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Abstract. The application of modern series production au-
tomotive radar sensors to pedestrian recognition is an impor-
tant topic in research on future driver assistance systems. The
aim of this paper is to understand the potential and limits
of such sensors in pedestrian recognition. This knowledge
could be used to develop next generation radar sensors with
improved pedestrian recognition capabilities. A new raw
radar data signal processing algorithm is proposed that al-
lows deep insights into the object classification process. The
impact of raw radar data properties can be directly observed
in every layer of the classification system by avoiding ma-
chine learning and tracking. This gives information on the
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limiting factors of raw radar data in terms of classification ‘
decision making. To accomplish the very challenging dis-

tinction between pedestrians and static objects, five signifi-

cant and stable object features from the spatial distributiorfig- 1. A common recognition system with no backtracking possi-
and Doppler information are found. Experimental results bi_Iity is shpwn onthe Ieﬁ. Onthe rig_ht, the new rec_ognition method
with data from a 77 GHz automotive radar sensor show tha{NIth possible backtracking of classification errors is shown.

over 95 % of pedestrians can be classified correctly under op-

timal conditions, which is compareable to modern machine

learning systems. The impact of the pedestrian’s directionf ACC systems and pedestrian recognition systems could
of movement, occlusion, antenna beam elevation angle, linuse the same radar sensor, hardware costs for producing these
ear vehicle movement, and other factors are investigated ansystems are kept to a minimum. In this paper, the poten-
discussed. The results show that under real life conditionstial of a modern series production automotive radar sensor,
radar only based pedestrian recognition is limited due to in-designed for ACC systems, for pedestrian recognition is ex-
sufficient Doppler frequency and spatial resolution as well asplored. In particular, the limits of the radar sensor regarding
antenna side lobe effects. decision making in pedestrian classification are investigated
to see what future developments of automotive radar sensors
are necessary to improve pedestrian recognition systems.

A radar based pedestrian recognition system consists of
two main components, a radar sensor and a signal processing
The use of radar sensors in automotive pedestrian recognitionnit, i.e. radar raw data preprocessing combined with a clas-
systems is of special interest since radar sensors are less igiication algorithm. In this paper, a radar signal processing
fluenced by environmental conditions (e.qg. fog, rain, etc.) asunit is developed that allows the investigation of the potential
other systems like video camerd¥dnger 2007). Moreover,  and limits of the radar sensor in an online system. Thus, in
high resolution radar sensors are available in many moderwase of a classification error, it can be examined if the sensor
vehicles as a part of Adaptive Cruise Control (ACC) systems.data was not sufficient to be able to choose the correct object

1 Introduction
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46 A. Bartsch et al.: Pedestrian recognition using automotive radar sensors

class or if the class!ﬂcatlon algorithm could not squeeze theTable 1. Technical details of the radar sensor used in this paper.
necessary information out of the sensor’s data because of a

non-optimal classification algorithm. Misleading sensor raw

. . L. L. ) Frequency range 76-77 GHz

data of an object is statistically not distinguishable from data d yrang
of an object belonging to a different class. This could be data Resolution of Doppler frequency/ 390/0.77  Hzfmis
from a slowly moving pedestrian for example, that is almost _ "adial relative velocity
identical to raw data from a small static object like a traffic  Spatial discretization in azimuth 1 °(degree)
sign bepause of quantization errors. . . Radial spatial discretization 025 m

Previous approaches to pedestrian recognition with radar _ _
sensors (e.gBenitez 2011, Rohling 2007 Freund 2007 Max. distance of objects 50 m
Biichele 2008 Kouemoy 2008 He, 2010 mostly used Beam steering range (azimuth) 17°(degree)
complex signal featgres, machmg Iearmng for glassﬁmauon Beam width (3 dB, azimuth) 2.5 °(degree)
and often human gait models for interpreting micro Doppler

But classification decisions made by machine learning al- Modulation technique chirp sequence —

gorithms are non-transparent. Thus, it is not possible to ex-
amine why exactly the algorithm decided for the classifica-

tion result in every case. The significance of the different h ler shift inf . ial velocity inf
object features, extracted from the sensor’s data, was learn \gertt e_D(_)pp er shiftin orma_tlon _to radial ve om_ty informa-
' : Sfon. 1tis important to keep in mind that an object moving

yvhlle.processmg a trammg data set. This curcial '.nforma.tloneqmmstant to the sensor does not cause any Doppler shift in
is buried deep in the algorithm and cannot be easily obtained, . .
. ; . the reflected signal. The sensor output for the Doppler infor-
Hence, machine learning does not allow for consistent back- ..~ S :
. e - o mation is not limited by frequency measurement resolution
tracking from classification decisions to the critical informa- L ' S o
g - .~ because itis internally interpolated to minimize quantization
tion in the radar raw data that caused the decision (sed}ig. errors
Human gait models (e.gNanzer 2009 Kim, 2008 Ritter,

