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Abstract. The application of modern series production au-
tomotive radar sensors to pedestrian recognition is an impor-
tant topic in research on future driver assistance systems. The
aim of this paper is to understand the potential and limits
of such sensors in pedestrian recognition. This knowledge
could be used to develop next generation radar sensors with
improved pedestrian recognition capabilities. A new raw
radar data signal processing algorithm is proposed that al-
lows deep insights into the object classification process. The
impact of raw radar data properties can be directly observed
in every layer of the classification system by avoiding ma-
chine learning and tracking. This gives information on the
limiting factors of raw radar data in terms of classification
decision making. To accomplish the very challenging dis-
tinction between pedestrians and static objects, five signifi-
cant and stable object features from the spatial distribution
and Doppler information are found. Experimental results
with data from a 77 GHz automotive radar sensor show that
over 95 % of pedestrians can be classified correctly under op-
timal conditions, which is compareable to modern machine
learning systems. The impact of the pedestrian’s direction
of movement, occlusion, antenna beam elevation angle, lin-
ear vehicle movement, and other factors are investigated and
discussed. The results show that under real life conditions,
radar only based pedestrian recognition is limited due to in-
sufficient Doppler frequency and spatial resolution as well as
antenna side lobe effects.

1 Introduction

The use of radar sensors in automotive pedestrian recognition
systems is of special interest since radar sensors are less in-
fluenced by environmental conditions (e.g. fog, rain, etc.) as
other systems like video cameras (Wenger, 2007). Moreover,
high resolution radar sensors are available in many modern
vehicles as a part of Adaptive Cruise Control (ACC) systems.
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Fig. 1. A common recognition system with no backtracking possi-
bility is shown on the left. On the right, the new recognition method
with possible backtracking of classification errors is shown.

other systems like video cameras (Wenger, 2007). Moreover,
high resolution radar sensors are available in many modern
vehicles as a part of Adaptive Cruise Control (ACC) systems.35

If ACC systems and pedestrian recognition systems could
use the same radar sensor, hardware costs for producing these
systems are kept to a minimum. In this paper, the poten-
tial of a modern series production automotive radar sensor,
designed for ACC systems, for pedestrian recognition is ex-40

plored. In particular, the limits of the radar sensor regarding
decision making in pedestrian classification are investigated
to see what future developments of automotive radar sensors
are necessary to improve pedestrian recognition systems.

A radar based pedestrian recognition system consists of45

two main components, a radar sensor and a signal processing
unit, i.e. radar raw data preprocessing combined with a clas-
sification algorithm. In this paper, a radar signal processing
unit is developed that allows the investigation of the potential

Fig. 1. A common recognition system with no backtracking possi-
bility is shown on the left. On the right, the new recognition method
with possible backtracking of classification errors is shown.

If ACC systems and pedestrian recognition systems could
use the same radar sensor, hardware costs for producing these
systems are kept to a minimum. In this paper, the poten-
tial of a modern series production automotive radar sensor,
designed for ACC systems, for pedestrian recognition is ex-
plored. In particular, the limits of the radar sensor regarding
decision making in pedestrian classification are investigated
to see what future developments of automotive radar sensors
are necessary to improve pedestrian recognition systems.

A radar based pedestrian recognition system consists of
two main components, a radar sensor and a signal processing
unit, i.e. radar raw data preprocessing combined with a clas-
sification algorithm. In this paper, a radar signal processing
unit is developed that allows the investigation of the potential
and limits of the radar sensor in an online system. Thus, in
case of a classification error, it can be examined if the sensor
data was not sufficient to be able to choose the correct object
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class or if the classification algorithm could not squeeze the
necessary information out of the sensor’s data because of a
non-optimal classification algorithm. Misleading sensor raw
data of an object is statistically not distinguishable from data
of an object belonging to a different class. This could be data
from a slowly moving pedestrian for example, that is almost
identical to raw data from a small static object like a traffic
sign because of quantization errors.

