
Adv. Radio Sci., 10, 175–181, 2012
www.adv-radio-sci.net/10/175/2012/
doi:10.5194/ars-10-175-2012
© Author(s) 2012. CC Attribution 3.0 License.

Advances in
Radio Science

Design space exploration of high throughput finite field multipliers
for channel coding on Xilinx FPGAs

C. de Schryver, S. Weithoffer, U. Wasenm̈uller, and N. Wehn

Microelectronic Systems Design Research Group, University of Kaiserslautern, Erwin-Schrödinger-Str., Germany

Correspondence to:C. de Schryver (schryver@eit.uni-kl.de)

Abstract. Channel coding is a standard technique in all wire-
less communication systems. In addition to the typically em-
ployed methods like convolutional coding, turbo coding or
low density parity check (LDPC) coding, algebraic codes
are used in many cases. For example, outer BCH coding
is applied in the DVB-S2 standard for satellite TV broad-
casting. A key operation for BCH and the related Reed-
Solomon codes are multiplications in finite fields (Galois
Fields), where extension fields of prime fields are used. A lot
of architectures for multiplications in finite fields have been
published over the last decades. This paper examines four
different multiplier architectures in detail that offer the po-
tential for very high throughputs. We investigate the imple-
mentation performance of these multipliers on FPGA tech-
nology in the context of channel coding. We study the effi-
ciency of the multipliers with respect to area, frequency and
throughput, as well as configurability and scalability. The
implementation data of the fully verified circuits are provided
for a Xilinx Virtex-4 device after place and route.

1 Introduction

Galois or finite field multiplications (FFMs) are key in a wide
range of technical applications, for example in cryptography
or channel coding. In particular BCH- and Reed-Solomon
codes require a lot of Galois field (GF) multiplications to be
performed in the decoding process. Nowadays, BCH codes
are widely spread and employed in modern communication
standards like DVB and in error correction units for flash
memory devices (Liu et al., 2006), for instance. In Sect.2
we summarize the theoretical background of FFM and BCH
decoding.

However, the specific FFM requirements vary over the ap-
plication range: high Galois field dimensions are used in
cryptography, whereas for FFMs in channel coding the fo-
cus lies on high throughput and low latency. FFMs are key

components in BCH decoder implementations and consume
a significant amount of hardware resources in the overall de-
sign (Chen et al., 2009; Zhang et al., 2010).

Up to now, a lot of research has been made on area effi-
cient and fast FFM architectures. However, Ahlquist et al.
haven shown in 1999 (Ahlquist et al., 1999) that not every
VLSI optimized multiplier architecture performs optimal on
FPGAs.

Already in 1986, Scott et al. have proposed a scalable
FFM that is easily adaptable to different GF sizes and primi-
tive polynomials (Scott et al., 1986). Their bit-slice architec-
ture makes efficient use of area providing flexibility for dif-
ferent field sizes. Building on the work of Scott et al., Kitsos
et al. in 2003 proposed a flexible, reconfigurable FFM ar-
chitecture for extension fieldsGF(2m) (Kitsos et al., 2003).
Their bit-serial polynomial basis multiplier features reconfig-
urability for field sizes up tom and reduced power consump-
tion due to gated clocking. The low hardware complexity
promises good area performance.

In this work, we investigate the potential benefit of these
published FFM architectures as well as two “standard” ar-
chitectures for a high-throughput DVB-S2 standard BCH de-
coder. For this purpose we have implemented the selected
FFMs as described in Sect.3 and fully validated them with
a hardware-software co-simulation setup. We have synthe-
sized our implementations and compare area consumption
and achievable throughput for a common Xilinx Virtex-4
FGPA target device as described in Sect.4. Furthermore,
we evaluate them with respect to their suitability for FPGA
target devices, area consumption, latency and scalability.
Finally, we comment on the impact of using sophisticated
pipelined FFMs in a DVB-S2 BCH decoder and show which
parts can profit most from those.

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.

176 C. de Schryver et al.: Design space exploration of FFMs for channel coding

2 Theoretical background

For a better understanding of the finite field multiplier archi-
tectures and the context of BCH coding, we give an overview
on the underlying mathematics in this section. For more de-
tails we refer to available standard literature (Bossert, 1998;
Friedrichs, 1995).

2.1 Finite fields and multiplication

The basis for the finite field multiplication architectures im-
plemented in this work is a reformulation of the finite field
multiplication in polynomial representation. The derivation
of the algorithm originally proposed by Scott et al. (Scott
et al., 1986) is outlined in the following.

The nonzero elements of the extension fieldGF(2m) can
be constructed by powers of the primitive elementα, whereα
is a root of a primitive polynomialP(x) = xm

+pm−1x
m−1

+

···+p1x +p0 overGF(2). SinceP(α) = 0 (α being root of
P) αm

= pm−1α
m−1

+···+p1α +p0 and therefore nonzero
the elements can be written in the canonical base representa-
tion:

{am−1α
m−1

+···+a1α+a0|ai ∈ GF(2) for 0≤ i ≤ m−1}

2.1.1 Multiplication algorithm

Based on the work of Scott et al., an algorithm for FFM can
be derived similar to the design proposed by Kitsos et al. as
follows: Let A, B ∈ GF(2m) in canonical base representa-
tion andP primitive polynomial overGF(2). Then let

C = A(x) ·B(x) modP (1)

=

m−1∑
k=0

A(x) ·bkx
k modP (2)

= ((0·x +bm−1A(x))︸ ︷︷ ︸
K0(x)

xm−1
+···+b0A(x)) modP(x) (3)

= (
(
K0(x)x +bm−2A(x)

)
︸ ︷︷ ︸

K1(x)

xm−2
+···+b0A(x)) modP(x) (4)

...

= Km−1(x) modP(x) (5)

Thus, the productC(x) can be obtained by performing it-
erativelym−1 times:

K i(x) =

(
K i−1(x)x +bm−1−iA(x)

)
modP(x) (6)

whereK−1(x) = 0.

2 C. de Schryver, S. Weithoffer, U. Wasenmüller, N. Wehn: Design Space Exploration of FFMs for Channel Coding

2 Theoretical Background

For a better understanding of the finite field multiplier archi-

tectures and the context of BCH coding, we give an overview

on the underlying mathematics in this section. For more de-

tails we refer to available standard literature (Bossert, 1998)

(Friedrichs, 1995).

2.1 Finite Fields and Multiplication

The basis for the finite field multiplication architectures im-

plemented in this work is a reformulation of the finite field

multiplication in polynomial representation. The derivation

of the algorithm originally proposed by Scott et al. (Scott

et al., 1986) is outlined in the following.

