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Abstract. In this paper a hybrid method combining
the FDTD/FIT with a Time Domain Boundary-Integral
Marching-on-in-Time Algorithm (TD-BIM) is presented. In-
homogeneous regions are modelled with the FIT-method, an
alternative formulation of the FDTD. Homogeneous regions
(which is in the presented numerical example the open space)
are modelled using a TD-BIM with equivalent electric and
magnetic currents flowing on the boundary between the in-
homogeneous and the homogeneous regions. The regions are
coupled by the tangential magnetic fields just outside the in-
homogeneous regions. These fields are calculated by making
use of a Mixed Potential Integral Formulation for the mag-
netic field. The latter consists of equivalent electric and mag-
netic currents on the boundary plane between the homoge-
neous and the inhomogeneous region. The magnetic currents
result directly from the electric fields of the Yee lattice. Elec-
tric currents in the same plane are calculated by making use
of the TD-BIM and using the electric field of the Yee lattice
as boundary condition. The presented hybrid method only
needs the interpolations inherent in FIT and no additional in-
terpolation. A numerical result is compared to a calculation
that models both regions with FDTD.

1 Introduction

The FDTD-Method is a very efficient and accurate technique
for solving bounded electromagnetic field problems. For the
analysis e.g. of scattering or antenna problems including the
open space the solution space must be kept finite by intro-
ducing an absorbing boundary condition (ABC). An often
applied ABC is obtained by introducing a perfectly matched
layer (PML), the effect of which is incorporated into the
solution-procedure by regarding the PML-region as a part of
the FDTD solution space, that means, by treating it within the
FDTD scheme. As the FDTD is a “local” method the PML
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can be regarded as a “local” ABC, too. A “global” ABC
is obtained if an integral formulation for a surface inclosing
the bounded FDTD solution space is used as a starting point.
As an example for such a “global” FDTD-ABC formulation
(de Moerlosse et al., 1993) shall be mentioned, where the
magnetic field is calculated just outside the FDTD solution
space by an integral equation. As the Yee-scheme consist-
ing of two shifted lattices does not provide the required elec-
tric and magnetic currents in the same plane, one of these
must be calculated by an additional interpolation. A very in-
teresting class of TD-integral formulations are the so called
Time Domain Boundary-Integral Marching-on-in-Time Al-
gorithms (TD-BIMs), which in the last few years draw more
an more attention. By this, the two main drawbacks of TD-
BIMs -stability problems and high computational cost- have
been more and more alleviated (e.g. Shanker et al., 2000).
Thus, it is reasonable to make use of these advantages and to
develop a hybrid method that combines the FDTD/FIT and
a TD-BIM, in other words, to make use of the TD-BIM as a
“global” ABC for the FDTD solution space.

This paper is organized as follows:

– Section 2 gives an overview of the TD-BIM that is
used here to calculate the electric current density at the
boundary between the inhomogeneous and the homoge-
neous body.

– Section 3 shortly repeats the differences between the
FDTD and the FIT. The latter is used here to model in-
homogeneous bodies.

– Section 4 explains the algorithm of the hybrid method
proposed here which combines both numerical tech-
niques.

– Section 5 shows a first numerical example to test the
method.

– In Sect. 6 a summary and an outlook are given.
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Fig. 1. Temporal and spatial basis function used for the TD-BIM.

Fig. 2. Spatial allocation of the electric and the magnetic grid voltages and the straightforward allocation of the magnetic current.

2 TD-BIM

The time domain electric field integral equation (TD-EFIE)
for a homogeneous infinite space is given to:

E (r, t) = −
∂A (r, t)

∂t
− ∇φ (r, t) −

1

ε
∇ × F (r, t) . (1)

When applying the equivalence principle the potentials are
related to the equivalent surface sources of the field by

A(r, t) =
µ

4π

∫
A′

J (r ′, t −
R
c
)

R
da′, (2)

φ(r, t) =
1

4πε
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R
da′, (3)

F (r, t) =
ε

4π

∫
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M(r ′, t −
R
c
)

R
da′ (4)

with R =
∣∣r − r ′

∣∣ and the region outside ofA′ source free.
The surfaceA′ is the surface on which the currents flow,
the so called Huygens-surface. The substitution of Eq. (2),
Eq. (3) (together with the continuity equation∇J +

∂
∂t

ρ = 0)
and Eq. (4) into Eq. (1) results into a relationship between the
electric field and the electric and the magnetic current densi-
ties (Rao, 1999):
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]
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For the numerical solution the surfaceA′ is subdivided into
small patches. The electric and magnetic current density
is numerically approximated as a series of unknown coef-
ficients multiplied with basis functions:

J (r, t) =

Ns∑
i=0

Nt∑
j=0

J(i,j)βi (r) τj (t) ,

M (r, t) =

Ns∑
i=0

Nt∑
j=0

M(i,j)β i (r) τj (t) (6)

Ns andNt are the numbers of space samples and the time
step in which the electric field is calculated, respectively.
The spatial and temporal basis functions applied here are
shown in Fig. 1. The width of the temporal basis function
is 24TBEM . We integrate the combination of Eqs. (5) and
(6) multiplied with a test functionβk over the domainAk of
the test function (Sarkar et al., 2000):
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Fig. 3. The allocation of the Huygens-surfaceA′ in the Yee lattice.