Previous approaches to pedestrian recognition with radar
sensors (e.g.Benitez, 2011; Rohling, 2007; Freund, 2007;
Büchele, 2008; Kouemou, 2008; He, 2010) mostly used
complex signal features, machine learning for classification
and often human gait models for interpreting micro Doppler
signatures.

But classification decisions made by machine learning al-
gorithms are non-transparent. Thus, it is not possible to ex-
amine why exactly the algorithm decided for the classifica-
tion result in every case. The significance of the different
object features, extracted from the sensor’s data, was learned
while processing a training data set. This curcial information
is buried deep in the algorithm and cannot be easily obtained.
Hence, machine learning does not allow for consistent back-
tracking from classification decisions to the critical informa-
tion in the radar raw data that caused the decision (see Fig.1).
Human gait models (e.g.,Nanzer, 2009, Kim, 2008, Ritter,
2007, Hornsteiner, 2008), which explain micro Doppler sig-
natures, are limited to sensors with very high Doppler fre-
quency resolution and need radar data over a longer, conti-
nous period of time instead of single frames.

That is why a different approach in pedestrian recognition
without using machine learning and complex object features
is needed. In this paper, a knowledge based pedestrian recog-
nition system, consisting of simplified components, is shown
that allows transparent classification decisions. The selec-
tion, significance testing, weighting of object features and
classification algorithm details were found empirically.

A focus will be on boundary and surrounding conditions
and their impact on radar raw data. The pedestrian’s direction
of movement, occlusion, radar elevation angle and other fac-
tors will be investigated to see how real life scenarios affect
the recognition results in comparison to recognition under
optimal conditions.

2 The radar sensor’s raw data

In this paper, a 77 GHz band automotive scanning radar sen-
sor is used. The sensor is designed for series production ACC
systems. Table1 shows some more detailed technical charac-
teristics. Every 66 ms the sensor measures the received signal
strength values and Doppler frequency shifts for every spatial
resolution cell. A resolution cell is 1◦ by 0.25 m.

The Doppler frequency shift is proportional to the radial
component of the relative velocity between the sensor and
the reflecting object and, therefore, the sensor can easily con-

Table 1. Technical details of the radar sensor used in this paper.

Frequency range 76–77 GHz

Resolution of Doppler frequency/ 390/0.77 Hz/m s−1

radial relative velocity

Spatial discretization in azimuth 1 ◦(degree)

Radial spatial discretization 0.25 m

Max. distance of objects 50 m

Beam steering range (azimuth) 17◦(degree)

Beam width (3 dB, azimuth) 2.5 ◦(degree)

Cycle time 66 ms

Modulation technique chirp sequence –

vert the Doppler shift information to radial velocity informa-
tion. It is important to keep in mind that an object moving
equidistant to the sensor does not cause any Doppler shift in
the reflected signal. The sensor output for the Doppler infor-
mation is not limited by frequency measurement resolution
because it is internally interpolated to minimize quantization
errors.

In every measurement cycle, one data frame consisting of
two matrices is created. The so called “intensity image” con-
tains the received signal strength values for all spatial resolu-
tion cells and the “frequency image” contains the radial rel-
ative velocities of reflection centers in every resolution cell.
Figure2 shows some example radar raw data of a pedestrian.
These data matrices constitute the low-level radar raw data
used for pedestrian recognition.

3 The pedestrian recognition algorithm

In this chapter, a novel method for pedestrian recognition
avoiding machine learning and tracking is developed. The
main concern in this step is to keep the signal processing
from radar raw data to the classification result as simple and
transparent as possible. This guarantees easy backtracking
from classification decisions to the radar raw data. An even
more powerful advantage of simple signal processing is that
object features can be tested for their significance in classifi-
cation by hand with low effort.