The nonzero elements of the extension field GF (2m)
can be constructed by powers of the primitive element α,

where α is a root of a primitive polynomial P (x) = xm+
pm−1x

m−1+ ···+ p1x+ p0 over GF (2). Since P (α) = 0
(α being root of P) αm = pm−1α

m−1+ ···+p1α+p0 and

therefore nonzero the elements can be written in the canoni-

cal base representation:

{am−1α
m−1+ ···+a1α+a0|ai ∈GF (2) for 0≤ i≤m−1}

2.1.1 Multiplication Algorithm

Based on the work of Scott et al., an algorithm for FFM can

be derived similar to the design proposed by Kitsos et al. as

follows: Let A, B ∈GF (2m) in canonical base representa-

tion and P primitive polynomial over GF (2). Then let

C =A(x) ·B(x) mod P (1)

=
m−1∑

k=0

A(x) ·bkx
k mod P (2)

=((0 ·x+bm−1A(x))
︸ ︷︷ ︸

K0(x)

xm−1+ ···+b0A(x)) mod P (x) (3)

=(
(
K0(x)x+bm−2A(x)

)

︸ ︷︷ ︸

K1(x)

xm−2+···+b0A(x)) mod P (x)(4)

...

=Km−1(x) mod P (x) (5)

Thus, the product C(x) can be obtained by performing it-

eratively m−1 times:

Ki(x)=
(
Ki−1(x)x+bm−1−iA(x)

)
mod P (x) (6)

where K−1(x)= 0.

Equation (6) can be simplified by using the fact that

xm mod P (x) = pm−1x
m−1 + ···+ p1x+ p0 and by writ-

ing Ki−1(x) and A(x) as ki−1
m−1x

m−1 + ··· + ki−1
0 and

am−1x
m−1+ ···+a0 respectively and one obtains:

Ki(x)=

m−1∑

j=0

kijx
j (7)

with

kij = ki−1
m−1pj+ki−1

j−1+bm−1−iaj and ki−1
−1 =0 (8)

With (6) and (8), the multiplication algorithm over

GF (2m) is given, that is used for the architectures of the

Scott- and Kitsos-multiplier.

2.2 BCH Decoding

BCH codes have been invented in 1959 by Hocquenghem

(Hocquenghem, 1959), and independently in 1960 by Bose

and Ray-Chaudhuri (Bose and Ray-Chaudhuri, 1960). These

codes provide high flexibility and predictable error correc-

tion ability, and hence are used in a wide range of technical

applications. Details about their construction and decoding

can be found in literature (Bossert, 1998) (Friedrichs, 1995).

Two main categories of BCH codes exist: so-called prim-

itive and non-primitive ones. Code words of primitive BCH

codes are always of fixed length n= 2m−1, with n being

the length of the code word and m the dimension of the Ga-

lois field 2m. Non-primitive BCH codes provide flexibility

in choosing the appropriate code word size. In contrast to

code puncturing, where one or more positions in a code word

are omitted, the minimum distance in a reduced code is not

changed (Bossert, 1998). Non-primitive BCH codes are used

in standards like DVB-T2, DVB-S2, DB-C2, DVB-H, ITU-T

H.261 or ITU-T G.975.1, for example.

BCH codes are usually decoded by algebraic syndrome de-

coding. Figure 1 shows the generic structure of a syndrome

based BCH decoder.

syndrome
generator

key equation
solver

Chien
search

FIFO
buffer

error
correction

r S

j'

(

Fig. 1: Block Diagram of an BCH Decoder

It is important to notice that the syndrome S(x) only de-

pends on a possible error vector e and not on the correct code

word that has been sent. The decoder therefore has to find a

possible error vector e with a minimum weight, that means

an e with a minimum number of coefficients unequal to zero.

In order to calculate e algebraically, the search for minimum

weight is transformed into a search for a polynomial with

minimum degree (Bossert, 1998).

Fig. 1. Block Diagram of an BCH Decoder.

Equation (6) can be simplified by using the fact that
xm modP(x) = pm−1x

m−1
+ ··· + p1x + p0 and by writ-

ing K i−1(x) and A(x) as ki−1
m−1x

m−1
+ ··· + ki−1

0 and
am−1x

m−1
+···+a0 respectively and one obtains:

K i(x) =

m−1∑
j=0

ki
jx

j (7)

with

ki
j = ki−1

m−1pj +ki−1
j−1+bm−1−iaj and ki−1

−1 = 0 (8)

With Eqs. (6) and (8), the multiplication algorithm over
GF(2m) is given, that is used for the architectures of the
Scott- and Kitsos-multiplier.

2.2 BCH decoding

BCH codes have been invented in 1959 by Hoc-
quenghem (Hocquenghem, 1959), and independently in
1960 by Bose and Ray-Chaudhuri (Bose and Ray-Chaudhuri,
1960). These codes provide high flexibility and predictable
error correction ability, and hence are used in a wide range
of technical applications. Details about their construction
and decoding can be found in literature (Bossert, 1998;
Friedrichs, 1995).

Two main categories of BCH codes exist: so-calledprim-
itive andnon-primitiveones. Code words of primitive BCH
codes are always of fixed lengthn = 2m

− 1, with n being
the length of the code word andm the dimension of the Ga-
lois field 2m. Non-primitive BCH codes provide flexibility
in choosing the appropriate code word size. In contrast to
code puncturing, where one or more positions in a code word
are omitted, the minimum distance in a reduced code is not
changed (Bossert, 1998). Non-primitive BCH codes are used
in standards like DVB-T2, DVB-S2, DB-C2, DVB-H, ITU-T
H.261 or ITU-T G.975.1, for example.

BCH codes are usually decoded by algebraic syndrome de-
coding. Figure1 shows the generic structure of a syndrome
based BCH decoder.

It is important to notice that the syndromeS(x) only de-
pends on a possible error vectore and not on the correct code
word that has been sent. The decoder therefore has to find a
possible error vectore with a minimum weight, that means
ane with a minimum number of coefficients unequal to zero.
In order to calculatee algebraically, the search for minimum

Adv. Radio Sci., 10, 175–181, 2012 www.adv-radio-sci.net/10/175/2012/

C. de Schryver et al.: Design space exploration of FFMs for channel coding 177

weight is transformed into a search for a polynomial with
minimum degree (Bossert, 1998).

The syndrome generator unit (SGU) computes the syn-
dromeS(x) that is fed into a so-calledkey equation solver
(KES). The KES computes theerror locator polynomial
3(x) out of the syndrome. The Chien search unit (CSU) af-
terwards checks for all elements in the specified Galois field
GF(2m) if 3(x) = 0. In this case, the error vectore has a 1
at the corresponding position; the error correction then flips
the bits at all recognized error positions in the received code
word r.

3 Hardware implementation

The hardware implementation of the FFMs should be flexi-
ble and generic with respect to the primitive polynomial and
field size. Furthermore, they should exploit the underlying
structures of the Virtex-4 FPGA-platform well to yield small
area usage while providing sufficient throughput.

For the target DVB-S2 standard, BCH codes based on the
Galois fields 214 and 216 are used. As this research was per-
formed in the context of a more complex communication sys-
tem, the common clock frequency of the whole system was
predefined to 200MHz.

The hardware implementations considered in our work are
based on (Scott et al., 1986) and (Kitsos et al., 2003). Fur-
thermore, we give insight into the architecture of the plain
combinatorial FFM implementations used.

