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Abstract. Time domain simulations for high-frequency
applications are widely dominated by the leapfrog time-
integration scheme. Especially in combination with the
spatial discretization approach of the Finite Integration
Technique (FIT) it leads to a highly efficient explicit
simulation method, which in the special case of Cartesian
grids can be regarded to be computationally equivalent to
the Finite Difference Time Domain (FDTD) algorithm. For
stability reasons, however, the leapfrog method is restricted
to a maximum stable time step by the well-known Courant-
criterion, and can not be applied to most low-frequency
applications. Recently, some alternative, unconditionally
stable techniques have been proposed to overcome this
limitation, including the Alternating Direction Implicit
(ADI)-method. We analyze such schemes using a transient
modal decomposition of the electric fields. It is shown that
stability alone is not sufficient to guarantee correct results,
but additionally important conservation properties have to
be met.

Das Leapfrog-Verfahren ist ein weit verbreitetes Zeit-
integrationsverfahren für transiente hochfrequente elek-
trodynamischer Felder. Kombiniert mit dem räumlichen
Diskretisierungsansatz der Methode der Finiten Integra-
tion (FIT) führt es zu einer sehr effizienten, expliziten
Simulationsmethode, die im speziellen Fall kartesischer
Rechengitter alsäquivalent zur Finite Difference Time
Domain (FDTD) Methode anzusehen ist. Aus Sta-
bilit ätsgr̈unden ist dabei die Zeitschrittweite durch das
bekannte Courant-Kriterium begrenzt, so dass das Leapfrog-
Verfahren f̈ur niederfrequente Probleme nicht sinnvoll
angewendet werden kann. In den letzten Jahren wurden
alternativ einige andere explizite oder “halb-implizite” Zeit-
bereichsverfahren vorgeschlagen, u.a. das “Alternating Di-
rection Implicit” (ADI)-Verfahren, die keiner Beschränkung
des Zeitschritts aus Stabilitätsgr̈unden unterliegen. Es zeigt
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sich aber, dass auch diese Methoden im niederfrequenten
Fall nicht zu sinnvollen Simulationsergebnissen führen. Wie
anhand einer transienten Modalanalyse der elektrischen
Felder in einem einfachen 2D-Beispiel deutlich wird, ist die
Ursache daf̈ur die Verletzung wichtiger physikalischer Er-
haltungseigenschaften durch ADI und verwandte Methoden.

1 Introduction

Especially in high-frequency field simulations, where one of-
ten deals with lossless or at least low-loss structures and a
large number of time steps, stability is one of the most im-
portant properties of time domain methods, and a required
condition for their overall convergence. Here, very often Fi-
nite Difference methods (FDTD, Yee (1966)) and the time
domain variant of the Finite Integration Technique (FIT, Wei-
land (1996)) are used, and therein the so-calledleapfrog(LF)
time stepping algorithm. Based on central difference approx-
imations for the time derivatives in Maxwell’s equations, it is
known to be conditionally stable – ruled by a maximum sta-
ble Couranttime step width1t0 – and to conserve the elec-
tromagnetic energy in lossless structures, if properly defined
(Schuhmann and Weiland (2001)).

Since the time step limitation in the LF scheme is cou-
pled to the resolution of the spatial grid, it sometimes leads
to strongly oversampled time signals and thus to a poor ef-
ficiency of the overall method. As a remedy, some alterna-
tive, ’quasi-implicit’ approaches have been proposed, such
as the Alternating Direction Implicit (ADI) variant of FDTD
(Namiki (2000)), or the family of unconditionally stable al-
gorithms proposed in Kole et al. (2001). However, it has
been shown by various authors (Darms (2001); Staker and
Piket-May (2001); Garcia et al. (2002)) that such schemes
may have severe accuracy problems if the Courant limit of
the related LF approach is considerably exceeded. In this pa-
per this dissatisfying result is analyzed using an eigenmode
decomposition of the transient fields.
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2 Algebraic Formulation

2.1 Basic Equations

We use here the notation of the FIT (Weiland (1977, 1996),
where Maxwell’s equations are transformed into a set of al-
gebraic equations (linear case, without currents):

µ−1curl E = −
∂

∂t
H ↔ M−1

µ C_e = −
d

dt

_
h (1)

ε−1curl H =
∂

∂t
E ↔ M−1

ε CT _
h =

d

dt

_e (2)

div (µ H ) = 0 ↔ SMµ
_
h = 0 (3)

div (ε E) = ρ ↔ S̃Mε
_e = q. (4)

The sparse matricesC andS are the topological ’curl’-, and
’source’-operators, respectively, and the vectors_e and

_
h con-

tain the electric and magnetic voltage-type degrees of free-
dom on a pair of staggered grids. The material matricesM−1

ε

andM−1
µ are diagonal and positive definite in the simplest

case.
An important property of these equations – which can also

be used to derive the FDTD-method – is theexactsource-free
relation of curl-fields,

S C = 0 (primary grid), (5)

S̃ CT
= 0 (dual grid), (6)

sometimes referred to asconsistency propertiesof the FIT-
discretization.

