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Abstract. Using results from the theory of planar fields
and complex functions it is shown that for lossless homoge-
neous multiconductor transmission lines the computation of
the matrices of capacitance and inductance coefficients can
be reduced to the solution of some special Dirichlet bound-
ary value problems. Additionally, a function theoretic proof
is given for the relationshipLC = εµE between these ma-
trices.

1 Introduction

Besides of rare exceptions the standard textbook representa-
tions of transmission line equations for two-conductor trans-
mission lines start with a finite LC-ladder network as a model
for a lossless transmission line. The system of transmission
line equations is then developed by means of some question-
able limit processes.

Let 3 denote a multiconductor transmission line consist-
ing ofn+1 perfect conductors embedded in a perfectly insu-
lating, homogeneous dielectric with permittivityε and per-
meabilityµ. The propagation of TEM waves on3 can be
described in terms of voltages and currents by means of the
transmission line equations∂u

∂z
= −L ∂ i

∂t
, ∂ i
∂z

= −C ∂u
∂t

where
L andC are then×nmatrices of inductance and capacitance
coefficients, resp. Under the assumption that the matricesL
andC exist it is possible to derive the transmission line equa-
tions from the system of Maxwell’s equations. For the spe-
cial case of two-conductor transmission lines, i.e. for the case
n = 1, such a proof was known to Heaviside (1971) at least
in 1883. But it may be that this fact had been known to him
even already since 1876 (Heaviside, 1970). As a corollary of
such a proof it follows that these matrices obey the relation-
shipLC = εµE, a fact seemingly first observed by Wagner
(1914). Since the columns of the matrixC can be computed
by solvingn special Dirichlet boundary value problems this
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formula is very useful. It allows the computation ofL by
means ofL = εµC−1.

The weak point in the just mentioned argumentation is the
assumption that the matrixL of the inductance coefficients
exists. Elementary approaches for the computation ofL , e.g.
application of Biot-Savart’s law etc., do not work because
(i) the surface current density distribution is unknown and
(ii) it is impossible to guarantee that the magnetic field does
not penetrate the conductors although they are assumed to
be perfectly conducting. But more sophisticated methods are
also difficult to apply.

By means of the theory of planar fields and complex func-
tion theory (Henrici, 1974; Lawrentjew and Schabat, 1967)
we present a direct proof of the identityLC = εµE. Start-
ing with the above mentioned solutions ofn special Dirich-
let boundary value problems we construct first of alln com-
plex basis potentials for the set of all transversal electrostatic
fields on3. Since the cross section of3 is a multiply con-
nected domain it is necessary for this construction to intro-
ducen suitable branch cuts. The complex potential for any
transversal electrostatic field on3 can then be represented as
a linear combination of these complex basis potentials. In the
next step we show that a simple multiplication of these com-
plex basis potentials with the complex constant -j delivers the
complex basis potentials for transversal stationary magnetic
fields on3 such that the complex potential of any transver-
sal stationary magnetic field on3 can be represented as a
linear combination of the complex basis potentials obtained
in this way. Complex contour integrals enclosing the cross
sections of the conductors of3 deliver then the elements of
the matricesC and 0:= L−1. A simple coefficient com-
parision delivers the identity in question. Then branch cuts
necessary for a unique definition of the complex potentials
are essentially used for the evaluation of the complex contour
integrals. Last but not least, a classical result of potential the-
ory for two-dimensional domains guarantees the existence of
all our complex basis potentials if the conductor boundaries
are sufficiently smooth.
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Fig. 1. Graphical representation of the cross section of3.

2 Matrices of capacitance and inductance coefficients
for lossless homogeneous multiconductor transmis-
sion lines

We consider a multiconductor transmission line3 with the
following properties:
3 consists ofn perfectly conducting cylindric inner con-

ductors with constant cross sections which are parallel to
each other and of infinite length. These conductors are en-
closed by an perfectly conducting cylindric outer conductor
which is also of infinite length.

We assume that the electromagnetic fields do not pene-
trate these conductors. Therefore, it is only necessary to ad-
mit surface current densities and surface charge densities, de-
noted in the following byS andσ , resp. As it is standard we
denote the electric field strength byE , the displacement den-
sity byD, the magnetic field strength byH , and the magnetic
induction byB.

The space between the conductors is filled with a perfect
insulating dielectric with permittivityε and permeabilityµ.

The conductors of3 are denoted by the natural numbers
0, 1,...,n. The boundary surface between the conductors and
the insulator is denoted byA, andv := 1/

√
εµ denotes the

light velocity in the insulator material.
Figure 1 shows a cross section of3. For simplicity we

have shown in Fig. 1 only the outer conductor, denoted by
0, and that inner conductor which is denoted by the num-
berk. In figure 1 there are also shown the integration paths
K0,Kk, andWk and their normal vectors. Fork = 1, ..., n
the pathWk starts at conductork and ends at conductor 0.
The pathsWk (k = 1, ..., n) are pairwise disjoint and and
each pathWk does not intersect or touch one of the conduc-
tors denoted byl ∈ {1, ..., n} r {k}. Subsequently, these
paths and normal vectors are used for the definition of volt-
ages and currents. As reference directions for the currents in
the conductorsk = 1, ..., n we use the positive orientation
of thez-axis. Because of the right-hand rule convention in-
cluded implicitly in Amp̀ere’s integral law we have to use the

oppositely oriented paths(−Wk) for the computation of the
magnetic fluxes per unit length trough theWk (k = 1, ..., n)
by means of the function theoretic methods mentioned in the
introduction.