3.1 Scott-Multiplier

The architecture of the Scott-multiplier resembles the mul-
tiplication algorithm derived in Sect.2.1. Equation (8) is
mapped to a basic cell (see Fig.2). It consists of two 2-input
AND-gates, two 2-input XOR gates and a flip-flop. Addi-
tionally, our implementation contains flip-flops for storing
the coefficients of theA-operand during a calculation and
control logic for that. Still, such cells fit comfortably into a
Virtex-4 FPGA slice that offers two 4-input LUTs, two mul-
tiplexers, two 1-bit registers and arithmetic logic.

For a multiplier overGF(2m), m basic cells are connected
into an array that calculates the productC = A ·B modP in
m clock cycles. This array can be viewed as a linear feed-
back shift register and is illustrated in Fig.3. The primitive
polynomial of the Galois field can arbitrarily be set at design
time.

3.2 Kitsos-multiplier

This architecture extends the Scott-multiplier by a reconfig-
urable feedback path, gated clocking and is also based on
Eq. (8). The reconfigurable feedback path allows for a run-
time reconfiguration of the multiplier. This reconfigurabil-
ity aims to support not only arbitrary primitive polynomials
but also field sizes 1≤ i ≤ m for an array lengthm. The

C. de Schryver, S. Weithoffer, U. Wasenmüller, N. Wehn: Design Space Exploration of FFMs for Channel Coding 3

The syndrome generator unit (SGU) computes the syn-

drome S(x) that is fed into a so-called key equation solver

(KES). The KES computes the error locator polynomial

Λ(x) out of the syndrome. The Chien search unit (CSU) af-

terwards checks for all elements in the specified Galois field

GF (2m) if Λ(x) = 0. In this case, the error vector e has a 1
at the corresponding position; the error correction then flips

the bits at all recognized error positions in the received code

word r.

3 Hardware Implementation

The hardware implementation of the FFMs should be flexi-

ble and generic with respect to the primitive polynomial and

field size. Furthermore, they should exploit the underlying

structures of the Virtex-4 FPGA-platform well to yield small

area usage while providing sufficient throughput.

For the target DVB-S2 standard, BCH codes based on the

Galois fields 214 and 216 are used. As this research was per-

formed in the context of a more complex communication sys-

tem, the common clock frequency of the whole system was

predefined to 200MHz.

The hardware implementations considered in our work are

based on (Scott et al., 1986) and (Kitsos et al., 2003). Fur-

thermore, we give insight into the architecture of the plain

combinatorial FFM implementations used.

3.1 Scott-Multiplier

The architecture of the Scott-multiplier resembles the mul-

tiplication algorithm derived in Section 2.1. Equation (8)

is mapped to a basic cell (see Figure 2). It consists of two

2-input AND-gates, two 2-input XOR gates and a flip-flop.

Additionally, our implementation contains flip-flops for stor-

ing the coefficients of the A-operand during a calculation and

control logic for that. Still, such cells fit comfortably into a

Virtex-4 FPGA slice that offers two 4-input LUTs, two mul-

tiplexers, two 1-bit registers and arithmetic logic.

For a multiplier over GF (2m), m basic cells are connected

into an array that calculates the product C =A ·B mod P in

m clock cycles. This array can be viewed as a linear feed-

back shift register and is illustrated in Figure 3. The primitive

polynomial of the Galois field can arbitrarily be set at design

time.

3.2 Kitsos-Multiplier

This architecture extends the Scott-multiplier by a reconfig-

urable feedback path, gated clocking and is also based on

Equation (8). The reconfigurable feedback path allows for a

run-time reconfiguration of the multiplier. This reconfigura-

bility aims to support not only arbitrary primitive polynomi-

als but also field sizes 1≤ i≤m for an array length m. The

gated clocking leads to an increased power efficiency when

the multiplier is reconfigured to lower dimension fields.

�
�
�

��

��

�

�

�

�

�������	

�
���
����
���
��

Fig. 2: Scott-Multiplier Basic Cell

���� ���� ���� ����

���

	���	���

	���

�

�

��

���� ���� ���� ����

���� ���� ��������

Fig. 3: Scott-Multiplier Array of Four Cells for m=4.

In addition to the two 2-input AND-gates, two 2-input

XOR gates and flip-flop required due to Equation (8), the

basic cells of the Kitsos-multiplier contain a demultiplexer

and a two-input XOR and AND gate as shown in Figure 4.

Similar to the Scott-multiplier, m basic cells form an ar-

ray to allow for multiplication over GF (2m). The Kitsos-

multiplier can be reconfigured at run time to support any field

dimension j with 1≤ j ≤m by selecting a shorter feedback

path and disabling part of the flip-flops. Our implementa-

tion also features built-in default primitive polynomials and

further control logic to be able to use an arbitrary primitive

polynomial. An example for m=4 is given in Figure 5.

3.3 Plain Multiplier Architectures

In the original BCH decoder implementation, the multipliers

used were based on a pure polynomial division algorithm.

As a first step, plain unrolling of this polynomial division

led to pure combinatorial FFMs. In the second step we have

introduced pipeline registers to shorten the critical path of the

circuit.

We use both plain FFM types as a comparison for our re-

sults. Detailed numbers for all multipliers are given in Fig-

ure 8 and Table 2.

Fig. 2. Scott-Multiplier Basic Cell.

C. de Schryver, S. Weithoffer, U. Wasenmüller, N. Wehn: Design Space Exploration of FFMs for Channel Coding 3

The syndrome generator unit (SGU) computes the syn-

drome S(x) that is fed into a so-called key equation solver

(KES). The KES computes the error locator polynomial

Λ(x) out of the syndrome. The Chien search unit (CSU) af-

terwards checks for all elements in the specified Galois field

GF (2m) if Λ(x) = 0. In this case, the error vector e has a 1
at the corresponding position; the error correction then flips

the bits at all recognized error positions in the received code

word r.

3 Hardware Implementation

The hardware implementation of the FFMs should be flexi-

ble and generic with respect to the primitive polynomial and

field size. Furthermore, they should exploit the underlying

structures of the Virtex-4 FPGA-platform well to yield small

area usage while providing sufficient throughput.

For the target DVB-S2 standard, BCH codes based on the

Galois fields 214 and 216 are used. As this research was per-

formed in the context of a more complex communication sys-

tem, the common clock frequency of the whole system was

predefined to 200MHz.

The hardware implementations considered in our work are

based on (Scott et al., 1986) and (Kitsos et al., 2003). Fur-

thermore, we give insight into the architecture of the plain

combinatorial FFM implementations used.

3.1 Scott-Multiplier

The architecture of the Scott-multiplier resembles the mul-

tiplication algorithm derived in Section 2.1. Equation (8)

is mapped to a basic cell (see Figure 2). It consists of two

2-input AND-gates, two 2-input XOR gates and a flip-flop.