Tracking objects in radar raw data for better classification
was discarded to benefit from single frame processing. For
driver assistance systems, it is most essential to achieve min-
imum latency between appearance of a pedestrian in the raw
radar data and the output of the correct classification deci-
sion. Tracking would introduce such latency and since radar
based pedestrian recognition will be used together with other
sensor systems in practice, tracking is more benefitial on a
higher application level.
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Fig. 2. Example of a pedestrian’s radar raw data. The principle,
how the sensor divides its spatial measurement range into resolu-
tion cells, is depicted on the left. The sensor measures the reflected
power and Doppler shift in the reflected signal for every resolution
cell, giving two data matrices, the intensity image and the frequency
image (middle). The grey value of pixels in the intensity image
refers to the reflected power while the grey value of pixels in the
frequency image correspondes to the measured Doppler shift. A
grey value of 128 indicates a Doppler shift of 0 Hz.

based pedestrian recognition will be used together with other
sensor systems in practice, tracking is more benefitial on a
higher application level.

Furthermore, this paper highlights the differentiation be-
tween static objects and pedestrians. This is challenging be-140

cause walking pedestrians have very low speed compared to
the sensor’s velocity measurement resolution of 0.77 m/s.
Other objects in typical traffic scenarios, e.g. cars, exhibit
significant higher velocities and can be distinguished from
pedestrians with less effort.145

3.1 Raw data preprocessing

The signal processing chain starts with noise reduction and
segmentation in the intensity image. Because simple low-
pass filtering would blur the critical border between objects
and surrounding, a combined bit-depth reduction and thresh-150

olding approach was used. The segmentation algorithm was
developed in (Freund, 2007) and creates objects, i.e. sets of
spatial neighboured sensor data that is likely from one phys-
ical object. This segmentation step has big influence on the
classification result because it decides where the border is155

drawn between objects and the noisy surrounding. In the
border area of objects, the frequency image contains arte-
facts that can extensively bias the classification algorithm. If
the border between objects and the surrounding is drawn too
close to the reflection center of objects, not all related resolu-160

tion cells get attached to the object and important information
about the object gets lost. The optimum in this trade-off is
highly dependent on background noise in the intensity image.

In the frequency image, the ego-speed of the measurement
vehicle vego has to be compensated. If the vehicle moves165

with vego, a static object in front of the vehicle has a relative
velocity of −vego, which is measured by the sensor. Experi-
ments showed that the vehicle’s ego-speed signal, generated
by the vehicle’s dynamic stability control system, is too noisy
for satisfactory compensation. To eliminate this error, an ob-170

ject which is known to be static is needed in the radar raw
data, e.g. a tree or a road barrier that was identified by an-
other sensor system like a camera. Using this information,
the frequency image can be recompensated with sufficient
accuracy for the following recognition process. In this pa-175

per, the information about which objects in the radar data
are static was provided by hand to allow experiments with
vego 6= 0.

3.2 Feature extraction

In this section we propose a set of five object features that180

change reliably and significantly when the object, repre-
sented by the segmented raw radar data, is a pedestrian or
a static object. Since pedestrians are radar point targets (Ya-
mada, 2005), their shape in the intensity image is the same
as the one of any small reflective object. Yamada also shows185

that the strength of a radar signal, reflected by a pedestrian,
and thus the intensity in the intensity image, is highly fluc-
tuative (about 20 dB). Hence, with information from the in-
tensity image only, it is impossible to distinguish between
pedestrians and small arbitrary objects. Nevertheless, in this190

paper two object features from the intensity image, a size
and a shape factor, are calculated to exclude big or elongate
objects from potential pedestrians.

Figure 3 reveals that in a resolution cell the reflected power
value from the intensity image and the radial relative veloc-195

ity value from the frequency image are statistically uncorre-
lated. The graphs depict the frequency distributions of res-
olution cells with certain reflection intensity and radial rel-
ative velocity for different types of objects. The statistical
uncorrelation means that the mean and variance of a resolu-200

tion cell’s radial velocity value are not correlated to its inten-
sity value. Therefore, principal component analysis (PCA)
or similar methods to transform possibly correlated data sets
into uncorrelated data sets are obsolete. Another interesting
point is that the relative velocity information is not correlated205

with the distance from the object center since resolution cells
with high intensity are located at the center of an object.