2007, Hornsteiner2008, which explain micro Doppler sig- N In e"ffy m(_aasureTEnErcr:]ycle, on”e g%Fatframte .conS|sf|ng of
natures, are limited to sensors with very high Doppler fre- Wo matrices IS created. 1he so cafled intensity image- con-

quency resolution and need radar data over a longer, Contit_alns the received signal strength values for all spatial resolu-

nous period of time instead of single frames. tion cells and the “frequency image” contains the radial rel-

. . . . ... _ative velocities of reflection centers in every resolution cell.
That is why a different approach in pedestrian recognition _. i
. : : : : Figure2 shows some example radar raw data of a pedestrian.
without using machine learning and complex object feature

. . : SThese data matrices constitute the low-level radar raw data
is needed. In this paper, a knowledge based pedestrian recog-Sed for pedestrian recognition

nition system, consisting of simplified components, is shown
that allows transparent classification decisions. The selec-
tion, significance testing, weighting of object features and
classification algorithm details were found empirically. 3 The pedestrian recognition algorithm

A focus will be on boundary and surrounding conditions . _ .
and their impact on radar raw data. The pedestrian’s directiod this chapter, a novel method for pedestrian recognition
of movement, occlusion, radar elevation angle and other facavoiding machine learning and tracking is developed. The

tors will be investigated to see how real life scenarios affectmain concern in this step is to keep the signal processing
the recognition results in comparison to recognition underffom radar raw data to the classification result as simple and

optimal conditions. transparent as possible. This guarantees easy backtracking
from classification decisions to the radar raw data. An even
more powerful advantage of simple signal processing is that
2  The radar sensor's raw data object features can be tested for their significance in classifi-
cation by hand with low effort.
In this paper, a 77 GHz band automotive scanning radar sen- Tracking objects in radar raw data for better classification
sor is used. The sensor is designed for series production AC@as discarded to benefit from single frame processing. For
systems. Tabl& shows some more detailed technical charac-driver assistance systems, it is most essential to achieve min-
teristics. Every 66 ms the sensor measures the received signmhum latency between appearance of a pedestrian in the raw
strength values and Doppler frequency shifts for every spatiatadar data and the output of the correct classification deci-
resolution cell. A resolution cell is®lby 0.25m. sion. Tracking would introduce such latency and since radar
The Doppler frequency shift is proportional to the radial based pedestrian recognition will be used together with other
component of the relative velocity between the sensor andensor systems in practice, tracking is more benefitial on a
the reflecting object and, therefore, the sensor can easily corltigher application level.
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ity of —vego, Which is measured by the sensor. Experiments
showed that the vehicle’s ego-speed signal, generated by the
vehicle’s dynamic stability control system, is too noisy for
satisfactory compensation. To eliminate this error, an object
which is known to be static is needed in the radar raw data,
e.g. a tree or a road barrier that was identified by another
pedestrian in sensor system like a camera. Using this information, the fre-
frequency image guency image can be recompensated with sufficient accuracy
for the following recognition process. In this paper, the in-
formation about which objects in the radar data are static was
provided by hand to allow experiments withyo# 0.

Radar cells

Pedestrian in
intensity image

Intensity image
i — Frequency image

Radar sensor

3.2 Feature extraction

Fig. 2. Example of a pedestrian's radar raw data. The principle, ) i section we propose a set of five object features that
how the sensor divides its spatial measurement range into resolu-hange reliably and significantly when the object, repre-

tion cells, is depicted on the left. The sensor measures the reflected d by th d dar d . d )
power and Doppler shift in the reflected signal for every resolution sented by the segmented raw radar data, Is a pedestrian or

cell, giving two data matrices, the intensity image and the frequency? Static object. Since pedestrians are radar point taryats (
image (middle). The grey value of pixels in the intensity image Mada 2009, their shape in the intensity image is the same
refers to the reflected power while the grey value of pixels in theas the one of any small reflective object. Yamada also shows
frequency image correspondes to the measured Doppler shift. Ahat the strength of a radar signal, reflected by a pedestrian,
grey value of 128 indicates a Doppler shift of 0 Hz. and thus the intensity in the intensity image, is highly fluc-
tuative (about 20 dB). Hence, with information from the in-
tensity image only, it is impossible to distinguish between
Furthermore, this paper highlights the differentiation be- pedestrians and small arbitrary objects. Nevertheless, in this
tween static objects and pedestrians. This is challenging quaper two object features from the intensity image, a size
cause walking pedestrians have very low speed compared tand a shape factor, are calculated to exclude big or elongate
the sensor’s velocity measurement resolution of 0.77n's objects from potential pedestrians.
Other objects in typical traffic scenarios, e.g. cars, exhibit
significant higher velocities and can be distinguished from
pedestrians with less effort.

