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Abstract. A multipole-based method is presented for mod-
elling an electromagnetic field with small statistical varia-
tions inside an arbitrary enclosure. The accurate computa-
tion of the statistics of the field components from the statisti-
cal moments of the multipole amplitudes is demonstrated for
two- and three-dimensional examples. To obtain the statistics
of quantities which depend non-linearly on the field compo-
nents, higher-order statistical moments of the latter are re-
quired.

1 Introduction

Recent research in the field of statistical electromagnetics in
general and statistical EMC in particular seems to focus on
extremely non-deterministic fields as observed in a reverber-
ation chamber. Much progress has been achieved in this area
over the last decades, leading to very general statistical power
distributions largely independent of the chamber geometry
(Holland, 1999). Relatively little work has been done on the
topic of small statistical variations of an otherwise known
electromagnetic field. A related example relevant to EMC
has been presented in (Ajayi et al., 2008).

In this paper we discuss the case of small statistical vari-
ations in various parameters of a shielding problem, e.g. the
angle of incidence of a plane wave impinging on a shield.
The varying parameters are given by the first few statisti-
cal moments of their distributions. From these the statistical
moments of the amplitudes of a spherical-multipole expan-
sion are derived. The statistics of the multipole amplitudes
then characterizes the statistical properties of the electromag-
netic field not only in a single point but in a spherical re-
gion around the arbitrarily chosen center of the expansion.
In practice, this spherical region can be part of the enclosed
volume of any shielding structure. For non-canonical prob-
lems, where the calculation of the multipole amplitudes can-
not be achieved analytically, data from numerical simulations

or measurements are needed to estimate the statistical mo-
ments of the multipole amplitudes.

2 Multipole expansion

Consider an arbitrary shielding structure as depicted in
Fig. 1.

The electromagnetic field in any linear, homogeneous, and
source-free spherical sub-domain of the enclosure can be ex-
panded by means of a spherical-multipole expansion:
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The coefficientsAn,m andBn,m are referred to as the elec-
tric and magnetic multipole amplitudes, respectively,Z =
√
µ/ε is the wave impedance in the spherical sub-domain

andMn,m, Nn,m represent the spherical-multipole functions
defined by
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Here, jn(κr) denote spherical Bessel functions of the 1st
kind, r̂ is the radial unit vector, and the vector wave func-
tions are found as:
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1 Introduction
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distributions largely independent of the chamber geometry
(Holland, 1999). Relatively little work has been done on the
topic of small statistical variations of an otherwise known
electromagnetic field. A related example relevant to EMC20

has been presented in (Ajayi et al., 2008).
In this paper we discuss the case of small statistical vari-

ations in various parameters of a shielding problem, e.g. the
angle of incidence of a plane wave impinging on a shield.
The varying parameters are given by the first few statisti-25

cal moments of their distributions. From these the statistical
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Fig. 1. Spherical domain inside an arbitrary shielding enclosure.
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The normalized surface-spherical harmonics are given by

Yn,m(ϑ,ϕ)=

√
2n+1

4π

(n−m)!

(n+m)!
Pmn (cosϑ)ejmϕ (9)

with Pmn being associated Legendre functions of the 1st kind.
For two-dimensional problems, a cylindrical-multipole ex-

pansion in plane-polar coordinates(R,ϕ) consisting of ordi-
nary Bessel-functionsJn in R and harmonic functions inϕ
can be applied. For the TMz-case this takes the following
form (Klinkenbusch, 2005):
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In any of the described cases, the complete information about
the field is contained in the complex-valued multipole ampli-
tudes (An,m, Bn,m; an). Consequently, the statistics of an
electromagnetic field inside the enclosure can be reduced to
the statistics of the corresponding multipole amplitudes.

3 Statistical formulation

To describe a statistically varying electromagnetic field we
assume its multipole amplitudes to be random variables. For
a spherical-multipole expansion truncated atn= nmax there
arenmax(nmax+2) index pairs(n,m). For each(n,m) four
real random variables need to be considered:

Re{An,m},Im{An,m},Re{Bn,m},Im{Bn,m}. (13)

We introduce the multipole-amplitude random vectorV con-
sisting of all multipole amplitudes considered. It thus has the
lengthimax= 4nmax(nmax+2).

This random vectorV will be described by its first few
moments, particularly by its expectation valueηV and its co-
variance matrixCV (Papoulis, 2008).