The termγ represents the surface-divergence of the basis
functionβ. Equation (7) connects the tangential electric field
on surfaceAk to the electric and the magnetic currents flow-
ing on surfaceA′. The equivalence principle relates the tan-
gential electric field on the surfaceAk to the equivalent mag-
netic current:

βk · (n × M) = βk · (n × (E × n))

= βk · [E (n · n) − n · (n · E)] = βk · E (8)

Substituting Eq. (8) into Eq. (7) leads to a relationship be-
tween the electric and magnetic current density:∫
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If theactualmagnetic current density on surfaceA′ is known,
theactualelectric current density can be calculated from the
electric current density retarded in time at least one time step
and from the magnetic current density by enforcing continu-
ity on all subdomainsAk of A′. Eq. (9) can be written as: Z1,1 . . . Z1,N

...
. . .

...

ZN,1 . . . ZN,N


︸ ︷︷ ︸

Z
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...
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...∑N
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(10)

The matrixZ describes theactual electric fields produced
by theactualelectric currents and thus is highly sparse. In a

time-invariant system bothZ and the coefficientsX(k,i,j) and
Y(k,i,j) have to be calculated just once, at the first time step.
If the tangential electric field equals zero (that means the ma-
terial is a perfect electric conductor and there is no magnetic
current density) Eq. (10) will be sufficient for calculating the
electric current density in a marching-on-in-time algorithm
(MoT). Otherwise a second equation is needed to calculate
both current densities. In our case we will use the FIT to up-
date the magnetic current density and Eq. (10) to update the
electric current density. Thus the surfaceA′ will encase the
region modelled with FIT.

3 FDTD/FIT

The TD-FIT can be considered as a special formulation of
the FDTD-method (Weiland, 1996). In contrast to FDTD
it is based on the Maxwell Equations in integral form. By
using electric and magnetic fluxes and grid voltages as un-
known coefficients and by using the Yee lattice to allocate
them, these equations can be written as:

Cê = −
∂

∂t

ˆ̂
b (11)

C̃ĥ =
∂

∂t

ˆ̂
d +

ˆ̂
j . (12)

ê represents the grid voltage above one LineLi of the Yee

cell. The termˆ̂
d represents the flux through one AreaAi of

the Yee cell. The unknown coefficients can be considered as
the analytic – and thus numerically error-free – values. The
application of Eq. (12) is illustrated in Fig. 2a. A second
order accurate central difference approximation for the time
derivative leads to the leap frog algorithm. The definition of
grid voltages as unknown coefficients is essential if using the
FIT instead of FDTD for our hybrid method.

4 Hybrid method

In this section we will introduce our hybrid method. The TD-
BIM acts as a “global” absorbing boundary condition enclos-
ing the inhomogeneous bodies which are modelled by FIT.
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Fig. 4. The temporal allocation of the magnetic currents and possible allocations of the electric currents.

Fig. 5. The boundary of the FIT-domain and the resulting minimal retardation in the calculation of the magnetic grid voltages.

4.1 Basic features

We interconnect the inhomogeneous body and the surround-
ing homogeneous region by calculating tangential magnetic
grid voltages just outside the inhomogeneous body using
a TD magnetic field integral equation (TD-HFIE) which
uses electric and magnetic currents flowing on the Huygens-
surfaceA′ whose location is shown in Fig. 3.

The magnetic current on the surfaceA′ results directly
from the electric grid voltages of the FIT, which will be
shown beneath. Due to the fact that the magnetic grid volt-
ages are spatially (and temporally) separated from the elec-
tric grid voltages the electric currents on the Huygens-surface
A′ can not be calculated from the magnetic grid voltages.
Therefore the electric current will be calculated by using a
TD-BIM -as described in Sect. 2 – which is capable of con-
sidering bodies outside the FIT volume.

To develop the algorithm of the hybrid method we start
with the FIT and a Cartesian grid. The unknowns in FIT are
grid voltages defined as:

êi =

∫
Li

Eds , ĥi =

∫
Li

Hds (13)

As already mentioned we use the rooftop basis function for
the TD-BIM because the discretization for FIT leads to a
patch model of the surfaceA′ consisting of rectangular el-
ements (see Fig. 2) if Cartesian Coordinates are used. The
unknowns in the TD-BIM are proportional to the flux orthog-
onal to these edges. With the location in time of the magnetic
current density according to Fig. 4 this results into the fol-
lowing relationship between the unknownêi of the FIT and
the magnetic current of the TD-BIM (see Fig. 2b):∫

Li

MNt e3 =

∫
Li

(
e2 × ENt

)
e3ds =∫

Li

ENt e1ds = êi,Nt
(14)

Now the magnetic current density can be calculated from the
electric grid voltages by using Eq. (14). The electric currents
are located at the same time step like the magnetic currents
(see Fig. 4a). It is possible to locate the electric currents at
the same time step like the magnetic grid voltages and even
to use a time step4TBEM for the electric currents which is
larger than the time step given by FIT (see Fig. 4b). The latter
decreases calculation time and improves stability because the
time step given by the FIT is extremely small.