Additionally, our implementation contains flip-flops for stor-

ing the coefficients of the A-operand during a calculation and

control logic for that. Still, such cells fit comfortably into a

Virtex-4 FPGA slice that offers two 4-input LUTs, two mul-

tiplexers, two 1-bit registers and arithmetic logic.

For a multiplier over GF (2m), m basic cells are connected

into an array that calculates the product C =A ·B mod P in

m clock cycles. This array can be viewed as a linear feed-

back shift register and is illustrated in Figure 3. The primitive

polynomial of the Galois field can arbitrarily be set at design

time.

3.2 Kitsos-Multiplier

This architecture extends the Scott-multiplier by a reconfig-

urable feedback path, gated clocking and is also based on

Equation (8). The reconfigurable feedback path allows for a

run-time reconfiguration of the multiplier. This reconfigura-

bility aims to support not only arbitrary primitive polynomi-

als but also field sizes 1≤ i≤m for an array length m. The

gated clocking leads to an increased power efficiency when

the multiplier is reconfigured to lower dimension fields.

�
�
�

��

��

�

�

�

�

�������	

�
���
����
���
��

Fig. 2: Scott-Multiplier Basic Cell

���� ���� ���� ����

���

	���	���

	���

�

�

��

���� ���� ���� ����

���� ���� ��������

Fig. 3: Scott-Multiplier Array of Four Cells for m=4.

In addition to the two 2-input AND-gates, two 2-input

XOR gates and flip-flop required due to Equation (8), the

basic cells of the Kitsos-multiplier contain a demultiplexer

and a two-input XOR and AND gate as shown in Figure 4.

Similar to the Scott-multiplier, m basic cells form an ar-

ray to allow for multiplication over GF (2m). The Kitsos-

multiplier can be reconfigured at run time to support any field

dimension j with 1≤ j ≤m by selecting a shorter feedback

path and disabling part of the flip-flops. Our implementa-

tion also features built-in default primitive polynomials and

further control logic to be able to use an arbitrary primitive

polynomial. An example for m=4 is given in Figure 5.

3.3 Plain Multiplier Architectures

In the original BCH decoder implementation, the multipliers

used were based on a pure polynomial division algorithm.

As a first step, plain unrolling of this polynomial division

led to pure combinatorial FFMs. In the second step we have

introduced pipeline registers to shorten the critical path of the

circuit.

We use both plain FFM types as a comparison for our re-

sults. Detailed numbers for all multipliers are given in Fig-

ure 8 and Table 2.

Fig. 3. Scott-Multiplier Array of Four Cells form = 4.

gated clocking leads to an increased power efficiency when
the multiplier is reconfigured to lower dimension fields.

In addition to the two 2-input AND-gates, two 2-input
XOR gates and flip-flop required due to Eq. (8), the basic
cells of the Kitsos-multiplier contain a demultiplexer and a
two-input XOR and AND gate as shown in Fig.4.

Similar to the Scott-multiplier,m basic cells form an ar-
ray to allow for multiplication overGF(2m). The Kitsos-
multiplier can be reconfigured at run time to support any field
dimensionj with 1≤ j ≤ m by selecting a shorter feedback
path and disabling part of the flip-flops. Our implementa-
tion also features built-in default primitive polynomials and
further control logic to be able to use an arbitrary primitive
polynomial. An example form = 4 is given in Fig.5.

3.3 Plain multiplier architectures

In the original BCH decoder implementation, the multipliers
used were based on a pure polynomial division algorithm.
As a first step, plain unrolling of this polynomial division
led to pure combinatorial FFMs. In the second step we have

www.adv-radio-sci.net/10/175/2012/ Adv. Radio Sci., 10, 175–181, 2012

178 C. de Schryver et al.: Design space exploration of FFMs for channel coding
4 C. de Schryver, S. Weithoffer, U. Wasenmüller, N. Wehn: Design Space Exploration of FFMs for Channel Coding

��

��
�
�
�
�
�

���

�

���	
�

�
����	
��
������

�����

�

���

Fig. 4: Kitsos-Multiplier Basic Cell

�����������������

	

�
��

���

���

���

�

���

���

���

�

�
��

�

���������

	���������

���� ���� ����

���

���

�����
��

����

Fig. 5: Kitsos-Multiplier Array for Maximum m=4

3.4 BCH Decoder Architecture

Our original decoder implementation is derived from the

generic template shown in Figure 1. The key equation solver

is based on a fully parallel Euclidean implementation that

uses non-pipelined combinatorial FFMs as described in Sec-

tion 3.3. SGU and CSU use the same type of FFM. Since we

intend to enhance our decoder to Reed-Solomon codes in the

future, we have decided to go for a fully parallel Euclidean

based key equation solver. The decoder can be configured at

design time with the following parameters:

– n: length of the code word

– m: dimension of the extension field 2m

– t: numbers of errors that can be corrected

– p: number of bits that are processed in parallel in the

syndrome generator unit and the Chien search unit

In all three units in the upper part of Figure 1, FFMs are

the key components (Chen et al., 2009) (Zhang et al., 2010).

However, the complexity of some FFMs can be reduced at

design time, since they have one input fixed to a constant

value out of the specific Galois field used. This is the case

for all 2∗t multipliers in the syndrome computation unit and

for all t∗p multipliers in the Chien search unit.

The key equation solver only contains full FFMs with non-

constant inputs. To support both GF dimensions (214 and

216) in the DVB-S2 BCH decoder, every FFM instance in-

ternally consists of two FFMs, one for each GF dimension.

��������������
�����������
������������
�������� ����!����

"#$

%"$

&'"

��(��

��

inner: m=8, n=128, t=3, p=1 / outer: m=13, n=4096, t=7, p=1

Fig. 6: Slice Distribution of BCH Decoder Components

They share the same wires and are selected via multiplexers

at the inputs and outputs.

Figure 6 clearly shows for two explicit configuration cases

that these 8∗ t+2 FFMs in total consume the vast majority

of the overall area required by the complete BCH decoder.

In Table 1 the latency of the single decoder stages is given

for combinatorial and Scott FFMs based on the decoder pa-

rameters. Due to the high parallelism in the KES, the major-

ity of decoding time is spend in SGU and CSU. Nevertheless,

these units can easily be speeded up by increasing p, reduc-

ing the latency in these units by 1/p. However, this will also

increase the consumed area by a factor of nearly p.

4 Results

4.1 Validation

With increasing complexity in current hardware designs, per-

manent evaluation and verification is crucial throughout the

design process. To speed up the otherwise very time consum-

ing simulation process, the VHDL models of the FFMs have

been exhaustively co-simulated with C++ reference code for

GF-multiplication. This co-simulation has been carried out

using Mentor Graphics ModelSim and a SystemC test bench

as illustrated in Figure 7. As only field sizes up to 216 are

of interest for our BCH decoder, all meaningful stimuli have

been applied and the models have therefore been fully veri-

fied.

4.2 Synthesis Results

All multiplier architectures described in Section 3 have been

implemented in VDHL. They have been synthesized for low

area consumption on a Xilinx Virtex 4 FPGA (XC4VLX100,

package FF1148). The applied tool chain was Xilinx ISE

IDE Release 11.3 and the optimization effort for place and

route was set to high. Table 2 gives detailed synthesis results

(post place and route).