3.1 Computation of field statistics

Once the multipole-amplitude random vectorV is known
in terms of its statistical moments, the field statistics at any
points in the domain, where the multipole expansion is valid,
can be easily calculated. To this end, we first construct a
new field-component random vectorW consisting of all real
and imaginary parts of all field components at any desired
point in the domain. Because of the linearity of the multi-
pole expansion (Eqs.1–2) the field-component random vec-
tor W = g(V ) depends linearly on the multipole-amplitude
random vectorV , hence the statistical moments ofW are
easily obtained from the statistical moments ofV . For the
first two moments (expectation value and covariance matrix)
this leads to:

ηW k
= gk(ηV ) (14)

CW k,W l
=

∑
i

∑
j

CV i ,V j

∂gk

∂vi

∣∣∣∣
ηV

∂gl

∂vj

∣∣∣∣
ηV

. (15)

Note that for this linear relationn-th order moments ofW
only depend onn-th order moments ofV .

This means that the complete field statistics of the whole
domain, where the multipole expansion is valid, is contained
in the moments ofV . Usually, the first two moments are
sufficient, for arbitrary accuracy higher order moments like
skew, curtosis, etc. – as well as their correlations – may have
to be considered.

3.2 Compactness of description

The proposed approach of a statistical multipole expansion
is a very efficient and systematic way of modelling an elec-
tromagnetic field with small variations.

As an example consider the field in a cubic volume of
edge length 1.6 m centered around the point of origin at
a frequency of 750 MHz (as used in the first examples of
Sect.4). In this case the multipole expansion can be trun-
cated atnmax≈ 20 for sufficient accuracy, which leads to a
random vector of lengthimax≈ 1760. On the other hand, to
describe the statistics of the field components at each point
in space, at least six real random variables would be required
per position, i.e. the quadrature components of either the
electric or the magnetic field. At a reasonable spatial reso-
lution of at least ten points per wavelength this amounts to a
random vector of lengthimax≈ 384000.

The impact of this difference is even larger when consider-
ing that, while the length of the vector of expectation values
η is imax, the number of entries in the correlation matrixC is
i2max.

A similar result is obtained for a cylindrical expansion of
a square domain of 1.6 m×1.6 m. At 750 MHz the statis-
tical multipole expansion leads toimax≈ 194, the pointwise
description of the field components’ statistics toimax≈ 3200.
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3.3 Sources of statistical variations

To test this new approach we start with a simple example, that
is, the electromagnetic field of a homogeneous plane wave
where we add a small statistical variation using a single nor-
mally distributed real random variableU .

The spherical multipole expansion’s (Eqs.1–2) amplitudes
of a plane wave are known (Klinkenbusch, 1996):

An,m = E04πjn+1 (−1)m

n(n+1)

[
nn,−m(ϑ,ϕ) · ξ̂

]
ϑ0,ϕ0

(16)
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[
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]
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. (17)

Here,E0 and ξ̂ are amplitude and polarization of the plane
wave, while(ϑ0,ϕ0) denote its angle of incidence.

For the two-dimensional TMz-case, the multipole ampli-
tudes of a plane wave of amplitudeE0 and angle of incidence
ϕ0 are (Klinkenbusch, 2005):

an=E0j
ne−jnϕ0. (18)

First we will vary the phase. This can be easily done by mul-
tiplying the known amplitudes by a phase factor containing
the random variableU as follows:

A′
n,m = An,me

jU (19)

B ′
n,m = Bn,me

jU (20)

a′
n = ane

jU . (21)

A practically more interesting case is the variation of the an-
gle of incidence. This will be realized by replacing the angle
ϕ0 in Eqs. (16–18) with a random variableU as described
above.

With these relations between the given random variableU

and the multipole-amplitude random vectorV = g(U), the
moments ofV can be calculated. SinceU is a single real
random variable (not a random vector), the expectation val-
ues and covariance matrix ofV are as follows:
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Hereµn(U) denotes then-th central moment ofU andg(k)i
is thek-th derivative ofgi with respect to its argument.

In this paper we chooseU to be normally distributed with
zero mean, hence all even moments ofU are known in terms
of its standard deviationσU (Abramowitz, 1972) and all odd
moments are zero (see Table1). For the following calcula-
tions the moments ofU are considered up to and including
eighth order.

Table 1. Central moments of a normally distributed random vari-
able (Abramowitz, 1972).

n 1 2 3 4 5 6 7 8 . . .

µn 0 σ2 0 3σ4 0 15σ6 0 105σ8 . . .
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Fig. 2. Expectation value η (upper plot) and standard deviation σ
(central plot) of Re{Ez} according to statistical multipole calcula-
tion (SM) and Monte Carlo simulation (MC) for a plane wave with
varying phase (σψ = 20◦). The lower plot displays the differences
between statistical multipole calculation and Monte Carlo simula-
tion.

