basis potentials. In the
iscion i PV 3 i _ 3 next step we show that a simple multiplication of these com-
transmission line equatiod§ = —L &, &t = —C2 where p P P

L andC are then x n matrices of indgagﬁce and capacitance Plex basis potentials with the complex constant -j delivers the
coefficients, resp. Under the assumption that the mattices gomplex basis potentials for transversal .stat|onary magnetic
andC exist it is possible to derive the transmission line equa-fields onA such that the complex potential of any transver-
tions from the system of Maxwell's equations. For the spe-Sal stationary magnetic field ah can be represented as a
cial case of two-conductor transmission lines, i.e. for the casén€ar combination of the complex basis potentials obtained
n = 1, such a proof was known to Heaviside (1971) at least" this way. Complex contour integrals enclosing the cross
in 1883. But it may be that this fact had been known to him sections of the conductors of deliver then the elements of
even already since 1876 (Heaviside, 1970). As a corollary ofh® matricesC andT:= L~" A simple coefficient com-
such a proof it follows that these matrices obey the relation-Parision delivers the identity in question. Théranch cuts
shipLC = euE, a fact seemingly first observed by Wagner Necessary for a unique definition of the complex potentials
(1914). Since the columns of the matfixcan be computed '€ essentially used for the evaluation of the complex contour

by solvingn special Dirichlet boundary value problems this integrals. Last but not least, a classical result of potential the-
ory for two-dimensional domains guarantees the existence of

Correspondence toA. Reibiger all our complex basis potentials if the conductor boundaries
(reibiger@iee.et.tu-dresden.de) are sufficiently smooth.




64 A. Reibiger: On the matrices of capacitance and inductance coefficients

oppositely oriented paths-W;) for the computation of the
magnetic fluxes per unit length trough thg (k = 1, ..., n)

by means of the function theoretic methods mentioned in the
introduction.

With respect to the coordinate system sketched in Fig. 1 by
means of the basic vectars, ¢y, e, we introduce the projec-
tion E defined by the assignme@t, y, z) — (x, y) and the
embedding® defined by(x, y) — (x, y, 0).

For simplicity of representation we assume additionally
that the surfaces of the conductors are sufficiently smooth
and that all functions considered in the following are at least
two times continously differentiable.

Next, we turn towards the determination of the matrices
of capacitance and inductance coefficients. These matrices
are characteristics of the electrostatic and the stationary mag-
netic fields onA, resp.

An ordered triplel&, D, o) is anelectrostatic fieldbn A if
itisasolutionofrof =0, divD =0, D = €&, 0 = n-D|A,
andn x £|A =0.

An ordered triple(H, B, S) is anstationary magnetic field
on A if it is a solution of rot{ = 0, divB =0, B = uH,
S=nxH|A,andn-B|A =0.

For the computation of the matrices of capacitance and in-
following properties: ductance coeffici.ents we are only intgrestepl—independent

) transversal solutions of these equations since we need these

A consists of perfectly conducting cylindric inner con-  atices for a description of TEM waves. Therefore we
ductors with constant cross sections which are parallel O iways assume that the the conditiofis= (Ey, E,, 0)
. .. - X I ’
each other and of infinite length. These conductors are eny, _ (D, D,.0), H = (H,,H,,0), B = (B By 0)
- X ¥y 1 - X ¥y 1 - X DA 1

closed by an perfectly conducting cylindric outer conductor ;. ¢ — (0,0, S,) are fulfilled. Thus, nontransversal elec-

which is also of infinite length. trostatic and stationary magnetic fields aras discussed in
We assume that the electromagnetic fields do not penenanring (2002) are excluded.

