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Abstract. A multipole-based method is presented for mod- or measurements are needed to estimate the statistical mo-
elling an electromagnetic field with small statistical varia- ments of the multipole amplitudes.

tions inside an arbitrary enclosure. The accurate computa-

tion of the statistics of the field components from the statisti-

cal moments of the multipole amplitudes is demonstrated for2 Multipole expansion

two- and three-dimensional examples. To obtain the statistics ) ] o ) ]

of quantities which depend non-linearly on the field Compo_Con5|der an arbitrary shielding structure as depicted in

nents, higher-order statistical moments of the latter are reFig. 1. o ]
quired. The electromagnetic field in any linear, homogeneous, and

source-free spherical sub-domain of the enclosure can be ex-
panded by means of a spherical-multipole expansion:

o0 n o0 n
1 Introduction E=3 % An,mNn,m—i-% S5 By Mo )
Recent research in the field of statistical electromagnetics in ":i:’?: ”:OlmT"
general and statistical EMC in particular seems to focus ong — % Y Y AviMum+Y Y BumNum. 2)
extremely non-deterministic fields as observed in a reverber- n=lm=—n n=lm=—n

ation chamber. Much progress has been achieved in this areéd . coefficientsd
over the last decades, leading to very general statistical pow
distributions largely independent of the chamber geometrym is the wave impedance in the spherical sub-domain

(Ho_IIand 1999. Re_la_tlvely I|t'_[Ie_work has been do_ne on the andM,, ,,, N, , represent the spherical-multipole functions
topic of small statistical variations of an otherwise known defined by '

electromagnetic field. A related example relevant to EMC

has been presented iAjayi et al,, 2008. M= (rx V) j,(kr) Yy () (3)
In this paper we discuss the case of small statistical vari-

».m and B, ,, are referred to as the elec-
&lic and magnetic multipole amplitudes, respectivety=

ations in various parameters of a shielding problem, e.g. the = Jn(er)mn (9, ) @
angle of incidence of a plane wave impinging on a shield. Noym = [EV x (r X V)} Jn k)Y (5)
The varying parameters are given by the first few statisti- K

cal moments of their distributions. From these the statistical _ _jn(Kr)n(n+1)Y P ii[r. &Pty (6)
moments of the amplitudes of a spherical-multipole expan- T kr mml = dr e

sion are derived. The statistics of the multipole amplitudesHere jn(icr) denote spherical Bessel functions of the 1st
then characterizes the statistical properties of the electromaq(-ind ’f nis the radial unit vector. and the vector wave func-
netic field not only in a single point but in a spherical re- tions’ are found as: '

gion around the arbitrarily chosen center of the expansion.

In practice, this spherical region can be part of the encloseolln (.0) = — 1 9Yum 3 8Yn,m¢ @)
volume of any shielding structure. For non-canonical prob-~ """ sing g av

lems, where the calculation of the multipole amplitudes can- Y nm ~ 1 oYum .

not be achieved analytically, data from numerical simulations Mnm (0, 0) = + 99 + sing g s ®)
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3.1 Computation of field statistics

S Once the multipole-amplitude random vect@ris known

g 3 in terms of its statistical moments, the field statistics at any
! points in the domain, where the multipole expansion is valid,

< i HDH can be easily calculated. To this end, we first construct a

) . new field-component random vect® consisting of all real
e and imaginary parts of all field components at any desired
) point in the domain. Because of the linearity of the multi-
pole expansion (Eq4-—2) the field-component random vec-
tor W = g(V) depends linearly on the multipole-amplitude
random vectorV, hence the statistical moments Wf are
Fig. 1. Spherical domain inside an arbitrary shielding enclosure. ~ €asily obtained from the statistical moments¥of For the
first two moments (expectation value and covariance matrix)

this leads to:
The normalized surface-spherical harmonics are given by
Y | nw, = gk(mv) (14)
_ n—m): m jme gk agi
Yn,m(ﬁvw) A (n—l—m)' Pn (COS?)@ (9) CWk,Wl = ZZCVI-,Vj W % (15)
i gy 250 Iny

with P being associated Legendre functions of the 1st kind.
For two-dimensional problems, a cylindrical-multipole ex- Note that for this linear relation-th order moments oW
pansion in plane-polar coordinaté®, ¢) consisting of ordi-  only depend om-th order moments oV .