4 Results

4.1 Plane wave

Figure 2 shows the results for a plane wave with a vary-
ing phase ψ of standard deviation σψ = 20◦ at frequency180

f = 750 MHz. The upper diagram represents the expectation
value η of the real part of Ez and includes the correspond-
ing standard deviation σSM . The central diagram shows the
standard deviation σSM alone. Both are calculated by the
aforementioned method and - for reference - by a Monte-185

Carlo simulation (Index MC). The absolute differences be-
tween the spherical-multipole calculations are also shown in
the lower diagram.

As expected, for a varying phase the standard deviation
is largest at the inflection points of the sine curve and mini-190

mal at the extreme values. The accordance with Monte Carlo
simulations is excellent.

Figure 3 shows the results for a plane wave along the main
axis, where the angle of incidence ϕ0 is varied according to
a standard deviation of σϕ0

= 5◦,195

Again, the influence of the angle of incidence on the field
is largest at the sine curve’s inflexion points and minimal at

Fig. 2. Expectation valueη (upper plot) and standard deviation
σ (central plot) of Re{Ez} according to statistical multipole cal-
culation (SM) and Monte Carlo simulation (MC) for a plane wave
with varying phase (σψ = 20◦). The lower plot displays the dif-
ferences between statistical multipole calculation and Monte Carlo
simulation.

4 Results

4.1 Plane wave

Figure 2 shows the results for a plane wave with a vary-
ing phaseψ of standard deviationσψ = 20◦ at frequency
f = 750 MHz. The upper diagram represents the expectation
valueη of the real part ofEz and includes the corresponding
standard deviationσSM. The central diagram shows the stan-
dard deviationσSM alone. Both are calculated by the afore-
mentioned method and – for reference – by a Monte-Carlo
simulation (IndexMC). The absolute differences between the
spherical-multipole calculations are also shown in the lower
diagram.

As expected, for a varying phase the standard deviation
is largest at the inflection points of the sine curve and mini-
mal at the extreme values. The accordance with Monte Carlo
simulations is excellent.

Figure3 shows the results for a plane wave along the main
axis, where the angle of incidenceϕ0 is varied according to
a standard deviation ofσϕ0 = 5◦.
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Fig. 3. Expectation value and standard deviation of Re{Ez} ac-
cording to statistical multipole calculation and Monte Carlo simu-
lation for a plane wave with varying incident angle (σϕ0 =5◦). For
a legend see Fig. 2.

the extreme values, and the agreement with the Monte Carlo
simulations is excellent.

4.2 Slitted cylinder200

To test our approach with a simple shielding geometry we
have used the geometry shown in Fig. 4 representing a thin
slitted PEC-cylinder with radius RS and aperture angle β,
illuminated by a plane wave polarized in the z-direction and
incident at ϕ0. For the deterministic solution of this problem205

see (Klinkenbusch, 2005).
Figure 5 shows the expectation value of the imaginary

part of Ez in the x-y-plane. The shape of the cylinder with
R0 = 0.5 m and β = 40◦ is displayed as a black line, the
angle of incidence is varying around its expectation value210

PEC
incident field

Fig. 4. Geometry of the slitted PEC cylinder in the x-y-plane

Fig. 5. Expectation value of Im{Ez} according to statistical mul-
tipole calculation for a slitted cylinder illuminated by a plane wave
with varying angle of incidence (σϕ0 =5◦)

ηϕ0 = 135◦ with standard deviation σϕ0 = 5◦. The frequency
of the incident field is 750 MHz.

Figure 6 shows in detail the corresponding expectation val-
ues, standard deviations and their comparison to Monte Carlo
simulations (as in Figs. 2-3) along the x-axis (the dashed line215

in Fig. 5).
Compared to the previous examples the field structure

is much more complex and the standard deviation reaches
much larger values. However the multipole expansion again

Fig. 6. Expectation value and standard deviation of Im{Ez} ac-
cording to statistical multipole calculation and Monte Carlo simula-
tion for a slitted cylinder illuminated by a plane wave with varying
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Fig. 3. Expectation value and standard deviation of Re{Ez} accord-
ing to statistical multipole calculation and Monte Carlo simulation
for a plane wave with varying incident angle (σϕ0 = 5◦). For a leg-
end see Fig.2.

Again, the influence of the angle of incidence on the field
is largest at the sine curve’s inflexion points and minimal at
the extreme values, and the agreement with the Monte Carlo
simulations is excellent.