trate these conductors. Therefore, it is only necessary to ad- gy means oft, := Sy €-dr (kK = 1,..,n) we as-

mit surface current densities and surface charge densities, dgign 1o each transversal electrostatic field orthe associ-

noted in the following bys ando, resp. As itis standard we = ateq voltage matriy := (U1, ..., U,). And by means of

denote the electric field strength Bythe displacementden- /. [, S-ecds = [ (nxH)-eds = — [ H-(nxe;)ds

sity by D, the magnetic field strength iy, and the magnetic  _ ka H - (e. x n)ds, i.e. I = ka Hodr (k=1 ..n),

induction byB. o . we assign to each transversal stationary magnetic fieldl on
The space between the conductors is filled with a perfectq ssociated current matrik:= Yy, ... 1)
=1, ..., I).

insulating dielectric with permittivity and permeability.. Now we are able to set up and to prove the following
The conductors of\ are denoted by the natural numbers Theorem There are symmetric, positive definite x n-
0, 1,...,n. The boundary surface between the conductors anGnatricesC, T andL with
the insulator is denoted by, andv := 1/,/e denotes the 1
light velocity in the insulator material. C=eulL L =T
Figure 1 shows a cross section &f For simplicity we  such that for each transversal static electric figl D, o)
have shown in Fig. 1 only the outer conductor, denoted byon A and its associated voltage matrly, and for each
0, and that inner conductor which is denoted by the num-transversal stationary magnetic fie{@, 3, S) on A and its
berk. In figure 1 there are also shown the integration pathsassociated current matrikthe conditions
Ko, Ki, andW; and their normal vectors. Far= 1, ...,n

Fig. 1. Graphical representation of the cross section of

2 Matrices of capacitance and inductance coefficients
for lossless homogeneous multiconductor transmis-
sion lines

We consider a multiconductor transmission linewith the

the pathW; starts at conductot and ends at conductor O. D-nds = CxU

The pathsW, (k = 1, ...,n) are pairwise disjoint and and ¢

each path, does not intersect or touch one of the conduc-and B-nds = Ll
tors denoted by e {1,...,n} ~ {k}. Subsequently, these —Wi

paths and normal vectors are used for the definition of volt-are fulfilled for eactk = 1, ..., n whereC,, andL ;, denotes
ages and currents. As reference directions for the currents ithe k-th row of the matrice€ andL, resp.

the conductorg = 1, ..., n we use the positive orientation Proof: In the followingG denotes the complete image of
of the z-axis. Because of the right-hand rule convention in- the space between the conductorshofinder the projection
cluded implicitly in Amgere’s integral law we have to use the E.
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Let (&, D, o) be a transversal electrostatic field anBe- for the chargeQ;, per unit length on conductdrand for the
cause the conductor surfaces are always equipotential sucurrentl; in this conductor the relationship
faces of thef-field the line integralgf, & - ¢ ds are vanish-

ing for allk = 0,1, ...,n. Therefore the potential function ¢, = D.nds = Zé(\pg -V U,
of E o £ o O is globally defined orG and the computation Ky 7
of the corresponding electrostatic field can be reduced to that 1t B
one of a Dirichlet boundary value problem. I = ) Hords = ) u i — Y@,
In a first step we consider oG the n special Dirichlet ¢ !
boundary value problemaz ¢ = 0, @|Ko = 0, ¢ilKi  respectively. And withCy = e — ), Ty =
=38y (k,l =1, ..., n) whereA; denotes the differential op- M_l(‘l’ﬂ — W), C = (Cidkietin r =

erator defined for eaci?-function by means ofA» ¢ := (Ti)ei1 . n there resultsy; = euly (k1 =1, ...n),

327‘5 + % ands; denotes the so called Kronecker symbol de-j g,
fined forallk,l =1, ...,n by 8xx := 1 andsy; := 0 (k £ 1).

The boundary conditions determining the functions C = eul = eul™,
(I = 1,...,n) imply that they; are a system of linearly in- LC = euE.
dependent functions. Obviously, their linear combination

¢ = Y, @U delivers for each family of voltages, ~ Whatare to be proved. _
(I = 1, ..., n) asolution of the boundary value problem given ~ To understand the physical meaning of the paramettgrs
byAr,¢p =0, ¢|Kg=0, ¢|K; =U; (I=1,...n). andI'y; let us consider fok € {1, ..., n} afamily (®;);=1,...»