Figure3reveals thatin a resolution cell the reflected power
value from the intensity image and the radial relative veloc-
ity value from the frequency image are statistically uncorre-
lated. The graphs depict the frequency distributions of res-
olution cells with certain reflection intensity and radial rel-
The signal processing chain starts with noise reduction andtive velocity for different types of objects. The statistical
segmentation in the intensity image. Because simple |ow_gncorrelat|on_ means _that the mean and variance qf a resolu-
pass filtering would blur the critical border between objects fion cell's radial velocity value are not correlated to its inten-
and surrounding, a combined bit-depth reduction and threshSity value. Therefore, principal component analysis (PCA)
olding approach was used. The segmentation algorithm waS" similar methods to transform possibly correlated_ data sgts
developed in Freund 2007 and creates objects, i.e. sets of mtp u_ncorrelated da_ta sets are _obsolete_. Another interesting
spatial neighboured sensor data that is likely from one physp‘_)'”t is thfit the relative veloc!ty mformatpn is not correlated
ical object. This segmentation step has big influence on th&'ith the distance from the object center since resolution cells
classification result because it decides where the border i¥/ith high intensity are located at the center of an object.

drawn between objects and the noisy surrounding. In the While the variance of the intensity values is almost equal
border area of objects, the frequency image contains artefor moving pedestrians and static objects, the variance of
facts that can extensively bias the classification algorithm. Ifthe radial velocity values varies significantly. The classifica-
the border between objects and the surrounding is drawn totion algorithm distinguishes pedestrians from static objects
close to the reflection center of objects, not all related resolumainly using the higher variance of the relative radial veloc-
tion cells get attached to the object and important informationity components in the frequency image data of pedestrians
about the object gets lost. The optimum in this trade-off is (see Sect3.2.3. Three object features from the frequency
highly dependent on background noise in the intensity imageimage data are calculated for every object, giving in combi-

In the frequency image, the ego-speed of the measurememiation with two object features from the intensity image an
vehiclevegohas to be compensated. If the vehicle moves withonly five dimensional feature space which is sufficient for
Vego @ Static object in front of the vehicle has a relative veloc- proper classification.

3.1 Raw data preprocessing

www.adv-radio-sci.net/10/45/2012/ Adv. Radio Sci., 10, 455, 2012
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Fig. 3. Relative frequency distributions of resolution cells with certain reflection intensity and relative radial velocity for different object
types. The frequency distributions were retrieved from approximately 150 data frames giving about 2000 data points per graph. Since mean
and variance of the relative radial velocity values are independent of the reflection intensity, information from the intensity image and from
the frequency image is statistically uncorrelated.

3.2.1 The size of an object

The size of an object is a measure that is proportional to
an object’s mean radius and simply the square root of the
distance-compensated number of resolution cells assigned to
the object. Distance compensation is necessary because with
increasing distancefrom the sensor, the received pow®y  ~ B<------------"----------- f------o-
decreases with /&* and the width of the spatial resolution
cells get larger since they are alwaysnlazimuth. Withn’

as the distance-compensated number of resolution cells of
the objectyny = +/n’ is the first object feature.

Radar sensor

Pedestrian

Front of measurement vehicle

3.2.2 The shape of an object

The shape of a point target in the radar raw data is deterFig. 4. An illustration of the sensor coordinate system, an object
mined by the sensor’s antenna pattern. In the intensity imageVith center atr., ¢.) and a local coordinate system for calculating

a small object has an elliptical shape with the longer axis inthe object's shape factor using’, y) coordinates. The maximum
azimuthal direction and an axis ratio of ababyd — 1.8 beam steering anglg is the border of the azimuthal measurement

To obtain an object’s shape feature, the difference of the obfange:

ject’'s shape compared to an ideal ellipse is calculated. An
ideal ellipse of equal area and half-axgs is placed over
the object’s centetrc, ¢c) (see Fig.4). In this coordinate
system, thé-th resolution cell of an object with cells has a
local coordinatex!, y/). A distance measure for a cell to the
ellipse’s border is given by

3.2.3 Doppler spectrum

The Doppler spectrum (DS) is the histogram of an object’s
Doppler shift information, extracted from all resolution cells
assigned to the object. It is a density function that tells

yl_/Z ¥2 D n-d how prominent different relative velocities are in the ob-
=gz A >