While the variance of the intensity values is almost equal
for moving pedestrians and static objects, the variance of
the radial velocity values varies significantly. The classifica-210

tion algorithm distinguishes pedestrians from static objects
mainly using the higher variance of the relative radial veloc-
ity components in the frequency image data of pedestrians
(see Sect. 3.2.3). Three object features from the frequency
image data are calculated for every object, giving in combi-215

nation with two object features from the intensity image an

Fig. 2. Example of a pedestrian’s radar raw data. The principle,
how the sensor divides its spatial measurement range into resolu-
tion cells, is depicted on the left. The sensor measures the reflected
power and Doppler shift in the reflected signal for every resolution
cell, giving two data matrices, the intensity image and the frequency
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refers to the reflected power while the grey value of pixels in the
frequency image correspondes to the measured Doppler shift. A
grey value of 128 indicates a Doppler shift of 0 Hz.

Furthermore, this paper highlights the differentiation be-
tween static objects and pedestrians. This is challenging be-
cause walking pedestrians have very low speed compared to
the sensor’s velocity measurement resolution of 0.77 m s−1.
Other objects in typical traffic scenarios, e.g. cars, exhibit
significant higher velocities and can be distinguished from
pedestrians with less effort.

3.1 Raw data preprocessing

The signal processing chain starts with noise reduction and
segmentation in the intensity image. Because simple low-
pass filtering would blur the critical border between objects
and surrounding, a combined bit-depth reduction and thresh-
olding approach was used. The segmentation algorithm was
developed in (Freund, 2007) and creates objects, i.e. sets of
spatial neighboured sensor data that is likely from one phys-
ical object. This segmentation step has big influence on the
classification result because it decides where the border is
drawn between objects and the noisy surrounding. In the
border area of objects, the frequency image contains arte-
facts that can extensively bias the classification algorithm. If
the border between objects and the surrounding is drawn too
close to the reflection center of objects, not all related resolu-
tion cells get attached to the object and important information
about the object gets lost. The optimum in this trade-off is
highly dependent on background noise in the intensity image.

In the frequency image, the ego-speed of the measurement
vehiclevegohas to be compensated. If the vehicle moves with
vego, a static object in front of the vehicle has a relative veloc-

ity of −vego, which is measured by the sensor. Experiments
showed that the vehicle’s ego-speed signal, generated by the
vehicle’s dynamic stability control system, is too noisy for
satisfactory compensation. To eliminate this error, an object
which is known to be static is needed in the radar raw data,
e.g. a tree or a road barrier that was identified by another
sensor system like a camera. Using this information, the fre-
quency image can be recompensated with sufficient accuracy
for the following recognition process. In this paper, the in-
formation about which objects in the radar data are static was
provided by hand to allow experiments withvego 6= 0.

3.2 Feature extraction

In this section we propose a set of five object features that
change reliably and significantly when the object, repre-
sented by the segmented raw radar data, is a pedestrian or
a static object. Since pedestrians are radar point targets (Ya-
mada, 2005), their shape in the intensity image is the same
as the one of any small reflective object. Yamada also shows
that the strength of a radar signal, reflected by a pedestrian,
and thus the intensity in the intensity image, is highly fluc-
tuative (about 20 dB). Hence, with information from the in-
tensity image only, it is impossible to distinguish between
pedestrians and small arbitrary objects. Nevertheless, in this
paper two object features from the intensity image, a size
and a shape factor, are calculated to exclude big or elongate
objects from potential pedestrians.