Fig. 4. Kitsos-Multiplier Basic Cell.

4 C. de Schryver, S. Weithoffer, U. Wasenmüller, N. Wehn: Design Space Exploration of FFMs for Channel Coding

��

��

�
�
�
�
�

���

�

���	
�

�
����	
��
������

�����

�

���

Fig. 4: Kitsos-Multiplier Basic Cell

�����������������

	

�
��

���

���

���

�

���

���

���

�

�
��

�

���������

	���������

���� ���� ����

���

���

�����
��

����

Fig. 5: Kitsos-Multiplier Array for Maximum m=4

3.4 BCH Decoder Architecture

Our original decoder implementation is derived from the

generic template shown in Figure 1. The key equation solver

is based on a fully parallel Euclidean implementation that

uses non-pipelined combinatorial FFMs as described in Sec-

tion 3.3. SGU and CSU use the same type of FFM. Since we

intend to enhance our decoder to Reed-Solomon codes in the

future, we have decided to go for a fully parallel Euclidean

based key equation solver. The decoder can be configured at

design time with the following parameters:

– n: length of the code word

– m: dimension of the extension field 2m

– t: numbers of errors that can be corrected

– p: number of bits that are processed in parallel in the

syndrome generator unit and the Chien search unit

In all three units in the upper part of Figure 1, FFMs are

the key components (Chen et al., 2009) (Zhang et al., 2010).

However, the complexity of some FFMs can be reduced at

design time, since they have one input fixed to a constant

value out of the specific Galois field used. This is the case

for all 2∗t multipliers in the syndrome computation unit and

for all t∗p multipliers in the Chien search unit.

The key equation solver only contains full FFMs with non-

constant inputs. To support both GF dimensions (214 and

216) in the DVB-S2 BCH decoder, every FFM instance in-

ternally consists of two FFMs, one for each GF dimension.

��������������
�����������
������������
�������� ����!����

"#$

%"$

&'"

��(��

��

inner: m=8, n=128, t=3, p=1 / outer: m=13, n=4096, t=7, p=1

Fig. 6: Slice Distribution of BCH Decoder Components

They share the same wires and are selected via multiplexers

at the inputs and outputs.

Figure 6 clearly shows for two explicit configuration cases

that these 8∗ t+2 FFMs in total consume the vast majority

of the overall area required by the complete BCH decoder.

In Table 1 the latency of the single decoder stages is given

for combinatorial and Scott FFMs based on the decoder pa-

rameters. Due to the high parallelism in the KES, the major-

ity of decoding time is spend in SGU and CSU. Nevertheless,

these units can easily be speeded up by increasing p, reduc-

ing the latency in these units by 1/p. However, this will also

increase the consumed area by a factor of nearly p.

4 Results

4.1 Validation

With increasing complexity in current hardware designs, per-

manent evaluation and verification is crucial throughout the

design process. To speed up the otherwise very time consum-

ing simulation process, the VHDL models of the FFMs have

been exhaustively co-simulated with C++ reference code for

GF-multiplication. This co-simulation has been carried out

using Mentor Graphics ModelSim and a SystemC test bench

as illustrated in Figure 7. As only field sizes up to 216 are

of interest for our BCH decoder, all meaningful stimuli have

been applied and the models have therefore been fully veri-

fied.

4.2 Synthesis Results

All multiplier architectures described in Section 3 have been

implemented in VDHL. They have been synthesized for low

area consumption on a Xilinx Virtex 4 FPGA (XC4VLX100,

package FF1148). The applied tool chain was Xilinx ISE

IDE Release 11.3 and the optimization effort for place and

route was set to high. Table 2 gives detailed synthesis results

(post place and route).

Fig. 5. Kitsos-Multiplier Array for Maximumm = 4.

introduced pipeline registers to shorten the critical path of the
circuit.

We use both plain FFM types as a comparison for our re-
sults. Detailed numbers for all multipliers are given in Fig.2
and Table2.

3.4 BCH decoder architecture

Our original decoder implementation is derived from the
generic template shown in1. The key equation solver is
based on a fully parallel Euclidean implementation that uses
non-pipelined combinatorial FFMs as described in Sect.3.3.
SGU and CSU use the same type of FFM. Since we intend to
enhance our decoder to Reed-Solomon codes in the future,
we have decided to go for a fully parallel Euclidean based
key equation solver. The decoder can be configured at de-
sign time with the following parameters:

– n: length of the code word

– m: dimension of the extension field 2m

– t : numbers of errors that can be corrected

– p: number of bits that are processed in parallel in the
syndrome generator unit and the Chien search unit

In all three units in the upper part of Fig.1, FFMs are
the key components (Chen et al., 2009; Zhang et al., 2010).

4 C. de Schryver, S. Weithoffer, U. Wasenmüller, N. Wehn: Design Space Exploration of FFMs for Channel Coding

��

��

�
�
�
�
�

���

�

���	
�

�
����	
��
������

�����

�

���

Fig. 4: Kitsos-Multiplier Basic Cell

�����������������

	

�
��

���

���

���

�

���

���

���

�

�
��

�

���������

	���������

���� ���� ����

���

���

�����
��

����

Fig. 5: Kitsos-Multiplier Array for Maximum m=4

3.4 BCH Decoder Architecture

Our original decoder implementation is derived from the

generic template shown in Figure 1. The key equation solver

is based on a fully parallel Euclidean implementation that

uses non-pipelined combinatorial FFMs as described in Sec-

tion 3.3. SGU and CSU use the same type of FFM. Since we

intend to enhance our decoder to Reed-Solomon codes in the

future, we have decided to go for a fully parallel Euclidean

based key equation solver. The decoder can be configured at

design time with the following parameters:

– n: length of the code word

– m: dimension of the extension field 2m

– t: numbers of errors that can be corrected

– p: number of bits that are processed in parallel in the

syndrome generator unit and the Chien search unit

In all three units in the upper part of Figure 1, FFMs are

the key components (Chen et al., 2009) (Zhang et al., 2010).

However, the complexity of some FFMs can be reduced at

design time, since they have one input fixed to a constant

value out of the specific Galois field used. This is the case

for all 2∗t multipliers in the syndrome computation unit and

for all t∗p multipliers in the Chien search unit.

The key equation solver only contains full FFMs with non-

constant inputs. To support both GF dimensions (214 and

216) in the DVB-S2 BCH decoder, every FFM instance in-

ternally consists of two FFMs, one for each GF dimension.

��������������
�����������
������������
�������� ����!����

"#$

%"$

&'"

��(��

��

inner: m=8, n=128, t=3, p=1 / outer: m=13, n=4096, t=7, p=1

Fig. 6: Slice Distribution of BCH Decoder Components

They share the same wires and are selected via multiplexers

at the inputs and outputs.

Figure 6 clearly shows for two explicit configuration cases

that these 8∗ t+2 FFMs in total consume the vast majority

of the overall area required by the complete BCH decoder.