+ ﬁ -1, a=- (1)  ject. The relative radial velocity axisis divided into small
intervals. Resolution cells with radial relative velocity
The size-normalized cumulative shape error gives the SECOﬂﬁhcrease the counter for the Corresponding interngUj[

object featureny: with v; < |vrr| < v;. To get a densitiy functio®poppier, NOT-
1 5 malization is necessary such tIfaDDopmerdv =1 holds.
mp = ﬁ Z 5 (2) Figure 5 depicts sample Doppler spectra, averaged over
i:8;>0 several hundred independent data frames. The wavy
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6r o S B - B Table 2. Relative radial velocity interval borders for Doppler spec-
4 ‘ ——— radial moving pedestrians | trum feature extraction.
5 ... ... | —&— gstatic objects :
vo v1 v2 v3
g4 oms?! 038ms! 115ms! 3ms!
g3
QQD 3.3 Classification
2 L
The challenge in the classification step is to decide whether
Lt an object is a pedestrian or a static object by using the cor-
responding feature vecter = [mz1,...,ms]" only. The deci-
0 - i - : RS- sion process is based on the knowledge that some values of
0 0.5 1 s 2 2.5 3 these features are more probable if the object is of a certain
relative radial velocity / m/s classC. For example, a static object is very unlikely to have

a significant fraction of Doppler information in tHez, v3]

: . . . interval. Hence, a value of3 close to one is very unlikely
Fig. 5. Averaged Doppler spectra of radial moving pedestrians andfor the class “Static Object”

static objects. The Doppler spectrum functiDpgppler is plotted . . .
over the relative radial velocity axis. Ego-speed compensation Both valid classes,” for pedestrians and for static

is not necessary because the data was recorded with a non-movirPI€Cts, have a vector valued fuzzy membership func-
radar sensor. tion fc:R®— [0,1]°, C € {P; S} that maps the feature

vector m of an object to a membership value vector
uc=I[uca, ...,,uc,s]T for the corresponding class.
structure of the DS, especially of walking pedestrians, is not
caused by movements of the object itself. The maxima oftc = fc(m),  pci= fc.i(mi) (6)
the wavy structure are always located at the theoretical fre-
quency bins (if interpolation would not be used), and the lo- . .
cal minima right inbetween, independent from the object’smi for the c.:orr'espondlng clagswhile a'small'value Ofic.i
speed. Thus, the wavy structure is an artefact caused by th ear zero indicates that the valuemf is unlikely for that

interpolation algorithm in the Doppler frequency measure—cs_s’s'tfIn :h's we;y, the m;mk:ershlp lvalluf@é fOf tbhethflv:e
ment inside the radar sensor. object features of every object are calculated for both classes

It can be clearly seen in Fi§.that a radial moving pedes- P ar_ldS._ Graphf] offthe membersh|p functiofis,; are ?.IOt'
trian has a broad DS from 0-2.5mls In contrast, DS of ted in Fig.6. The functionsfs 1 and fs » are not defined
static objects are very narrow since they only cover veloci-becaluse static objects can be of any sha_pe _and size. Hence,
ties from 0—0.4 mst aIII values (;)f;;tl aﬂd mo ha\t/)e thhe san|1e Ill;ehhood for the
: ) : , . class S and thus their membership values for cfaae sup-
Va;go[soo'lld]o[WvT 52? ?:zass] 0;2 I(::)osng dkeer)ég%l;reees’_r:gzz'rmer'pressed in further calculations by giving them zero weight in

h ighti :
actual values ofip-v2). The Doppler spectrum density func- the weighting step

tion Dpoppler iS integrated over these intervals, giving three To (_jeC|de_ whether clasg or 'S more appropriate for

object f(é?tzrreM3—m5 representing the propor'tional distri- an object, given fuzzy membership vectars andus, _the

bution of radial relati\;e velocities in the object over the three membership vectors are mapped to r_eal membership values
p, s €[0,1]. This is done by a weighted average of the

A value of uc; close to one states a high probability of

intervals. membership vectors’ components
vl

m3 = fDDoppIerdU 3 _ w-lc— ‘uc
vo He=w— ()
V2 ch’i

m4 = [ Dpopplerdv 4) '
v wherewe = [wc,l,...,wc,s]T is the weighting vector for a
e classC € {P;S}.

ms = /DDoppIerdU (5) e

Experiments have shown that constant weighting vectors
wc are not sufficient for proper classification. Instead, the
Radial velocities greater than 3m'sare neglected since combination of the membership valugs ; must be closer
they are unlikely to be in pedestrians’ DS and thus not theto a logical conjunction. This is achieved by allowing the
matter in this paper. weight vectorw ¢ (u¢) to be dependent amc-, meaning that

v2
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Fig. 6. Plots of membership functiongp ; and fs ; that map values of object features to membership valuegp ; and g ; for the
classesP for pedestrians an# for static objects.