Finally, Eqs. (1) and (2) can be combined to a large system
of differential equations for a composite vectorx:

d

dt
x = Ax (7)

with

x =

(_
h
_e

)
(8)

and

A =

(
0 −M−1

µ C
M−1

ε C̃ 0

)
. (9)

The system matrixA can be transformed into a skew-
symmetric form using the scaled vectors

x′
=

(_
h

′

_e′

)
with

_
h

′
= M1/2

µ

_
h,

_e′
= M1/2

ε
_e. (10)

Thus, all eigenvalues ofA are purely imaginary,λA,i = iωi ,
and all eigenvectors ofA are orthogonal to each other (or can
be orthogonalized) referring to〈
xi, xj

〉
= x′

j
hx′

i =
_eh

j M ε
_ei +

_
h

h

j Mµ
_
hi = δij . (11)

2.2 Time Stepping Schemes

2.2.1 Leapfrog (LF) Algorithm

The leapfrog scheme arises from the allocation of the fields
on a staggered time axis and the usage of central difference
approximations for the time derivatives:

d

dt

_
h

(n+1/2)
≈

_
h

(n+1)
−

_
h

(n)

1t

d

dt

_e(n+1)
≈

_e(n+3/2)
−

_e(n+1/2)

1t
(12)

It can be summarized in theupdate equations

x(n+1)
= GLF (1t) x(n), x(n)

=

( _
h

(n)

_e(n+1/2)

)
(13)

with the iteration matrix

GLF (1t) =

(
I −1tM−1

µ C
1tM−1

ε C̃ I −1t2M−1
ε C̃M−1

µ C

)
. (14)

An important property of the LF-operator is the conservation
of electric (and magnetic) charges on the discrete level,

div (µH (n+1)) = div (µH (n))

↔ SMµ
_
h

(n+1)
= SMµ

_
h

(n)
(15)

div (εE(n+3/2)) = div (εE(n+1/2))

↔ S̃Mε
_e(n+3/2)

= S̃Mε
_e(n+1/2) (16)

which can be easily proven using Eq. (13) and the matrix
properties Eqs. (5) and (6).

2.2.2 Alternating Direction Implicit (ADI) Algorithm

The ADI-scheme is based on asplitting of the operator ma-
trix in two parts,

C = C1 + C2 (17)

both of which are used in alternating order in the update
equations. This leads to an update scheme in two half-steps,
which can be summarized by an iteration matrix

GADI (1t) = (I −
1t

2
Y1)

−1 (I +
1t

2
Y2)

(I −
1t

2
Y2)

−1 (I +
1t

2
Y1) (18)

with

Y1,2 =

(
I −

1t
2 M−1

ε CT
1,2

1t
2 M−1

µ C1,2 I

)
. (19)

For a special choice of the operator splitting Eq. (17), the
implicit expressions in Eq. (18) become tridiagonal matri-
ces, which can be efficiently inverted in each time step (see
Darms et al. (2003) for more details).
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Fig. 1. Complex eigenvalues of the iteration matrices of Leapfrog (LF, left) and ADI (right) for time steps larger than the Courant limit1t0.
The LF-operator shows some eigenvalues with|λG,lf | > 1, causing an instable time integration, whereas all the ADI-eigenvalues lay exactly
on the unit cicrle.
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Fig. 2. Model problem: Charging process of a 2D plate capacitor, driven by a 750 kHz current pulse.

2.2.3 Eigensolutions of the Iteration Matrices

For the eigenvalues of these iteration matrices one can find
the relations

Leapfrog: |λG,LF (1t)| = 1 ⇔ 1t ≤ 1t0 (20a)

ADI: |λG,ADI (1t)| = 1 ∀1t > 0, (20b)

which are a sufficient condition for the stability of the meth-
ods. Whereas the LF method is restricted to time steps below
the Courant limit1t ≤ 1t0, the ADI method isuncondition-
ally stablefor arbitrary time steps.

In most practical cases the dimension of the iteration ma-
trices is too large to perform a further numerical analysis. For
the small test example presented below, however, the matri-
ces are of manageable size, and the results of Eq. (20b) can
be visualized as shown in Fig. 1.

For the leapfrog method (left), most of the eigenvalues lay
on the unit circle of the complex plane (the stability limit).
However, since the time step chosen in this example slightly
exceeds the Courant limit (1t = 1.021t0), some eigenval-
ues have left the unit circle atλG = −1 and are placed on the
negative real axis. The eigenvalues withλG,LF < −1 will
cause a instable time integration. In the ADI case (Fig. 1,
right) all eigenvalues are exactly on the unit circle for arbi-
trary time steps (here:1t = 31t0).

Note that for both methods there is a multiple eigenvalue
λG = 1, referring to so-called static eigenmodes (electro-

magnetic fields with eigenfrequencyω = 0), which will not
be changed by the time stepping algorithm.