In Table 1 the latency of the single decoder stages is given

for combinatorial and Scott FFMs based on the decoder pa-

rameters. Due to the high parallelism in the KES, the major-

ity of decoding time is spend in SGU and CSU. Nevertheless,

these units can easily be speeded up by increasing p, reduc-

ing the latency in these units by 1/p. However, this will also

increase the consumed area by a factor of nearly p.

4 Results

4.1 Validation

With increasing complexity in current hardware designs, per-

manent evaluation and verification is crucial throughout the

design process. To speed up the otherwise very time consum-

ing simulation process, the VHDL models of the FFMs have

been exhaustively co-simulated with C++ reference code for

GF-multiplication. This co-simulation has been carried out

using Mentor Graphics ModelSim and a SystemC test bench

as illustrated in Figure 7. As only field sizes up to 216 are

of interest for our BCH decoder, all meaningful stimuli have

been applied and the models have therefore been fully veri-

fied.

4.2 Synthesis Results

All multiplier architectures described in Section 3 have been

implemented in VDHL. They have been synthesized for low

area consumption on a Xilinx Virtex 4 FPGA (XC4VLX100,

package FF1148). The applied tool chain was Xilinx ISE

IDE Release 11.3 and the optimization effort for place and

route was set to high. Table 2 gives detailed synthesis results

(post place and route).

Fig. 6. Slice Distribution of BCH Decoder Components.

However, the complexity of some FFMs can be reduced at
design time, since they have one input fixed to a constant
value out of the specific Galois field used. This is the case
for all 2×t multipliers in the syndrome computation unit and
for all t ×p multipliers in the Chien search unit.

The key equation solver only contains full FFMs with non-
constant inputs. To support both GF dimensions (214 and
216) in the DVB-S2 BCH decoder, every FFM instance in-
ternally consists of two FFMs, one for each GF dimension.
They share the same wires and are selected via multiplexers
at the inputs and outputs.

Figure6 clearly shows for two explicit configuration cases
that these 8× t +2 FFMs in total consume the vast majority
of the overall area required by the complete BCH decoder.

InTable1 the latency of the single decoder stages is given
for combinatorial and Scott FFMs based on the decoder pa-
rameters. Due to the high parallelism in the KES, the major-
ity of decoding time is spend in SGU and CSU. Nevertheless,
these units can easily be speeded up by increasingp, reduc-
ing the latency in these units by 1/p. However, this will also
increase the consumed area by a factor of nearlyp.

4 Results

4.1 Validation

With increasing complexity in current hardware designs, per-
manent evaluation and verification is crucial throughout the
design process. To speed up the otherwise very time consum-
ing simulation process, the VHDL models of the FFMs have
been exhaustively co-simulated with C++ reference code for
GF-multiplication. This co-simulation has been carried out
using Mentor Graphics ModelSim and a SystemC test bench
as illustrated in Fig.7. As only field sizes up to 216 are of in-
terest for our BCH decoder, all meaningful stimuli have been
applied and the models have therefore been fully verified.

Adv. Radio Sci., 10, 175–181, 2012 www.adv-radio-sci.net/10/175/2012/

C. de Schryver et al.: Design space exploration of FFMs for channel coding 179

Table 1. Latency Distribution of BCH Decoder Components.

Component Latency Combinatorial FFMs Latency Scott FFMs

Key Equation Solver 4× t +2 (4× t +2)×m

Syndrome Generator Unit n/p−1 (n/p−1)×m

Chien Search Unit n/p+1 (n/p+1)×m

C. de Schryver, S. Weithoffer, U. Wasenmüller, N. Wehn: Design Space Exploration of FFMs for Channel Coding 5

Component Latency Combinatorial FFMs Latency Scott FFMs

Key Equation Solver 4∗ t+2 (4∗ t+2)∗m
Syndrome Generator Unit n/p−1 (n/p−1)∗m
Chien Search Unit n/p+1 (n/p+1)∗m

Table 1: Latency Distribution of BCH Decoder Components

�������

��	�
�	
��

������	��� ��
���	��
�
�	�

������
��

����	

����	��
����	��

����	�

��

��
	���

�

���

�������

�������� �
��	��
�

Fig. 7: HW/SW Co-Simulation Schematic

�� �� �� �� ��
�

���

�

���

�

���
	
���

�����

�������
�������������

�����������������

�����������������

�
���
��
�
��
�
�
�
��
�
�

�
�
��
�
�

�
�
�
��
�
�
��
��

�

Fig. 8: Throughput per Slice @200MHz

Due to the given system requirements, the main focus lay

on a resulting small footprint on the FPGA for given through-

puts. Therefore the metric considered most important was

throughput per slice at a fixed clock frequency. Table 2

shows that the required target clock frequency of 200MHz

could be achieved by all implementations, except the Kitsos-

multiplier for field dimensions m≥ 15.

For the Scott-multiplier, we can achieve possible clock fre-

quencies of more than 1GHz due to the short critical path

(see Figure 2). Furthermore, the Scott-multiplier outper-

forms the other multiplier architectures and even the plain

combinatorial multiplier implementation with respect to the

metric introduced above. This is shown in Figure 8.

When comparing the Scott-multiplier and the plain com-

binatorial multiplier, the area saving outweighs the lesser

throughput (factor 1
m

) by a factor from 14.75 (for m= 12)

up to 18.1 (for m=16).

The overhead of the Kitsos-multiplier implementation

heavily impacts the area usage. While still less area is

needed as for either one of the polynomial-division-based

multipliers, the Kitsos-multiplier requires roughly ten times

more area than the Scott-multiplier yet providing the same

throughput. A BCH decoder for DVB-S2 requires FFMs for

two different GF dimensions: 214 and 216. As a result, two

instances of the Scott-multiplier (one for each dimension)

outperform the Kitsos-multiplier clearly.

4.3 Impact on BCH Decoder

With respect to the consumed area, Table 2 shows that the

the total number of slices occupied by the Scott-multiplier

is 9 for GF 214. That are 5.4% of the 168 slices required

by the plain combinatorial FFM for this GF dimension. For

GF 216, the Scott-FFM only consumes 5.5% of area. For

the FFM pairs in the DVB-S2 decoder as explained in Sec-

tion 3.4, this results in a total area saving of around 94% for

the FFMs. With respect to Figure 6, we thus expect a very

high potential for area saving by employing Scott-FFMs in

the key equation solver part. Nevertheless, the area occupied

by the multiplexers and registers will not be reduced. Fur-

thermore, the area reduction of FFMs with constant inputs as

in the SGU and CSU will also be significantly lower.

By using pipelined multipliers, the latency in each decoder

component is increased by a factor of m (see Table 1). For

the configurations shown in Figure 6, the latencies of SGU

and CSU are already massively dominating over the KES la-

tency. Using pipelined FFMs in SGU and CSU would there

lead to a significant decrease of the overall decoder through-

put, by only small area reduction in total.