12 e C e . velocity in the[v1, v2] interval. Hence, the object featurg,
will be zero and since there are some cells in[thevs] in-
10h- 7;11 : : ,7(2 ST P o ?’|3 terval,ms > 0 will hold. Becausen, equals zero, its weight
| O i wp. 4 Will rise exponentially, and the overall probabilifyp
gl - . for this object to be a pedestrian will be low. This conclusion
E ! . ! would be wrong because the characteristic Doppler informa-
5 o6l ! n | tion for a pedestrian is just concentrated in fhg v3] inter-
& I a l val rather than evenly distributed over the, v3] interval. In
QQ al | - N this case, wherei4 has a very low and:s a high valuegp 4
| S | is chosen smallgp 4 ~ 1/y) to reverse the value dependent
[ [ | weighting. Analogouslyp s is chosen ifms is very low in
20 | ' | ' | value while a significant share of Doppler information is in
| Y : : | the [v1,v2] interval. Since this cross-bonded value depen-
00 05 1 15 N 25 3 dent weighting affects onlwp 4 andwp s, all §c; except

&p.4 andép 5 have a constant value of one.

The decision whether an object is classified as a pedestrian
or as a static object and, therefore, is assigned to the class
Fig. 7. Example of a single frame Doppler spectrum of a pedestrian.P or classS, is made by comparing the united membership

valueszrp andyg. If 7tp > g, the object is assigned to the
classP and otherwise to clas$. If both membership values
low membership valuegc; are weighted stronger by in- 7z, andj are small and hence the object is unlikely to be

relative radial velocity / m/s

creasingwc; exponentionally: a pedestrian as well as a static object, it is declared as an
pe unknown object. This happens almost exclusively in case of
we,i =&c.i W - (1+J/ e T) . (8)  segmentation errors.

The exponential function for increasing the base weight
wcl was chosen empirically. Whilg andr parametrize this 4 Experimental results
value dependent weighting¢ ; is used for compensating a
certain effect when a pedestrian has an unusual Doppler freBecause a binary classifier is used and the number of un-
guency distribution. In FigZ, a DS of a walking pedestrianis known declared objects is negligible, the quality of the
depicted, obtained from a single data frame. In this case th@edestrian recognition system can be measured by only two
object does not contain a resolution cell with a relative radialkey figures;tp andrpp. The true positive raterp tells what

Adv. Radio Sci., 10, 4555, 2012 www.adv-radio-sci.net/10/45/2012/



A. Bartsch et al.: Pedestrian recognition using automotive radar sensors 51

6
—— pedestrian, slow pace (0.58 m/s)
5}----| —— pedestrian, normal pace (1.2 m/s)
—=4—— pedestrian, fast pace (1.7 m/s) Radar sensor -

Front of measurement vehicle

0 0.5 1 L5 2 2.5 3 Fig. 9. A walking pedestrian with velocity, relative to the sensor
relative radial velocity / m/s with angle of movemenp has a radial relative velocity component
vrr that is measurable by the radar sensor.

Fig. 8. Averaged Doppler spectra of a walking pedestrian for dif-
ferent walking paces. The angle of movement was 45° in all
cases. In the investigated range of walking paces from 0.58!ms
to 1.7ms 1, the DS is independent from the pedestrian’s walking
pace.

fraction of real pedestrians is correctly classified as such. On c
the other hand, the false positive rate or false alarm rate =
tells what fraction of static objects are classified incorrectly -
as pedestrians. The true negative nai¢=1—rgp and the
false negative rate-y = 1—rrp are implied under the above- = o
mentioned assuptions.

The test sample set consisted in every experiment of abou
150 to 600 samples if not mentioned otherwise.

4.1 Influences on the Doppler spectrum

A walking pedestrian’s DS turned out to be very stable in Fig_. 10. Averaged Doppler spectra of a walking pedestrian over
. . various angles of movement

terms of outside influences compared to other tested objec\{

features from the frequency image. It is not affected by the

height in which the radar beam hits the person, due to differ-

ent angles of elevation of the antenna beam as long as enougf_l"?d it approaches zero for angles of movement pead0’.

power is reflected for proper segmentation in the intensity 1€nCe, lateral moving pedestrians have DS very similar to

image. Furthermore, the DS is fairly independent from theStatic objects. In Figl0, averaged DS of a walking pedes-

walking pedestrian’s pace (see F&. Walking paces from trian are plotted for different angles of movement The
058ms? to 1.7ms? were tested and did not affect the ClOSery approaches 90the DS shows increasing similarity

pedestrian’s DS because many different velocities within thel® the one of static objects (compare to F3y. Hence, the

segmented object occured due to arm and leg swing. true positive rate-tp after classification reaches 95.3 % for