4.2 Time stept = Nt4T

The calculation of the magnetic grid voltages interconnecting
the inhomogeneous and the homogeneous region (see Fig. 3)
with the TD-HFIE is equivalent to the use of the so called
pulse-test-function:∫

S

Hds =

∫
A

Hβpulseda , with βpulse =
ds

|ds|

∣∣∣∣
rεS

(15)

The electric and magnetic current density is approximated
according to Sect. 2. Thus the magnetic grid voltages
can be calculated by combining Eq. (7) and the Fitzgerald-
transformation/duality. The use of a pulse-test-function al-
lows us to calculate the magnetic grid voltages without the
need to calculate a term proportional to 1/r2. As seen in
Fig. 5a the minimum distance between boundary plane and
magnetic grid voltages is 0.5Lmin which is half of the small-
est spatial discretization. In Fig. 5a the distance between the
Huygens-surface and the magnetic grid voltages is half a cell-
size.

In our numerical example we will use one and a half cell-
sizes between Huygens-surface and the grid voltages calcu-
lated by the TD-HFIE (see Fig. 6a). Due to the Courant con-
dition the minimal temporal retardation can be calculated to:

τmin =
Lmin

c
=

√
3c4T

c
=

√
34T > 0.54T (16)
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Fig. 6. Geometry and electric fields at the boundary of the FIT-volume.

Fig. 7. The electric fields at the boundary of the FIT-volume.

As seen in Fig. 5b theactualmagnetic grid voltages are not
functions of theactualelectric and magnetic currents. Thus
the grid voltages can be calculated by usingexpiredcurrents
only.

4.3 Time stept = (Nt + 0.5)4T

If the tangential magnetic grid voltages are known the FIT-
algorithm can be completed in the interior and on the bound-
ary as usual (t = (Nt + 0.5)4T ). Consequently, the elec-
tric grid voltages are known in the whole interior and on the
boundary. With Eq. (14) the magnetic currents can be calcu-
lated in a very efficient way. Anyway, the FIT does not give
a relationship between the magnetic and the electric fields in
one common plane. At the next time-step (t = (Nt + 1)4T )
the magnetic as well as the electric currents at time steps
t = (Nt + 0.5)4T are needed. The latter are calculated by
applying Eq. (10) att = (Nt + 0.5)4T . As boundary condi-
tion we use the electric fields calculated by FIT (proportional
to the magnetic flux as related by Eq. 14), i.e. the fields cal-
culated by the TD-IE must equal the fields calculated by the
FIT. Now both electric and magnetic currents are known on
the surfaceA′.

5 Numerical results

As a first numerical evaluation of the hybrid method we sim-
ulate an electric source (sinusoidal, 500 MHz) in the interior
of an air filled cube (see Fig. 6a) by impressing one electric
grid voltage. This source reflects all incoming waves and
so it acts like a small wire. The spatial and temporal dis-
cretization is determined by the Courant condition, assuming
a 1.1 GHz source and 20 cells per wavelength. The cube is
6 × 7 × 8-cells big. Between the Huygens-surface and the
FIT-boundary we put one layer. As an example we calculate
one electric grid voltage on the Huygens-surface. The re-
sult is compared to a calculation in which a cube with PMC-
boundary condition is simulated. This simulation contains so
many cells in each direction that waves at the boundary can
be neglected. The results agree well despite of the extremely
small distance between boundary and source. However, af-
ter approximately 12 periods the calculation with the hybrid
method becomes unstable. Such instabilities are typical for
TD-BIMs and the accuracy and stability strongly depends on
the numerical evaluation of the matrixZ and the coefficients
X(k,i,j) andY(k,i,j). So it can expected be that these instabil-
ities can be postponed in time far enough for practical pur-
poses, e.g. by using semi-analytic integration.
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6 Summary and outlook

The presented hybrid method combines the “local” FIT and
a “global” TD-BIM. The TD-BIM acts like an absorbing
boundary condition and allows waves to pass bidirectional.
The method can be directly transformed into a frequency do-
main technique and needs no additional interpolation than the
interpolations inherent in FIT. The accuracy and stability can
be improved by using semi-analytic integration instead of the
implemented numerical integration. The efficiency can be
drastically increased by using techniques like the plane wave
time domain algorithm (Shanker, 2000).
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