However, Figure 6 shows that the KES is the dominating

part in the decoder with respect to area, but hardly contributes

to the overall latency. This means that adding additional la-

tency in the KES will only insignificantly increase the overall

latency of the decoder. On the other hand, smaller FFMs in

the KES will show a considerable impact on the overall con-

sumed area, since those FFMs use up most of the hardware

resources (see Section 3.4).

In order to achieve a well-balanced decoder design, we

therefore suggest to employ two different FFM types in the

decoder: combinatorial FFMs in the SGU and CSU, and

small pipelined FFMs in the KES. This setup will exploit

the benefits of both FFM types and reduce the overall area of

the decoder, by only adding an insignificant amount of total

latency.

Fig. 7. HW/SW Co-Simulation Schematic.

4.2 Synthesis results

All multiplier architectures described in3 have been im-
plemented in VDHL. They have been synthesized for low
area consumption on a Xilinx Virtex 4 FPGA (XC4VLX100,
package FF1148). The applied tool chain was Xilinx ISE
IDE Release 11.3 and the optimization effort for place and
route was set to high. Figure2 gives detailed synthesis re-
sults (post place and route).

Due to the given system requirements, the main focus lay
on a resulting small footprint on the FPGA for given through-
puts. Therefore the metric considered most important was
throughput per slice at a fixed clock frequency. Figure2
shows that the required target clock frequency of 200 MHz
could be achieved by all implementations, except the Kitsos-
multiplier for field dimensionsm ≥ 15.

For the Scott-multiplier, we can achieve possible clock fre-
quencies of more than 1 GHz due to the short critical path
(see Fig.2). Furthermore, the Scott-multiplier outperforms
the other multiplier architectures and even the plain combi-
natorial multiplier implementation with respect to the metric
introduced above. This is shown in Fig.2.

When comparing the Scott-multiplier and the plain com-
binatorial multiplier, the area saving outweighs the lesser
throughput (factor1

m
) by a factor from 14.75 (form = 12)

up to 18.1 (form = 16).
The overhead of the Kitsos-multiplier implementation

2 C. de Schryver, S. Weithoffer, U. Wasenmüller, N. Wehn: Design Space Exploration of FFMs for Channel Coding

2 Theoretical Background

For a better understanding of the finite field multiplier archi-

tectures and the context of BCH coding, we give an overview

on the underlying mathematics in this section. For more de-

tails we refer to available standard literature (Bossert, 1998)

(Friedrichs, 1995).

2.1 Finite Fields and Multiplication

The basis for the finite field multiplication architectures im-

plemented in this work is a reformulation of the finite field

multiplication in polynomial representation. The derivation

of the algorithm originally proposed by Scott et al. (Scott

et al., 1986) is outlined in the following.

The nonzero elements of the extension field GF (2m)
can be constructed by powers of the primitive element α,

where α is a root of a primitive polynomial P (x) = xm+
pm−1x

m−1+ ···+ p1x+ p0 over GF (2). Since P (α) = 0
(α being root of P) αm = pm−1α

m−1+ ···+p1α+p0 and

therefore nonzero the elements can be written in the canoni-

cal base representation:

{am−1α
m−1+ ···+a1α+a0|ai ∈GF (2) for 0≤ i≤m−1}

2.1.1 Multiplication Algorithm

Based on the work of Scott et al., an algorithm for FFM can

be derived similar to the design proposed by Kitsos et al. as

follows: Let A, B ∈GF (2m) in canonical base representa-

tion and P primitive polynomial over GF (2). Then let

C =A(x) ·B(x) mod P (1)

=
m−1∑

k=0

A(x) ·bkx
k mod P (2)

=((0 ·x+bm−1A(x))
︸ ︷︷ ︸

K0(x)

xm−1+ ···+b0A(x)) mod P (x) (3)

=(
(
K0(x)x+bm−2A(x)

)

︸ ︷︷ ︸

K1(x)

xm−2+···+b0A(x)) mod P (x)(4)

...

=Km−1(x) mod P (x) (5)

Thus, the product C(x) can be obtained by performing it-

eratively m−1 times:

Ki(x)=
(
Ki−1(x)x+bm−1−iA(x)

)
mod P (x) (6)

where K−1(x)= 0.

Equation (6) can be simplified by using the fact that

xm mod P (x) = pm−1x
m−1 + ···+ p1x+ p0 and by writ-

ing Ki−1(x) and A(x) as ki−1
m−1x

m−1 + ··· + ki−1
0 and

am−1x
m−1+ ···+a0 respectively and one obtains:

Ki(x)=

m−1∑

j=0

kijx
j (7)

with

kij = ki−1
m−1pj+ki−1

j−1+bm−1−iaj and ki−1
−1 =0 (8)

With (6) and (8), the multiplication algorithm over

GF (2m) is given, that is used for the architectures of the

Scott- and Kitsos-multiplier.

2.2 BCH Decoding

BCH codes have been invented in 1959 by Hocquenghem

(Hocquenghem, 1959), and independently in 1960 by Bose

and Ray-Chaudhuri (Bose and Ray-Chaudhuri, 1960). These

codes provide high flexibility and predictable error correc-

tion ability, and hence are used in a wide range of technical

applications. Details about their construction and decoding

can be found in literature (Bossert, 1998) (Friedrichs, 1995).

Two main categories of BCH codes exist: so-called prim-

itive and non-primitive ones. Code words of primitive BCH

codes are always of fixed length n= 2m−1, with n being

the length of the code word and m the dimension of the Ga-

lois field 2m. Non-primitive BCH codes provide flexibility

in choosing the appropriate code word size. In contrast to

code puncturing, where one or more positions in a code word

are omitted, the minimum distance in a reduced code is not

changed (Bossert, 1998). Non-primitive BCH codes are used

in standards like DVB-T2, DVB-S2, DB-C2, DVB-H, ITU-T

H.261 or ITU-T G.975.1, for example.

BCH codes are usually decoded by algebraic syndrome de-

coding. Figure 1 shows the generic structure of a syndrome

based BCH decoder.

syndrome
generator

key equation
solver

Chien
search

FIFO
buffer

error
correction

r S

j'

(

Fig. 1: Block Diagram of an BCH Decoder

It is important to notice that the syndrome S(x) only de-

pends on a possible error vector e and not on the correct code

word that has been sent. The decoder therefore has to find a

possible error vector e with a minimum weight, that means

an e with a minimum number of coefficients unequal to zero.

In order to calculate e algebraically, the search for minimum

weight is transformed into a search for a polynomial with

minimum degree (Bossert, 1998).

Fig. 8. Throughput per Slice @200 MHz.

heavily impacts the area usage. While still less area is
needed as for either one of the polynomial-division-based
multipliers, the Kitsos-multiplier requires roughly ten times
more area than the Scott-multiplier yet providing the same
throughput. A BCH decoder for DVB-S2 requires FFMs for
two different GF dimensions: 214 and 216. As a result, two
instances of the Scott-multiplier (one for each dimension)
outperform the Kitsos-multiplier clearly.