Nevertheless, the DS obviously is dependent on the pededadially moving pedestriang (= 0°) and drops to 39.5 % for

trian’s angle of movement. A radar sensor can only measuréﬁterar:ly TOV'_']:'_Q p_edestnaln@(i 90°). hF|gure011 eXh'bES
the radial component; of an object's relative velocity,. A that the classification result is better than 88 %figr= 75°.

good approximation is to assume the pedestrian centered in

front of the sensor, i.ep =0 (see Fig9). By using this ap- Backtracking from classification decisions to radar raw
proximation, the radial velocity component can be simplified data, to see whether the sensor data or the classification al-
to gorithm is responsible for misclassified data frames, was ex-
tensively used in empirically optimizing the classifier. As a
Urr = vy - COSp (9) result, almost all misclassifications of pedestrians as static

www.adv-radio-sci.net/10/45/2012/ Adv. Radio Sci., 10, 455, 2012
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Fig. 12. Averaged Doppler spectra of correct classified and incor-
rect classified pedestrians walking with various angles of move-
ment. The similarity of Doppler spectra of incorrect classified

pedestrians and static objects is a limitation of the radar sensor in

. . . . pedestrian recognition, since the sensor does not deliver statistical
objects can now be tracked down to sensor data that is indiSgjterent in this case.

tinguishable, even by hand, from a static object’s raw data. In
Fig. 12, the averaged DS of correct and misclassified pedes-

trians are plotted as well as the averaged DS of static objects Measurement vehicle
for comparison. The DS of the misclassified pedestrians is Oceluded pedestrian - Parked, vehicle - Radar sensor

almost the same as the one of static objects. Thus, in the
case of misclassified pedestrians, the sensor does not delive
statistically different data from static objects and hence the
developed classification algorithm is optimal within the re-
strictions of the chosen method for pedestrian recognition.

Fig. 11. Classification resulttp for pedestrians walking with dif-
ferent angles of movement

4.2 Occluded pedestrians

In this paper, two types of occlusions were investigated. In
the first case, a pedestrian is hidden behind a single parked
car and in the second case the pedestrian is in the gap be
tween two parked cars (see Fi$j3). In both cases the
pedestrian moves laterally while being occluded such that
the pedestrian is not in the line of sight to the sensor. Therig. 13. Top: A lateral moving pedestrian is occluded behind a
lateral movement is typical for pedestrians who try to crosssingle parked car. Bottom: Now the lateral moving pedestrian is in
the street without looking. a gap between two parked cars, where the radar wave can propagate

In the case where the pedestrian is in the shadowed are@e to multiple reflections.
hidden behind one parked vehicle at the side of the road, the
radar waves cannot hit the pedestrian directly. Therefore, the
signal reflected by the pedestrian and received by the sensdions. Thus, the pedestrian reflects more power back to the
is very weak. As a result, the pedestrian blurs with the block-radar sensor and can be segmented properly in the radar raw
ing car and often the segmentation algorithm is not able todata if the gap is not smaller than 50cm. Also, the recog-
seperate the two objects. In the classification step the truaition result is much better, as the true poistive rate rises to
positive rate drops terp = 6.6%, which is only slightly bet-  values up to 29.4%. This result is remarkable because now
ter than the false alarm rate gfp= 1.4%. the recognition rate is only ten percent less thagn= 39.5%

If the pedestrian is moving laterally in a gap between twoin the case of a lateral moving pedestrian in line of sight (see
parked cars at the side of the road (see E), the radar Fig. 11). The recognition results for different sizésf the
wave can propagate in this gap because of multiple reflecgap are shown in Tablg@ Note that the false alarm ratgep
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Table 3. Classification result for a lateral moving pedestrian in a 4.4 Driver assistance system scenario

gap between two parked cars. ) ) ] o
A practical use of the introduced pedestrian recognition sys-

tem would be collision avoidance by warning the driver of a
pedestrian which moves towards the road, occluded in a gap
rrp 209%  29.4% 285% 20.1% 25.2% in a row of roadside parked cars. This scenario consists of
rep 17.6% 95% 24% 54% 14%  Parked cars as highly reflective static objects, lateral move-
ment of the pedestrian, occlusion and linear movement of the
measurement vehicle with about 8.5ntsWith the combi-
nation of all those influences in one real scenario, a recogni-
tion rate ofrrp=19.3% was achieved. The false alarm rate
in this particular measurement was = 3.2%.