nary Bessel-functiond,, in R and harmonic functions ip This means that the complete field statistics of the whole
can be applied. For the Tiase this takes the following domain, where the multipole expansion is valid, is contained
form (Klinkenbusch 2009: in the moments ofV. Usually, the first two moments are

. sufficient, for arbitrary accuracy higher order moments like
E.(R,p) = Z anJy(k R)e!™ (10) skew, curtosis, etc. — as well as their correlations — may have

n=—oo to be considered.
_J

Hr(R,¢) = }ﬁ@EZ(R"p) (1) 32 Ccompactness of description

j1a
Hy(R,p) = _fza_REZ(R’(p)' (12)  The proposed approach of a statistical multipole expansion

) . . is a very efficient and systematic way of modelling an elec-
In any of the described cases, the complete information abo“ttromagnetic field with small variations.

the field is contained in the complex-valued multipole ampli-
tudes @, .., Bum; a,). Consequently, the statistics of an
electromagnetic field inside the enclosure can be reduced t
the statistics of the corresponding multipole amplitudes.

As an example consider the field in a cubic volume of
edge length B m centered around the point of origin at

frequency of 750 MHz (as used in the first examples of
Sect.4). In this case the multipole expansion can be trun-
cated atimax~ 20 for sufficient accuracy, which leads to a
3 Statistical formulation random vector of lengthnax~ 1760. On the other hand, to

describe the statistics of the field components at each point

To describe a statistically varying electromagnetic field wein space, at least six real random variables would be required
assume its multipole amplitudes to be random variables. Foper position, i.e. the quadrature components of either the
a spherical-multipole expansion truncatediat nmax there  electric or the magnetic field. At a reasonable spatial reso-
arenmax(nmax+ 2) index pairs(n,m). For each(n,m) four lution of at least ten points per wavelength this amounts to a
real random variables need to be considered: random vector of lengthnax~ 384000.
The impact of this difference is even larger when consider-
Re{A, m}, IM{A; ;m}, RE{By m}, IM{ By m }- (13) ing that, vr\J/hiIe the length of the vector of gxpectation values
We introduce the multipole-amplitude random vedkocon- 7 iS imax, the number of entries in the correlation maithis
sisting of all multipole amplitudes considered. It thus has thei,%ax-
lengthimax= 4 max(max+2). A similar result is obtained for a cylindrical expansion of

This random vectoV will be described by its first few a square domain of.&@ mx1.6 m. At 750 MHz the statis-
moments, particularly by its expectation valye and its co-  tical multipole expansion leads igax~ 194, the pointwise
variance matrixCy (Papoulis2008. description of the field components’ statisticgtax~ 3200.
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3.3 Sources of statistical variations Table 1. Central moments of a normally distributed random vari-

. . . able Abramowitz 1972).
To test this new approach we start with a simple example, that @ 21973

is, the electromagnetic field of a homogeneous plane wave

L . . . 2 3 4 5 6 7 8
where we add a small statistical variation using a single nor-
mally distributed real random variable. un 0 62 0 3% 0 1%% 0 10®8
The spherical multipole expansion’s (E@s2) amplitudes
of a plane wave are knowiKl(inkenbusch 1996:
Apm = EO47Tjn+1 (__1)m [”n —m (D, 9) é] (16) Re{Ez} [V/m]
’ n(n =+ l) ’ ’ 0,90 1.0% ‘ ‘ ‘ s v
E " A I —7sm 1
Bn,m = _04 ~n+l¥ |:mn,—m (197 90) . E] (17) s e+ TIMC
z n(n+1) Yo.0 =050 N A0 X A0 X A nsm £ o]
Here, Eg andé are amplitude and polarization of the plane ‘ ]
wave, while(9o, ¢o) denote its angle of incidence. Jal
For the two-dimensional Thdcase, the multipole ampli- ¢ —OsM ]
tudes of a plane wave of amplitudi and angle of incidence ”“V‘TMC ]
@o are Klinkenbusch 2005: ‘
a, = Eoj"e™ /"%, (18) o002) N
. . . . 0.0008 —nsM — Nvic|]
First we will vary the phase. This can be easily done by mul- ~-o.002 g — o]
tiplying the known amplitudes by a phase factor containing o ool ]

the random variabl& as follows:

A:l,m = An,mer (19)
B = Bue 0)
a, = apelV. (21)

-0.8 0.4 0.6 0.8

Fig. 2. Expectation value; (upper plot) and standard deviation
o (central plot) of R€E;} according to statistical multipole cal-
culation (SM) and Monte Carlo simulation (MC) for a plane wave

A practically more interesting case is the variation of the an-with varying phasedy, =20°). The lower plot displays the dif-

gle of incidence. This will be realized by replacing the angle
@o in Egs. 6-18) with a random variabld/ as described
above.