3 Transient Modal Expansion

In the following, the LF and ADI schemes are applied to a
2D (TE) model problem adapted from Garcia et al. (2002).
It describes the transient charging process of a simple plate
capacitor, driven by a 750 kHz current pulse (cf. Fig. 2).

Figure 3 shows some eigenmodes of the related system
matrix A: A static mode (left) with∇ × E = 0, λA = 0 and
λG = 1, a second static mode (’plate mode’) describing the
desired stationary field solution, and a dynamic mode (right)
with ∇ × E 6= 0, λA 6= 0, andλG = eiϕ .

During the time stepping process the electric fields can
now be decomposed into these (and all the other) eigen-
modes. The results of thistransient modal expansion, the
expansion coefficients as a function of simulation time, are
shown in Fig. 4 (Courant time step1t = 1t0) and Fig. 5
(enlarged time step1t = 3 · 1t0).

For the Courant time step1t0 (Fig. 4) the ADI and LF
curves for the plate mode and the dynamic modes are nearly
indistinguishable. However, in the ADI simulation arises one
more static mode with a magnitude of about 10% at steady
state, which cannot be seen in the LF (reference) results,
where all the static modes are below numerical noise. For
an enlarged1t = 31t0 (Fig. 5), where no LF results are
available any more, the amount of thisparasiticfield reaches
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Fig. 3. Model problem: Electric fields of a static eigenmode (gradient of a random discrete potential vector), the plate mode (stationary
solution of charging process), and a dynamic mode (oscillating eigenmode) in the plate capacitor.
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Fig. 4. Transient modal expansion coefficients (logarithmic scale)
for the Courant time step1t = 1t0: The leapfrog (LF) curves
(which serve as a reference result) show the desired plate mode and
some dynamic modes excited by the charging process, whereas all
static modes are below round off. The ADI curves, however, include
a parasitic static mode with a magnitude of about 10% of the total
field at steady state.

the order of magnitude of the desired field solution (plate
mode). This unphyiscal mode also qualitatively disturbes the
stationary field solution, which is not shown here.

As the reason for this behaviour of ADI we postulate here
the loss of orthogonalitybetween theeigenvectorsof the it-
eration matrix: In the leapfrog scheme it can be easily shown
that the electric part of the eigenvectors of the iteration ma-
trix GLF and the system matrixA are identical, and that they
fulfill the same orthogonality condition Eq. (11). In the ADI
scheme, however, this property is no longer valid: Although
the static modes ofGADI remain unchanged compared to the
static solutions ofA (or GLF ) — this can be proven for the
2D TE-case analyzed here — the dynamic modes now in-
clude parts of the original static modes. As a consequence,
energy can be transferred in each time step between these
two classes of eigensolutions (which should be exactly sep-
arated in continous theory). As a visualization of this fact,
Fig. 6 shows theorthogonality patternof the ADI-matrix
for 1t = 3 · 1t0, exhibiting the parasitic coupling between
static and dynamic solutions. As another consequence of this
loss of consistency in the discrete model, the field solutions
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Fig. 5. Transient modal expansion coefficients (logarithmic scale)
for enlarged time step1t = 3 · 1t0: The magnitude of the parasitic
static mode in the ADI solution has considerably increased. No
Leapfrog solutions are available abouve the Courant limit (instable
time integration).

of ADI are no longer source-free, but parasitic electric and
magnetic charges arise during the iteration. The intrinsic al-
gebraic reason for these results is the splitting of the operator
matrix C = C1 + C2 in the derivation of the ADI-update
equations. Since the spatial curl operator does no longer ap-
pear as a whole in the update process, the consistency prop-
erties Eqs. (5) and (6) are not applicable any more.

All these effects increase with a growing time step1t .
Although the ADI-method itself shows a 2nd order conver-
gence for1t → 0 (cf. also Garcia et al. (2002)), the results
in this analysis show that the parasitic effect can be observed
also for moderate time steps, even in the range of the Courant
limit of the leapfrog method.

4 Conclusion

A transient modal expansion of the electric field in time do-
main methods has been used to analyze different time step-
ping approaches. Using this powerful tool it can be shown
that the ADI method, although being unconditionally stable,
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Fig. 6. Orthogonality pattern
〈
xi , xj

〉
6= δij of the eigenmodesxi

of the ADI iteration matrix. The (degenerated) static modes can be
orthogonalized, but the orthogonality between static and dynamic
modes is lost. This unphysical effect increases with the time step
width (here:1t = 3 · 1t0).

does not conserve the energy of the original dynamic eigen-
modes, even for moderate time steps. The main reason for
this behaviour is the operator splitting in the construction
of the ADI scheme, which leads to a loss of important con-
sistency properties and of the orthogonality of the system’s
eigensolutions. The same poor results also have to be ex-
pected for similar schemes which are based on the idea of
splitting the spatial operators to obtain unconditional stabil-
ity of the time integration.
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