Sizeofgag 30cm 50cm  70cm 90cm  110cm

5 Discussion

The gathered results reveal three main development areas for
future radar sensors used for pedestrian recognition: Doppler
frequency resolution, antenna side lobes and spatial resolu-
tion.

Doppler frequency resolutionAn object at the position
(r, ¢) with relative velocityv, to the radar sensor (see F8j.

has a relative radial velocity component given by
Fig. 14. A real urban traffic scene used for measuring the false

alarm rate. On the left a photography of the scene is depicted ang,, = y, - cosp —¢) . (10)
on the right the corresponding intensity image from the radar raw
data. Equation9 is the approximation of this equation assuming

¢ =0. If the object moves on a straight lateral path90°),
is significantly higher in case of narrow gaps up to 50 cm dueIt .St'" causes a S”.‘a” Doppler S.h'ft given by = v; -sing
! . with absolute maxima at the azimuthal borders of the mea-
to segmentation problems in the blurred occluded areas. ~ . .
surement range-¢. The described experimental results for
recognizing lateral walking pedestrians (see Sécl) are
based on a walking pace of abayt=1.2ms 1. The theo-

False alarms, meaning that static objects are incorrectly clagetical maximum of the radial relative velocity component in
sified as pedestrians, are consequences of three root caus#¥s case iwy =0.17ms ! at|¢| =, which is only about a
Firstly, parasitic antenna side lobe effects can cause signiffifth of the smallest measurable radial velocity of 0.77hs
icant fractions in the DS of static objects that seem to havegiven by the radar sensor’s Doppler frequency measurement
a higher velocity than static objects should have. Secondlyresolution. Nevertheless, in the experiment the recognition
errors in the ego velocity compensation can offset the DSate ofrrp =39.5% is much higher than the expected rate of
and finally, in case of errors in the segmentation step, reso@boutrrp ~ 4%, caused by false alarms, even if the pedes-
lution cells from the noisy surroundings of an object can gettrian is central in front of the sensop & 0) where Eq. 10)
assigned to the object, resulting in DS fractions with highergivesvr = 0. This leads to the conclusion that micro Doppler
velocity than possible for static objects. To see how good theeffects (seeHe, 2010), e.g. swinging arms and legs, cause
specifity of the pedestrian recognition system is in practice,artefacts in the DS, which lead to these classification results.
a real urban traffic scene was chosen (see Hjj. The ve- For a particular driver assistance system, a use case could
hicle drives along a road with lots of highly reflective static be to require direct measurement (without the help of mi-
objects, such as cars, in the measurement range, which is tho Doppler effects) of a lateral walking pedestrian’s radial
worst case scenario in terms of false alarms, since highly revelocity componenty in a range ofl¢| > 3°, given a walk-
flective objects cause high amplitudes of antenna side lobéng pace ofvy = 1.0m s1. This requirement gives a blind
effects. As a result, in the described traffic scenario, a falsespot of 5.2 m width centered in front of the vehicle in 50 m
alarm rate of-gp=4.9% was obtained. distance. This blind spot could be observed by other sensor
systems since it is usually directly visible. To fulfill these re-
quirements, a radar sensor with-measurement resolution
of at least 0.052m3g or, respectively, Doppler frequency
measurement resolution of 26.5 Hz is needed. The required

4.3 False alarms
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measurement resolution is about fifteen times higher than thegnizing occluded pedestrians. Our findings indicate that
resolution of the radar sensor employed in this paper. pedestrian recognition using this low-level approach is lim-

Antenna side lobe effect®arasitic effects because of an- ited. Only radar data with higher Doppler frequency mea-
tenna side lobes affect the intensity image (ghost targets apsurement resolution (independent of the used technology,
pear) as well as the frequency image (see S&8), espe- e.g. 24 GHz, 77 GHz) would make major recognition im-
cially in the surrounding of highly reflective objects. The provements possible. This requirement of future automo-
impact of antenna side lobes on the intensity image was modtive radar sensors is in line with claims iRgsshofer2007).
eled using a measured antenna pattern. Although in theoryn state-of-the-art research on pedestrian recognition, today’s
compensation of this effect would be possible, further im-radar sensors are mostly used to support camera-based sys-
provements of todays radar sensors concerning side lobes atems Getdnimo, 2010.
needed. The knowledge of these effects is the key to optimize
the segmentation algorithm.