With respect to the coordinate system sketched in Fig. 1 by
means of the basic vectorsex, ey, ez we introduce the projec-
tion4 defined by the assignment(x, y, z) 7→ (x, y) and the
embedding2 defined by(x, y) 7→ (x, y, 0).

For simplicity of representation we assume additionally
that the surfaces of the conductors are sufficiently smooth
and that all functions considered in the following are at least
two times continously differentiable.

Next, we turn towards the determination of the matrices
of capacitance and inductance coefficients. These matrices
are characteristics of the electrostatic and the stationary mag-
netic fields on3, resp.

An ordered triple(E,D, σ ) is anelectrostatic fieldon3 if
it is a solution of rotE = 0, divD = 0, D = εE , σ = n·D|A,
and n× E |A = 0.

An ordered triple(H,B,S) is anstationary magnetic field
on3 if it is a solution of rotH = 0, divB = 0, B = µH,
S = n×H|A, and n · B|A = 0.

For the computation of the matrices of capacitance and in-
ductance coefficients we are only interested inz-independent
transversal solutions of these equations since we need these
matrices for a description of TEM waves. Therefore we
always assume that the the conditionsE = (Ex, Ey, 0),
D = (Dx,Dy, 0), H = (Hx, Hy,0), B = (Bx , By, 0),
and S = (0, 0, Sz) are fulfilled. Thus, nontransversal elec-
trostatic and stationary magnetic fields on3 as discussed in
Nähring (2002) are excluded.

By means ofUk :=
∫
Wk
E · dr (k = 1, ..., n) we as-

sign to each transversal electrostatic field on3 the associ-
ated voltage matrixU :=

t(U1, ..., Un). And by means of
Ik :=

∫
Kk
S ·ezds =

∫
Kk
(n×H)·ezds = −

∫
Kk
H ·(n×ez)ds

=
∫
Kk
H · (ez × n)ds, i.e. Ik :=

∫
Kk
H · dr (k = 1, ..., n),

we assign to each transversal stationary magnetic field on3

theassociated current matrixI :=
t(I1, ..., In).

Now we are able to set up and to prove the following
Theorem There are symmetric, positive definiten × n-
matricesC, 0 andL with

C = εµ0, L = 0−1

such that for each transversal static electric field(E,D, σ )
on 3 and its associated voltage matrixU, and for each
transversal stationary magnetic field(H,B,S) on3 and its
associated current matrixI the conditions∮
Kk

D · n ds = Ck•U

and

∮
−Wk

B · n ds = L k•I

are fulfilled for eachk = 1, ..., n whereCk• andL k• denotes
the k-th row of the matricesC andL , resp.

Proof: In the followingG denotes the complete image of
the space between the conductors of3 under the projection
4.
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Let (E,D, σ ) be a transversal electrostatic field on3. Be-
cause the conductor surfaces are always equipotential sur-
faces of theE-field the line integrals

∮
Kk
E · t ds are vanish-

ing for all k = 0, 1, ..., n. Therefore the potential function
of 4 ◦ E ◦ 2 is globally defined onG and the computation
of the corresponding electrostatic field can be reduced to that
one of a Dirichlet boundary value problem.

In a first step we consider onG the n special Dirichlet
boundary value problems12 ϕl = 0, ϕl |K0 = 0, ϕl |Kl
= δkl (k, l = 1, ..., n) where12 denotes the differential op-
erator defined for eachC2-functionϕ by means of12 ϕ :=

∂2ϕ

∂x2 + ∂2ϕ

∂y2 andδkl denotes the so called Kronecker symbol de-
fined for allk, l = 1, ..., n by δkk := 1 andδkl := 0 (k 6= l).

The boundary conditions determining the functionsϕl
(l = 1, ..., n) imply that theϕl are a system of linearly in-
dependent functions. Obviously, their linear combination
ϕ =

∑
l ϕlUl delivers for each family of voltagesUl

(l = 1, ..., n) a solution of the boundary value problem given
by12 ϕ = 0, ϕ|K0 = 0, ϕ|Kl = Ul (l = 1, ..., n).

From standard uniqueness arguments it follows then that
the ϕl (l = 1, ..., n) are not only linearly independent but
that they are a basis for the set of the solutions of all these
boundary value problems, too.

By means of suitable branch cuts, as such one can be used
the curvesWl (l = 1, ..., n), we associate to each functionϕl
a conjugate functionψl . The functionsψl are then defined
on a simply connected subdomain ofG which we denote by
G∗.