From standard uniqueness arguments it follows then thaglefined byd, # 0 and®; =0 (/ € {1, ...,n} \ {k}). If we
theg, (I = 1,...,n) are not only linearly independent but denote the start point ¥ by r;> and the end point oy by
that they are a basis for the set of the solutions of all thesdy then
boundary value problems, too.

By means of suitable branch cuts, as such one can be use B-nds = —f roty x - nds
the curves¥; (I =1, ..., n), we associate to each functign —Wi —Wi
a conjugate functiony;. The functionsy; are then defined _ / roty - nds
on a simply connected subdomain@fwhich we denote by Wi
G _ _ _ = XD — x0F

An ordered triple(€, D, o) is a transversal electrostatic — (D) — o (rD) D
field on A if and only if there exists a familyU;)/—1. .., Y & P Pk
such that the associated planar fi@ld £ o ® can be repre- = @i (ry) Pk
sented in either of the two fornBo £ o O (r) = —grade(r) = &4

(r e G), Eofo0®(r)=—rotyy(r) (r € G*) wheregp ] ]
andy are the real and imaginary part of a complex potential T "US @ is equal to the flux per unit length through Wy),
0|G* +jy defined by := 3", @, Us, ¥ ==Y, ¥, U; and the andl = TP, is the matrix of that conductor currents
nonstandard differential operators gsahd rog are defined ~ for which the fluxes per unit length trough the-W;) for
for each scalar &field ¢ by means of gragh = (3_<p §_¢) [ € {1, ...,n} ~ {k} are vanishing and that one troughW;)
o o0 . x> dy is equal tod; wherer,; denotes théth column ofT.

and roig := (55, —3,), respectively. o It can be shown (Jost, 2002) that for sufficiently smooth

Let (M, B, S) be a transversal stationary magnetic field on cnqyctor surfaces all the functions exist and that they ful-

A. Because there do not exist magnetic monopols the ling; he assumptions necessary to applicate results of of the
integrals¢, B - n ds are vanishing for alk = 0,1, ..., n. theory of planar fields.

Therefore the stream function & o B o © is globally de-

fined onG. Together with the fact that far=1,..,n each 0405 of a variant of the Green’s integral theorems special-

equipotential line of-grady; is a field line of—rotig;, and ;e for planar fields. The positive definiteness of these ma-
vice versa, this observation motivates for a complex potenyices follows from the positive definiteness of the energy

tial 9 +jx|G* of Eo B o ©the ansata) := + 3, Y%, giored in the electric and magnetic field/of
x = — ;o1 P; where(®;),—1 .., is a family of flux values

per unit length. And indeed, an ordered trigté, 5, S) is a

transversal stationary magnetic field if and only if there ex-3  Concluding remarks

ists a family(®;);=1...._» such that the associated planar field

E o B o © can be represented by means of the just definedBased on Wagner (1914); Abraham ariippl (1917); Adler

The symmetry of the matricéS andL can be proved by

complex potential in either of the two fornso Bo ©(r) = et al. (1960); Helm (1975), we have presented in Reibiger
—gragy (r) (r € G*), EoBo®(r) = —rotyx(r) (r € G).  (2002) a thorough field theoretic approach for the description
Together with the limit valuest; := ("), W;; :=  ofthe propagation of TEM waves on lossless multiconductor

Vi (r, ) of the functionsy; (I = 1, ..., n) on the leftand right  transmission lines by means of the system of transmission
edges of the corresponding branch cuts (cf. fig. 1) it followsline equations. Together with the remarks guaranteeing the
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existence of the matrices of capacitance and inductance cddeaviside, O.: Electromagnetic theory, Chelsea Publ.C., New York,
efficients for such transmission lines from that approach it 3rd Edition, 1971.

follows also the existence of TEM waves on lossless multi-Helm, G.: Das dynamische Verhalten realer Mehrfachleitungen,
conductor lines. Habilit., TH Karl-Marx-Stadt, 1975.
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