4.3 Impact on BCH decoder

With respect to the consumed area,Table2 shows that the the
total number of slices occupied by the Scott-multiplier is 9
for GF 214. That are 5.4 % of the 168 slices required by the
plain combinatorial FFM for this GF dimension. For GF 216,
the Scott-FFM only consumes 5.5 % of area. For the FFM
pairs in the DVB-S2 decoder as explained in Sect.3.4, this
results in a total area saving of around 94 % for the FFMs.
With respect to Fig.6, we thus expect a very high potential
for area saving by employing Scott-FFMs in the key equation
solver part. Nevertheless, the area occupied by the multiplex-
ers and registers will not be reduced. Furthermore, the area
reduction of FFMs with constant inputs as in the SGU and
CSU will also be significantly lower.

By using pipelined multipliers, the latency in each decoder
component is increased by a factor ofm (see Table1). For
the configurations shown in Fig.6, the latencies of SGU and
CSU are already massively dominating over the KES latency.
Using pipelined FFMs in SGU and CSU would there lead to
a significant decrease of the overall decoder throughput, by
only small area reduction in total.

However, Fig.6 shows that the KES is the dominating part
in the decoder with respect to area, but hardly contributes
to the overall latency. This means that adding additional la-
tency in the KES will only insignificantly increase the over-
all latency of the decoder. On the other hand, smaller FFMs
in the KES will show a considerable impact on the overall

www.adv-radio-sci.net/10/175/2012/ Adv. Radio Sci., 10, 175–181, 2012

180 C. de Schryver et al.: Design space exploration of FFMs for channel coding

Table 2. Detailed Synthesis Result.

Type m slice-FFs 4-input slices throughput throughput per slice max. freq.
LUTs total [results

sec]@200MHz [results
sec·slice

]@200MHz [MHz]

Scott 12 12 15 8 1.66×107 2.08×106 1034.1
13 13 16 8 1.53×107 1.92×106 1177.9
14 14 17 9 1.42×107 1.58×106 1189.1
15 15 16 8 1.33×107 1.66×106 1116.1
16 16 19 10 1.25×107 1.25×106 1083.4

Kitsos 12 59 136 83 1.66×107 0.2×106 226.50
13 64 160 100 1.53×107 0.15×106 212.27
14 69 186 110 1.42×107 0.12×106 209.03
15 74 191 114 ∗ ∗ 169.81
16 79 169 104 ∗ ∗ 198.77

Plain 12 392 177 200 20×107 106 833.33
(pipelined) 13 457 205 246 20×107 0.81×106 840.34

14 527 236 270 20×107 0.74×106 889.68
15 602 240 323 20×107 0.61×106 871.84
16 682 302 348 20×107 0.57×106 701.26

Plain 12 53 169 115 20×107 1.73×106 373.13
(combinatorial) 13 61 182 130 20×107 1.53×106 394.01

14 75 237 168 20×107 1.19×106 365.63
15 66 220 148 20×107 1.35×106 401.61
16 71 281 181 20×107 1.1×106 340.14

∗ : Maximum clock frequency was below200MHz.

consumed area, since those FFMs use up most of the hard-
ware resources (see Sect.3.4).

In order to achieve a well-balanced decoder design, we
therefore suggest to employ two different FFM types in the
decoder: combinatorial FFMs in the SGU and CSU, and
small pipelined FFMs in the KES. This setup will exploit
the benefits of both FFM types and reduce the overall area of
the decoder, by only adding an insignificant amount of total
latency.

5 Conclusions

Finite field multiplications are key in many technical applica-
tions, particularly in decoding BCH codes. In this work we
have investigated available pipelined architectures with re-
spect to scalability, throughput and area consumption on FP-
GAs. We have implemented and synthesized those designs
for a common target device, a Xilinx Virtex-4 XC4VLX100
FPGA. Our implementations have been fully verified in a
hardware-software co-simulation. We have evaluated and
compared the selected architectures and show that for the
choosen effiency metric the Scott-multiplier features in prin-
ciple the best performance. For application of the considered
multipliers in a DVB-S2 BCH decoder the Kitsos-multiplier

is outperformed by the other multipliers, despite the inher-
ent architectural flexibility of the Kitsos-multiplier. Further-
more, we conclude that the key equation solver part can profit
most from pipelined finite field multipliers, and that simple
combinatorial multipliers provide a higher benefit in the syn-
drome computation and the Chien search.

References

Ahlquist, G. C., Nelson, B. E., and Rice, M.: Optimal Finite Field
Multipliers for FPGAs, in: FPL ’99: Proceedings of the 9th In-
ternational Workshop on Field-Programmable Logic and Appli-
cations, pp. 51–60, Springer-Verlag, London, UK, 1999.

Bose, R. C. and Ray-Chaudhuri, D. K.: On a class of er-
ror correcting binary group codes, Inform. Control, 3, 68–79,
doi:10.1016/S0019-9958(60)90287-4, 1960.

Bossert, M.: Kanalcodierung, B. G. Teubner Stuttgart, 2nd edn.,
1998.

Chen, Z., Zhang, Y., Ying, Y., Wu, C., and Zeng, X.: An Area-
Efficient and Degree-Computationless BCH Decoder for DVB-
S2, in: Proceedings of the IEEE 8th International Conference on
ASIC, (ASICON) 2009. , 489–492, doi:10.1109/ASICON.2009.
5351625, 2009.

Friedrichs, B.: Kanalcodierung, Springer Verlag Berlin Heidelberg,
1995, ISBN 3-540-59353-5.

Adv. Radio Sci., 10, 175–181, 2012 www.adv-radio-sci.net/10/175/2012/

C. de Schryver et al.: Design space exploration of FFMs for channel coding 181

Hocquenghem, A.: Codes correcteurs derreurs, Chiffres, 2, 147–56,
1959.

Kitsos, P., Theodoridis, G., and Koufopavlou, O.: An efficient re-
configurable multiplier architecture for Galois field GF (2m), Mi-
croelectr. J., 34, 975–980, 2003.

Liu, W., Rho, J., and Sung, W.: Low-Power High-Throughput BCH
Error Correction VLSI Design for Multi-Level Cell NAND Flash
Memories, in: Proceedings of the IEEE Workshop on Signal
Processing Systems Design and Implementation, (SIPS) 2006.
, 303–308, doi:10.1109/SIPS.2006.352599, 2006.

Scott, P., Tavares, S., and Peppard, L.: A Fast VLSI Multiplier for
GF(2m), in: IEEE Journal on Selected Areas in Communications
(J-SAC) 1986, 4, 62–66, 1986.

Zhang, B., Liu, D., Wang, S., Chen, X., and Liu, H.: Design and Im-
plementation of Area-Efficient DVB-S2 BCH Decoder, in: Com-
puter Engineering and Technology (ICCET), 2010 2nd Interna-
tional Conference on, 3, V3–179–V3–184, doi:10.1109/ICCET.
2010.5485823, 2010.

www.adv-radio-sci.net/10/175/2012/ Adv. Radio Sci., 10, 175–181, 2012