Spatial resolutionif a pedestrian is in line of sight and not
more than about 35_m d_istant_fr_om the sensor, _the radar S€lBenitez, D. and Zhaozhang, J.: Method for Human Only Activ-
sor's spatial resolution is sufficient. However, if the pedes- i petection Based on Radar Signals, U.S. Patent Application
trian is occluded behind other objects, the corresponding Us2011/0032139A1, 2011.
radar data starts to blur with nearby objects. A finer spa-Biichele, M.: Optimierte Radarsignalverarbeitufig Fahrerassis-
tial resolution might improve the separability of the objects tenzsysteme, M. Sc. thesis, University of Ulm, Institute of Theo-
in this case. If the pedestrian is further away from the sensor, retical Computer Science, Ulm, Germany, 2008.
the spatial resolution cells grow, since their width is a func- Freund, S.: Object Recognition from Radar Raw Data Using Im-
tion of the azimuth angle. Hence, a distant pedestrian covers 29€ Processing Methods, Diploma thesis, Ludwigs-Maximilians-
only few resolution cells, resulting in a DS of just few single Universitit Munich, Institute of Computer Science, Munich,
peaks, which might not represent the DS well. A finer spa- Germany, 2007,

. . . . . Gemnimo, D., Lopez, A. M., Sappa, A. D., and Graf, T.: Survey
tr;]a;tzifolutlon would improve the accuracy of the DS in this of Pedestrian Detection for Advanced Driver Assistance Sys-

tems, |IEEE Transactions on Pattern Analysis and Machine In-

telligence, 32, pp.1239-1258, 2010.
He, F., Huang, X., Liu, C., Zhou, Z., and Fan, C.: Modeling and
6 Summary and conclusions Simulation Study on Radar Doppler Signatures Of Pedestrian,

in: Proc. of the 2010 IEEE Radar Conference, Washington DC,

Because pedestrians are point targets for radar sensors, objectUsA, 10-14 May 2010, 1322-1326, 2010.
features from the intensity image cannot be used to distinHornsteiner, C. and Detlefsen, J.: Characterisation of human gait
guish between pedestrians and small static objects. Hence, using a continuous-wave radar at 24 GHz, Adv. Radio Sci., 6,
information from the Doppler frequency image is needed. 67-70, doi:10.5194/ars-6-67-2008, 2008.
The DS, which is the histogram of the measured radial rel-Kim, Y. and Ling, H.: Human Activity Classification Based on
ative velocities of an object, turned out to be a stable object Micro-Doppler Signatures Using an Artificial Neural Network,
feature, holding the required information to reliably seperate E(;?]C'Sc:ntg?eégoi'S'fiiyl"ﬁ’;';&g nléztezrgg)ass and Propaga-
pedpstnans from St?.tIC OPJGCtS- A simple CIaSS|f|c§t|on al'Kouemou, G. and Opitz, F.: Impact of Wavelet Based Signal Pro-
g_o'rlthm, based on five object features, was fOU”P' with CI"’_‘S' cessing Methods in Radar Classification Systems Using Hidden
sification results compareable to modern machine learning parkov Models, in: Proc. of the 2008 International Radar Sym-
algorithms. Radial moving pedestrians in line of sight can  posjum, Wroclaw, Poland, 21-23 May 2008, 1—4, 2008.
be recognized up to 95.3% of the samples. The recogniNanzer, J. A. and Rogers, R. L.: Bayesian Classification of Humans
tion rate drops to 39.5 % for lateral moving pedestrians and and Vehicles Using Micro-Doppler Signals From a Scanning-
to 29.4 % for lateral moving pedestrians occluded in a gap Beam Radar, IEEE Microwave and Wireless Components Let-
between two parked cars. In case of misclassifications of ters, 19, 338-340, 2009.
pedestrians as static objects, the radar sensor does not dlgasshofer, R. H.: Functional Requirements of Future Automotive
liver statistically different data as from static objects, making R_agar Systems, in: Proc. of the European Radar conference, Mu-
it impossible for classification systems (machine learning aﬁ?it?; QG:;?aRgﬁlio_ﬁ -O;;?jzgréonogﬁesi}ﬁg% :soe0d76n Automo-
well as the proposed solution) to decide for the correct class o, g, H-

. : . . tive Radar, 2007 IET International conference on Radar Systems,
using only information from single radar raw data frames. Edinburgh, UK, 15-18 October 2007, 1-4, 2007.

Hence, pedestrian recognition using only single radar rawRoniing, H., Heuel, S., and Ritter, H.: Pedestrian Detection Pro-

data frames shows poor classification results. cedure Integrated into an 24 GHz Autmotive Radar, in: Proc. of
The radar sensor’s main limitations in this use case turned the 2010 IEEE Radar Conference, Washington DC, USA, 10-14

out to be insufficient Doppler shift measurement resolution May 2010, 1229-1232, 2010.

and antenna side lobe effects. Possibly, a finer spatial reso-

lution would also improve the sensor’s performance in rec-
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