Figure3 reveals that in a resolution cell the reflected power
value from the intensity image and the radial relative veloc-
ity value from the frequency image are statistically uncorre-
lated. The graphs depict the frequency distributions of res-
olution cells with certain reflection intensity and radial rel-
ative velocity for different types of objects. The statistical
uncorrelation means that the mean and variance of a resolu-
tion cell’s radial velocity value are not correlated to its inten-
sity value. Therefore, principal component analysis (PCA)
or similar methods to transform possibly correlated data sets
into uncorrelated data sets are obsolete. Another interesting
point is that the relative velocity information is not correlated
with the distance from the object center since resolution cells
with high intensity are located at the center of an object.

While the variance of the intensity values is almost equal
for moving pedestrians and static objects, the variance of
the radial velocity values varies significantly. The classifica-
tion algorithm distinguishes pedestrians from static objects
mainly using the higher variance of the relative radial veloc-
ity components in the frequency image data of pedestrians
(see Sect.3.2.3). Three object features from the frequency
image data are calculated for every object, giving in combi-
nation with two object features from the intensity image an
only five dimensional feature space which is sufficient for
proper classification.

www.adv-radio-sci.net/10/45/2012/ Adv. Radio Sci., 10, 45–55, 2012



48 A. Bartsch et al.: Pedestrian recognition using automotive radar sensors
4 A. Bartsch et al.: Pedestrian recognition using automotive radar sensors

radially moving pedestrian

reflection intensity / dBFS

re
la

tiv
e 

ra
di

al
 v

el
oc

ity
 / 

m
/s

!80 !70 !60 !50 !40 !30
!1

0

1

2

3

laterally moving pedestrian

reflection intensity / dBFS
re

la
tiv

e 
ra

di
al

 v
el

oc
ity

 / 
m

/s
!80 !70 !60 !50 !40 !30
!1

0

1

2

3

static objects

reflection intensity / dBFS

re
la

tiv
e 

ra
di

al
 v

el
oc

ity
 / 

m
/s

!80 !70 !60 !50 !40 !30
!1

0

1

2

3

Fig. 3. Relative frequency distributions of resolution cells with certain reflection intensity and relative radial velocity for different object
types. The frequency distributions were retrieved from approximately 150 data frames giving about 2000 data points per graph. Since mean
and variance of the relative radial velocity values are independent of the reflection intensity, information from the intensity image and from
the frequency image is statistically uncorrelated.

only five dimensional feature space which is sufficient for
proper classification.

3.2.1 The size of an object

The size of an object is a measure that is proportional to220

an object’s mean radius and simply the square root of the
distance-compensated number of resolution cells assigned to
the object. Distance compensation is necessary because with
increasing distance r from the sensor, the received power PD

decreases with 1/r4 and the width of the spatial resolution225

cells get larger since they are always 1◦in azimuth. With n′

as the distance-compensated number of resolution cells of
the object, m1 =

√
n′ is the first object feature.

3.2.2 The shape of an object

The shape of a point target in the radar raw data is deter-230

mined by the sensor’s antenna pattern. In the intensity image,
a small object has an elliptical shape with the longer axis in
azimuthal direction and an axis ratio of about D/d= 1.8.
To obtain an object’s shape feature, the difference of the ob-
ject’s shape compared to an ideal ellipse is calculated. An235

ideal ellipse of equal area and half-axes a, b is placed over
the object’s center (rc,φc) (see Fig. 4). In this coordinate
system, the ith resolution cell of an object with n cells has a
local coordinate (x′i, y

′
i). A distance measure for a cell to the

ellipse’s border is given by240

δi =
y′2i
a2

+
x′2i
b2
−1 , a=

D

d
·b , b=

√
n ·d
π ·D

. (1)

The size-normalized cumulative shape error gives the second
object feature m2:

m2 =
1√
n

∑
i:δi>0

δ2i (2)

Fig. 4. An illustration of the sensor coordinate system, an object
with center at (rc, φc) and a local coordinate system for calculating
the object’s shape factor using (x′, y′) coordinates. The maximum
beam steering angle φ̂ is the border of the azimuthal measurement
range.