4.2 Slitted cylinder

To test our approach with a simple shielding geometry we
have used the geometry shown in Fig.4 representing a thin
slitted PEC-cylinder with radiusRS and aperture angleβ,
illuminated by a plane wave polarized in thez-direction and
incident atϕ0. For the deterministic solution of this problem
see (Klinkenbusch, 2005).

Figure 5 shows the expectation value of the imaginary
part ofEz in thex-y-plane. The shape of the cylinder with
R0 = 0.5 m andβ = 40◦ is displayed as a black line, the
angle of incidence is varying around its expectation value
ηϕ0 = 135◦ with standard deviationσϕ0 = 5◦. The frequency
of the incident field is 750 MHz.

Figure6shows in detail the corresponding expectation val-
ues, standard deviations and their comparison to Monte Carlo
simulations (as in Figs.2–3) along thex-axis (the dashed line
in Fig. 5).

Compared to the previous examples the field structure
is much more complex and the standard deviation reaches
much larger values. However the multipole expansion again
shows excellent correspondence with the Monte Carlo simu-
lation particularly inside the shield.
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Fig. 5. Expectation value of Im{Ez} according to statistical multi-
pole calculation for a slitted cylinder illuminated by a plane wave
with varying angle of incidence (σϕ0 = 5◦).

4.3 Shielding effectiveness

The electromagnetic shielding effectiveness has been shown
to be an adequate quantity for the characterization of a shield
for the high-frequency case (Klinkenbusch, 1996). It is de-
fined as:

SEem= 10log10
2

|Esh|2

|Eun|2
+

|H sh|2

|Hun|2

. (24)

The quantities marked withsh are for the shielded case, while
those markedun are for the unshielded case, i.e. the case
where no shield is present at all. For the example in Sect.4.2
the corresponding unshielded fields|Eun

| and |H un
| are

those of an undisturbed plane wave and thus are constant.
The fields for the shielded case are those of Sect.4.2 de-
scribed by the random vectorW . The random variable for
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Fig. 3. Expectation value and standard deviation of Re{Ez} ac-
cording to statistical multipole calculation and Monte Carlo simu-
lation for a plane wave with varying incident angle (σϕ0 = 5◦). For
a legend see Fig. 2.

the extreme values, and the agreement with the Monte Carlo
simulations is excellent.

4.2 Slitted cylinder200

To test our approach with a simple shielding geometry we
have used the geometry shown in Fig. 4 representing a thin
slitted PEC-cylinder with radius RS and aperture angle β,
illuminated by a plane wave polarized in the z-direction and
incident at ϕ0. For the deterministic solution of this problem205

see (Klinkenbusch, 2005).
Figure 5 shows the expectation value of the imaginary

part of Ez in the x-y-plane. The shape of the cylinder with
R0 = 0.5 m and β = 40◦ is displayed as a black line, the
angle of incidence is varying around its expectation value210

PEC
incident field

Fig. 4. Geometry of the slitted PEC cylinder in the x-y-plane

Fig. 5. Expectation value of Im{Ez} according to statistical mul-
tipole calculation for a slitted cylinder illuminated by a plane wave
with varying angle of incidence (σϕ0 = 5◦)

ηϕ0 = 135◦ with standard deviation σϕ0 = 5◦. The frequency
of the incident field is 750 MHz.

Figure 6 shows in detail the corresponding expectation val-
ues, standard deviations and their comparison to Monte Carlo
simulations (as in Figs. 2-3) along the x-axis (the dashed line215

in Fig. 5).
Compared to the previous examples the field structure

is much more complex and the standard deviation reaches
much larger values. However the multipole expansion again

Fig. 6. Expectation value and standard deviation of Im{Ez} ac-
cording to statistical multipole calculation and Monte Carlo simula-
tion for a slitted cylinder illuminated by a plane wave with varying
angle of incidence (σϕ0 =5◦). For a legend see Fig. 2.

Fig. 6. Expectation value and standard deviation of Im{Ez} accord-
ing to statistical multipole calculation and Monte Carlo simulation
for a slitted cylinder illuminated by a plane wave with varying angle
of incidence (σϕ0 = 5◦). For a legend see Fig.2.
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Fig. 7. Expectation value of SEem according to statistical multi-
pole calculation for a slitted cylinder illuminated by a plane wave
with varying angle of incidence (σϕ0 =5◦)

shows excellent correspondence with the Monte Carlo simu-220

lation particularly inside the shield.
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for the high-frequency case (Klinkenbusch, 1996). It is de-225
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The quantities marked with sh are for the shielded case, while
those marked un are for the unshielded case, i.e. the case
where no shield is present at all. For the example in Sect. 4.2230

the corresponding unshielded fields |Eun| and |Hun| are
those of an undisturbed plane wave and thus are constant.
The fields for the shielded case are those of Sect. 4.2 de-
scribed by the random vector W . The random vector of the
shielding effectiveness values will be called X . To compare235

the results with those ones of the simple cases described be-
fore we consider the expectation value and the standard de-
viation of the shielding effectiveness. These are calculated
from the relations