An ordered triple(E,D, σ ) is a transversal electrostatic
field on3 if and only if there exists a family(Ul)l=1,...,n
such that the associated planar field4 ◦ E ◦2 can be repre-
sented in either of the two forms4◦E ◦2(r) = −grad2ϕ(r)
(r ∈ G), 4 ◦ E ◦ 2(r) = −rot1ψ(r) (r ∈ G∗) whereϕ
andψ are the real and imaginary part of a complex potential
ϕ|G∗

+ jψ defined byϕ :=
∑
l ϕlUl , ψ :=

∑
l ψlUl and the

nonstandard differential operators grad2 and rot1 are defined
for each scalar C1-field ϕ by means of grad2ϕ := (

∂ϕ
∂x
,
∂ϕ
∂y
)

and rot1ϕ := (
∂ϕ
∂y
,−

∂ϕ
∂x
), respectively.

Let (H,B,S) be a transversal stationary magnetic field on
3. Because there do not exist magnetic monopols the line
integrals

∮
Kk
B · n ds are vanishing for allk = 0, 1, ..., n.

Therefore the stream function of4 ◦ B ◦ 2 is globally de-
fined onG. Together with the fact that forl = 1, ..., n each
equipotential line of−grad2ϕl is a field line of−rot1ϕl , and
vice versa, this observation motivates for a complex poten-
tial ϑ + jχ |G∗ of 4 ◦ B ◦ 2 the ansatzϑ := +

∑
l ψl8l ,

χ := −
∑
l ϕl8l where(8l)l=1,...,n is a family of flux values

per unit length. And indeed, an ordered triple(H,B,S) is a
transversal stationary magnetic field if and only if there ex-
ists a family(8l)l=1,...,n such that the associated planar field
4 ◦ B ◦ 2 can be represented by means of the just defined
complex potential in either of the two forms4 ◦ B ◦2(r) =

−grad2ϑ(r) (r ∈ G∗), 4◦B ◦2(r) = −rot1χ(r) (r ∈ G).
Together with the limit values9+

kl := ψl(r
+

k ), 9−

kl :=

ψl(r
−

k ) of the functionsψl (l = 1, ..., n) on the left and right
edges of the corresponding branch cuts (cf. fig. 1) it follows

for the chargeQk per unit length on conductork and for the
currentIk in this conductor the relationship

Qk =

∮
Kk

D · n ds =

∑
l

ε(9+

kl −9−

kl )Ul,

Ik =

∮
Kk

H · t ds =

∑
l

µ−1(9+

kl −9−

kl )8l,

respectively. And withCkl := ε(9+

kl − 9−

kl ), 0kl :=

µ−1(9+

kl − 9−

kl ), C := (Ckl)k,l=1,...,n, 0 :=

(0kl)k,l=1,...,n there resultsCkl = εµ0kl (k, l = 1, ..., n),
i.e.

C = εµ0 = εµL−1,

LC = εµE.

What are to be proved.
To understand the physical meaning of the parameters8kl

and0kl let us consider fork ∈ {1, ..., n} a family(8l)l=1,...,n
defined by8k 6= 0 and8l = 0 (l ∈ {1, ..., n} r {k}). If we
denote the start point ofWk by rs

k and the end point ofWk by
re
k then∫
−Wk

B · nds = −

∫
−Wk

rot1χ · nds

=

∫
Wk

rot1χ · nds

= χ(re
k )− χ(rs

k)

= (ϕk(r
s
k)− ϕk(r

e
k ))8k

= ϕk(r
s
k)8k

= 8k.

Thus8k is equal to the flux per unit length through(−Wk),
and I = 0•k8k is the matrix of that conductor currents
for which the fluxes per unit length trough the(−Wl) for
l ∈ {1, ..., n} r {k} are vanishing and that one trough(−Wk)

is equal to8k where0•k denotes thekth column of0.
It can be shown (Jost, 2002) that for sufficiently smooth

conductor surfaces all the functions exist and that they ful-
fill the assumptions necessary to applicate results of of the
theory of planar fields.

The symmetry of the matricesC andL can be proved by
means of a variant of the Green’s integral theorems special-
ized for planar fields. The positive definiteness of these ma-
trices follows from the positive definiteness of the energy
stored in the electric and magnetic field of3.

3 Concluding remarks

Based on Wagner (1914); Abraham and Föppl (1917); Adler
et al. (1960); Helm (1975), we have presented in Reibiger
(2002) a thorough field theoretic approach for the description
of the propagation of TEM waves on lossless multiconductor
transmission lines by means of the system of transmission
line equations. Together with the remarks guaranteeing the
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existence of the matrices of capacitance and inductance co-
efficients for such transmission lines from that approach it
follows also the existence of TEM waves on lossless multi-
conductor lines.

I would like to thank Prof. Dr. G. Helm (formerly TU
Chemnitz), Prof. Dr. J. Nitsch (Otto von Guericke Univer-
sität Magdeburg), and esspecially Dipl.-Ing. T. Nähring (TU
Dresden) for their interest, inspiring discussions, and critical
remarks.
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