With these relations between the given random variéble
and the multipole-amplitude random vectér= g(U), the
moments ofV can be calculated. Sindé is a single real

ferences between statistical multipole calculation and Monte Carlo
simulation.

4 Results

random variable (not a random vector), the expectation val4.1 Plane wave

ues and covariance matrix & are as follows:

> n U n
ny; = gi(’?U)‘FZ%gi( o (22)
n=2 :

n—1
ha
k=1
(U)pn—i(U)

o) n—ZMk
_;(; kl(n—k)!

Hereu, (U) denotes the-th central moment of/ andg
is thek-th derivative ofg; with respect to its argument.

In this paper we choosE to be normally distributed with
zero mean, hence all even momentg/odire known in terms
of its standard deviatioay (Abramowitz 1972 and all odd
moments are zero (see Talle For the following calcula-
tions the moments o/ are considered up to and including
eighth order.

o0

Cviv, = Z

n=2

mn(U)
n!

n

k

)g}’”(nU)g}""‘)(nU)) (23)
g,-"”(nU)gj-”‘“(nU)) :

(k)

i
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Figure 2 shows the results for a plane wave with a vary-
ing phasey of standard deviatiowy, = 20° at frequency

f =750MHz. The upper diagram represents the expectation
valuen of the real part oft; and includes the corresponding
standard deviatioasy. The central diagram shows the stan-
dard deviatiorosy alone. Both are calculated by the afore-
mentioned method and — for reference — by a Monte-Carlo
simulation (Indexyc). The absolute differences between the
spherical-multipole calculations are also shown in the lower
diagram.

As expected, for a varying phase the standard deviation
is largest at the inflection points of the sine curve and mini-
mal at the extreme values. The accordance with Monte Carlo
simulations is excellent.

Figure3 shows the results for a plane wave along the main
axis, where the angle of incidengs is varied according to
a standard deviation of,, = 5°.
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Ya

Re{Ez} [V/m] incident field

-08 06 04 -02 ‘°‘-0 0z 04 06 08 Fig. 4. Geometry of the slitted PEC cylinder in tkey-plane.

08 'n(lm{Ez}) [V/rp]

Fig. 3. Expectation value and standard deviation of Rg accord-
ing to statistical multipole calculation and Monte Carlo simulation 0.6}
for a plane wave with varying incident angle,{ =5°). For a leg-
end see Fig2. 041

0.2

Again, the influence of the angle of incidence on the field
is largest at the sine curve’s inflexion points and minimal at
the extreme values, and the agreement with the Monte Carlo -0
simulations is excellent.

y [m]

0.0

-0.4f

4.2 Slitted cylinder | -15

—0.6f

To test our approach with a simple shielding geometry we —os
-08 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8

have used the geometry shown in Fgrepresenting a thin e ml

slitted PEC-cylinder with radiu®s and aperture anglg,

illuminated by a plane wave polarized in thairection and

incident atpo. For the deterministic solution of this problem fig 5 Expectation value of IifE, } according to statistical multi-

see Klinkenbusch 2005. pole calculation for a slitted cylinder illuminated by a plane wave
Figure 5 shows the expectation value of the imaginary with varying angle of incidencer,, = 5°).

part of E; in the x-y-plane. The shape of the cylinder with

Ro=05m andp =40 is displayed as a black line, the

angle of incidence is varying around its expectation value4.3 Shielding effectiveness