3.2.3 Doppler spectrum245

The Doppler spectrum (DS) is the histogram of an object’s
Doppler shift information, extracted from all resolution cells
assigned to the object. It is a density function that tells
how prominent different relative velocities are in the object.
The relative radial velocity axis v is divided into small in-250

tervals. Resolution cells with radial relative velocity vrr in-
crease the counter for the corresponding intervals [vi,vj [ with
vi ≤ |vrr|< vj . To get a densitiy function DDoppler, nor-
malization is necessary such that

∫
DDopplerdv = 1 holds.

Figure 5 depicts sample Doppler spectra, averaged over sev-255

eral hundred independent data frames. The wavy structure
of the DS, especially of walking pedestrians, is not caused
by movements of the object itself. The maxima of the wavy
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the frequency image is statistically uncorrelated.
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Fig. 3. Relative frequency distributions of resolution cells with certain reflection intensity and relative radial velocity for different object
types. The frequency distributions were retrieved from approximately 150 data frames giving about 2000 data points per graph. Since mean
and variance of the relative radial velocity values are independent of the reflection intensity, information from the intensity image and from
the frequency image is statistically uncorrelated.
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Fig. 4. An illustration of the sensor coordinate system, an object
with center at (rc, φc) and a local coordinate system for calculating
the object’s shape factor using (x′, y′) coordinates. The maximum
beam steering angle φ̂ is the border of the azimuthal measurement
range.

3.2.3 Doppler spectrum245

The Doppler spectrum (DS) is the histogram of an object’s
Doppler shift information, extracted from all resolution cells
assigned to the object. It is a density function that tells
how prominent different relative velocities are in the object.
The relative radial velocity axis v is divided into small in-250

tervals. Resolution cells with radial relative velocity vrr in-
crease the counter for the corresponding intervals [vi,vj [ with
vi ≤ |vrr|< vj . To get a densitiy function DDoppler, nor-
malization is necessary such that
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of the DS, especially of walking pedestrians, is not caused
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Fig. 4. An illustration of the sensor coordinate system, an object
with center at(rc, φc) and a local coordinate system for calculating
the object’s shape factor using(x′, y′) coordinates. The maximum
beam steering anglêφ is the border of the azimuthal measurement
range.

3.2.3 Doppler spectrum

The Doppler spectrum (DS) is the histogram of an object’s
Doppler shift information, extracted from all resolution cells
assigned to the object. It is a density function that tells
how prominent different relative velocities are in the ob-
ject. The relative radial velocity axisv is divided into small
intervals. Resolution cells with radial relative velocityvrr
increase the counter for the corresponding intervals[vi,vj [

with vi ≤ |vrr| < vj . To get a densitiy functionDDoppler, nor-
malization is necessary such that

∫
DDopplerdv = 1 holds.

Figure 5 depicts sample Doppler spectra, averaged over
several hundred independent data frames. The wavy
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Fig. 5. Averaged Doppler spectra of radial moving pedestrians and
static objects. The Doppler spectrum function DDoppler is plotted
over the relative radial velocity axis v. Ego-speed compensation
is not necessary because the data was recorded with a non-moving
radar sensor.

structure are always located at the theoretical frequency bins
(if interpolation would not be used), and the local minima260

right inbetween, independent from the object’s speed. Thus,
the wavy structure is an artefact caused by the interpolation
algorithm in the Doppler frequency measurement inside the
radar sensor.

It can be clearly seen in Fig. 5 that a radial moving pedes-265

trian has a broad DS from 0 – 2.5 m/s. In contrast, DS of
static objects are very narrow since they only cover veloci-
ties from 0 – 0.4 m/s.