ηX = g(ηW )+
∑
i

∑
j

CWi,Wj

2

∂2g

∂wi∂wj

∣∣∣∣
ηW

+ ... (25)240
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∂wi

∣∣∣∣
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∂wj

∣∣∣∣
ηW

+ ... (26)

Figure 7 shows the expectation value of SEem in the x-y-
plane. Figure 8 shows in detail the corresponding expectation

Fig. 8. Expectation value and standard deviation of SEem accord-
ing to statistical multipole calculation and Monte Carlo simulation
for a slitted cylinder illuminated by a plane wave with varying angle
of incidence (σϕ0 =5◦). For a legend see Fig. 2.

values, standard deviations and their comparison to Monte
Carlo simulations along the x-axis. All parameters are iden-245

tical to those in Figs. 5-6.
While the error of the expectation value is still quite small,

the standard deviation derived from the multipole evaluation
differs significantly from the Monte Carlo simulation. This
can be explained by Eqs. (25-26). The moments of X de-250

pend on all moments of W , but unlike Eqs. (22-23), where
all moments of the normally distributed random variable U
were known, in this case only the expectation values and co-
variance matrix of W have been taken into account for this
calculation. Obviously that is not sufficient for a non-linear255

relation like Eq. (24).
This clearly shows that for the statistics of quantities that

depend in a non-linear fashion on the field components, also
higher order moments of the multipole amplitudes have to be
taken into account.260

5 Conclusions

For calculating the statistical moments of the electromag-
netic field in case of small variations of various parame-
ters, the statistical-multipole method yields similar results as
Monte Carlo simulations with the advantage that the number265

of quantities to represent the field and its statistics is greatly
reduced. However, modeling the multipole-amplitude ran-
dom vector in terms of only first and second order statistical
moments has been shown to be insufficient for the compu-
tation of the moments of quantities, which non-linearly de-270

pend on the multipole amplitudes like the electromagnetic
shielding effectiveness. In such cases higher-order statisti-

Fig. 7. Expectation value ofSEem according to statistical multipole
calculation for a slitted cylinder illuminated by a plane wave with
varying angle of incidence (σϕ0 = 5◦).

the shielding effectiveness will be calledX. To compare the
results with those ones of the simple cases described before
we consider the expectation value and the standard deviation
of the shielding effectiveness. These are calculated from the
relations

ηX = g(ηW )+
∑
i

∑
j

CW i ,W j
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∣∣∣∣∣
ηW

+ ... (25)
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to statistical multipole calculation and Monte Carlo simulation for
a slitted cylinder illuminated by a plane wave with varying angle of
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Figure 7 shows the expectation value ofSEem in the x–y-
plane. Figure8shows in detail the corresponding expectation
values, standard deviations and their comparison to Monte
Carlo simulations along thex-axis. All parameters are iden-
tical to those in Figs.5–6.

While the error of the expectation value is still quite small,
the standard deviation derived from the multipole evaluation
differs significantly from the Monte Carlo simulation. This
can be explained by Eqs. (25–26). The moments ofX de-
pend on all moments ofW , but unlike Eqs. (22–23), where
all moments of the normally distributed random variableU
were known, in this case only the expectation values and co-
variance matrix ofW have been taken into account for this
calculation. Obviously that is not sufficient for a non-linear
relation like Eq. (24).

This clearly shows that for the statistics of quantities that
depend in a non-linear fashion on the field components, also
higher order moments of the multipole amplitudes have to be
taken into account.

5 Conclusions

For calculating the statistical moments of the electromag-
netic field in case of small variations of various parame-
ters, the statistical-multipole method yields similar results
as Monte Carlo simulations with the advantage that the
number of quantities to represent the field and its statis-
tics is greatly reduced. However, modeling the multipole-
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amplitude random vector in terms of only first and second
order statistical moments has been shown to be insufficient
for the computation of the moments of quantities, which non-
linearly depend on the multipole amplitudes like the elec-
tromagnetic shielding effectiveness. In such cases higher-
order statistical moments of the statistical multipole expan-
sion have to be considered. However, the basic advantage of
representing the field by a minimum number of parameters is
still preserved.

Further research includes the application of the method to
more general, that is, non-canonical shielding problems, and
to characterize the shielding effect by the first few terms of
the corresponding multipole expansion and its statistical mo-
ments.
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