Neo = 135 with standard deviation,,, = 5°. The frequency o )
of the incident field is 750 MHz. The electromagnetic shielding effectiveness has been shown

ues, standard deviations and their comparison to Monte Carl&r the high-frequency cas&linkenbusch 1999. It is de-
simulations (as in Fige-3) along thex-axis (the dashed line  fined as:

in Fig. 5).
Compared to the previous examples the field structure>Eem =10|°910—‘ ENZ | |H2 " (24)
is much more complex and the standard deviation reaches |[EUNZ T N2

much larger values. However the multipole expansion againl'he quantities marked witt are for the shielded case, while
shpws exgellent c_orrgspondenpe with the Monte Carlo Simu'those marked" are for the unshielded case, i.e. tr,1e case
lation particularly inside the shield. where no shield is present at all. For the example in Se2t.
the corresponding unshielded fieltlE“*| and |[H""| are
those of an undisturbed plane wave and thus are constant.
The fields for the shielded case are those of Sé&de-
scribed by the random vectd¥. The random variable for
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Fig. 6. Expectation value and standard deviation of By} accord-
ing to statistical multipole calculation and Monte Carlo simulation
for a slitted cylinder illuminated by a plane wave with varying angle
of incidence ¢, = 5°). For a legend see Fig.
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Fig. 7. Expectation value dBE,,, according to statistical multipole
calculation for a slitted cylinder illuminated by a plane wave with
varying angle of incidences{,, = 5°).

the shielding effectiveness will be calléd To compare the
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Fig. 8. Expectation value and standard deviatior$f,, according

to statistical multipole calculation and Monte Carlo simulation for
a slitted cylinder illuminated by a plane wave with varying angle of
incidence ¢y, =5°). For a legend see Fig.

g

+...
nw 8wj

nw

(26)

2 _ 98

Figure 7 shows the expectation value BE,,, in the x—y-
plane. Figure shows in detail the corresponding expectation
values, standard deviations and their comparison to Monte
Carlo simulations along the-axis. All parameters are iden-
tical to those in Figs5-6.

While the error of the expectation value is still quite small,
the standard deviation derived from the multipole evaluation
differs significantly from the Monte Carlo simulation. This
can be explained by Eqs2%-26). The moments o de-
pend on all moments dW, but unlike Eqgs. 22-23), where
all moments of the normally distributed random variable
were known, in this case only the expectation values and co-
variance matrix ofW have been taken into account for this
calculation. Obviously that is not sufficient for a non-linear
relation like Eq. 24).

This clearly shows that for the statistics of quantities that
depend in a non-linear fashion on the field components, also
higher order moments of the multipole amplitudes have to be
taken into account.

results with those ones of the simple cases described befor% Conclusions

we consider the expectation value and the standard deviatio
e

of the shielding effectiveness. These are calculated from th
relations

CW,',Wj 82g
= s+ S S

+...
Bwiawj

nw

(25)
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Por calculating the statistical moments of the electromag-
hetic field in case of small variations of various parame-
ters, the statistical-multipole method yields similar results
as Monte Carlo simulations with the advantage that the
number of quantities to represent the field and its statis-
tics is greatly reduced. However, modeling the multipole-
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amplitude random vector in terms of only first and secondAbramowitz, M. and Stegun, I. A. (eds.): Handbook of Mathemati-

order statistical moments has been shown to be insufficient cal Functions with Formulas, Graphs, and Mathematical Tables,
for the computation of the moments of quantities, which non-  Applied mathematics series 55. US Government Printing Office,
linearly depend on the multipole amplitudes like the elec- Washington, DC, USA, Tenth Printing, with corrections edition,

tromagnetic shielding effectiveness. In such cases higher- 1972. o .

order statistical moments of the statistical multipole expan—HOHag‘f:’ R, a_mdlgggJohn, R.: Statistical Electromagnetics, Taylor
sion have to be considered. However, the basic advantage %ian rancis, :

. he field b .. b f . Klinkenbusch, L.: Theorie der sphischen Absorberkammer und
representing the field by a minimum number of parameters is - g mehrschaligen Kugelschirmes, Habilitationsschrift, Ruhr-

still preserved. ' o Universitit Bochum, 1996.
Further research includes the application of the method tjinkenbusch, L.: On the shielding effectiveness of enclosures,
more general, that is, non-canonical shielding problems, and |EEE T. Electromagn. C., 47, 589—-601, 2005.

to characterize the shielding effect by the first few terms ofPapoulis, A. and Pillai, S. U.: Probability, random variables, and
the corresponding multipole expansion and its statistical mo- stochastic processes, McGraw-Hill series in electrical and com-
ments. puter engineering, McGraw-Hill, Boston, USA, 4th edn., 2008.
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