To boil down the shape of a DS to key figures, three in-
tervals [v0,v1],[v1,v2],[v2,v3] are considered (see Tab. 2 for270

actual values of v0-v2). The Doppler spectrum density func-
tion DDoppler is integrated over these intervals, giving three
object features m3-m5, representing the proportional distri-
bution of radial relative velocities in the object over the three
intervals.275

m3 =
v1∫
v0

DDopplerdv (3)

m4 =
v2∫
v1

DDopplerdv (4)

m5 =
v3∫
v2

DDopplerdv (5)

Radial velocities greater than 3 m/s are neglected since they
are unlikely for pedestrians and thus not the matter in this280

paper.

Table 2. Relative radial velocity interval borders for Doppler spec-
trum feature extraction.

v0 v1 v2 v3

0 m/s 0.38 m/s 1.15 m/s 3 m/s

3.3 Classification

The challenge in the classification step is to decide whether
an object is a pedestrian or a static object by using the corre-
sponding feature vector m = [m1,...,m5]

T only. The deci-285

sion process is based on the knowledge that some values of
these features are more probable if the object is of a certain
class C. For example, a static object is very unlikely to have
a significant fraction of Doppler information in the [v2,v3]
interval. Hence, a value of m3 close to one is very unlikely290

for the class “Static Object”.
Both valid classes, P for pedestrians and S for static

objects, have a vector valued fuzzy membership func-
tion fC : R5 → [0,1]5, C ∈ {P ; S} that maps the feature
vector m of an object to a membership value vector295

uC = [µC,1,...,µC,5]
T for the corresponding class.

uC = fC(m), µC,i = fC,i(mi) (6)

A value of µC,i close to one states a high probability of mi

for the corresponding class C while a small value of µC,i
near zero indicates that the value of mi is unlikely for that300

class. In this way, the membership values µC,i of the five
object features of every object are calculated for both classes
P and S. Graphs of the membership functions fC,i are plot-
ted in Fig. 6. The functions fS,1 and fS,2 are not defined
because static objects can be of any shape and size. Hence,305

all values of m1 and m2 have the same likelihood for the
class S and thus their membership values for class S are sup-
pressed in further calculations by giving them zero weight in
the weighting step.

To decide whether class P or S is more appropriate for310

an object, given fuzzy membership vectors uP and uS , the
membership vectors are mapped to real membership values
µP , µS ∈ [0,1]. This is done by a weighted average of the
membership vectors’ components

µC =
wT
C ·uC

wT
C ·15

, (7)315

where wC = [wC,1,...,wC,5]
T is the weighting vector for a

class C ∈{P ;S} and 1p is a p-dimensional column vector of
ones.

Experiments have shown that constant weighting vectors
wC are not sufficient for proper classification. Instead, the320

combination of the membership values µC,i must be closer
to a logical conjunction. This is achieved by allowing the
weight vector wC(uC) to be dependent on uC , meaning

Fig. 5. Averaged Doppler spectra of radial moving pedestrians and
static objects. The Doppler spectrum functionDDoppler is plotted
over the relative radial velocity axisv. Ego-speed compensation
is not necessary because the data was recorded with a non-moving
radar sensor.

structure of the DS, especially of walking pedestrians, is not
caused by movements of the object itself. The maxima of
the wavy structure are always located at the theoretical fre-
quency bins (if interpolation would not be used), and the lo-
cal minima right inbetween, independent from the object’s
speed. Thus, the wavy structure is an artefact caused by the
interpolation algorithm in the Doppler frequency measure-
ment inside the radar sensor.

It can be clearly seen in Fig.5 that a radial moving pedes-
trian has a broad DS from 0–2.5 m s−1. In contrast, DS of
static objects are very narrow since they only cover veloci-
ties from 0–0.4 m s−1.

To boil down the shape of a DS to key figures, three inter-
vals [v0,v1],[v1,v2],[v2,v3] are considered (see Table2 for
actual values ofv0-v2). The Doppler spectrum density func-
tion DDoppler is integrated over these intervals, giving three
object featuresm3–m5, representing the proportional distri-
bution of radial relative velocities in the object over the three
intervals.

m3 =

v1∫
v0

DDopplerdv (3)

m4 =

v2∫
v1

DDopplerdv (4)

m5 =

v3∫
v2

DDopplerdv (5)

Radial velocities greater than 3 m s−1 are neglected since
they are unlikely to be in pedestrians’ DS and thus not the
matter in this paper.

Table 2. Relative radial velocity interval borders for Doppler spec-
trum feature extraction.

v0 v1 v2 v3

0 m s−1 0.38 m s−1 1.15 m s−1 3 m s−1

3.3 Classification

The challenge in the classification step is to decide whether
an object is a pedestrian or a static object by using the cor-
responding feature vectorm = [m1,...,m5]

T only. The deci-
sion process is based on the knowledge that some values of
these features are more probable if the object is of a certain
classC. For example, a static object is very unlikely to have
a significant fraction of Doppler information in the[v2,v3]

interval. Hence, a value ofm3 close to one is very unlikely
for the class “Static Object”.

Both valid classes,P for pedestrians andS for static
objects, have a vector valued fuzzy membership func-
tion f C : R5

→ [0,1]
5, C ∈ {P ; S} that maps the feature

vector m of an object to a membership value vector
uC = [µC,1,...,µC,5]

T for the corresponding class.

uC = f C(m), µC,i = fC,i(mi) (6)

A value of µC,i close to one states a high probability of
mi for the corresponding classC while a small value ofµC,i

near zero indicates that the value ofmi is unlikely for that
class. In this way, the membership valuesµC,i of the five
object features of every object are calculated for both classes
P andS. Graphs of the membership functionsfC,i are plot-
ted in Fig.6. The functionsfS,1 andfS,2 are not defined
because static objects can be of any shape and size. Hence,
all values ofm1 and m2 have the same likelihood for the
class S and thus their membership values for classS are sup-
pressed in further calculations by giving them zero weight in
the weighting step.

To decide whether classP or S is more appropriate for
an object, given fuzzy membership vectorsuP anduS , the
membership vectors are mapped to real membership values
µP , µS ∈ [0,1]. This is done by a weighted average of the
membership vectors’ components

µC =
wT

C ·uC∑
i

wC,i

, (7)

wherewC = [wC,1,...,wC,5]
T is the weighting vector for a

classC ∈ {P ;S}.
Experiments have shown that constant weighting vectors

wC are not sufficient for proper classification. Instead, the
combination of the membership valuesµC,i must be closer
to a logical conjunction. This is achieved by allowing the
weight vectorwC(uC) to be dependent onuC , meaning that
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Fig. 6. Plots of membership functions fP,i and fS,i that map values of object features mi to membership values µP,i and µS,i for the classes
P for pedestrians and S for static objects.
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Fig. 7. Example of a single frame Doppler spectrum of a pedestrian.

that low membership values µC,i are weighted stronger by
increasing wC,i exponentionally:325

wC,i = ξC,i ·w0
C,i ·

(
1+γ ·e−

µC,i
τ

)
. (8)

The exponential function for increasing the base weight w0
C,i

was chosen empirically. While γ and τ parametrize this
value dependent weighting, ξC,i is used for compensating a
certain effect when a pedestrian has an unusual Doppler fre-330

quency distribution. In Fig. 7, a DS of a walking pedestrian is
depicted, obtained from a single data frame. In this case the
object does not contain a resolution cell with a relative radial
velocity in the [v1,v2] interval. Hence, the object feature m4

will be zero and since there are some cells in the [v2,v3] in-335

terval, m5> 0 will hold. Because m4 equals zero, its weight

wP,4 will rise exponentially, and the overall probability µP
for this object to be a pedestrian will be low. This conclusion
would be wrong because the characteristic Doppler informa-
tion for a pedestrian is just concentrated in the [v2,v3] inter-340

val rather than evenly distributed over the [v1,v3] interval. In
this case, where m4 has a very low and m5 a high value, ξP,4
is chosen small (ξP,4 ≈ 1/γ) to reverse the value dependent
weighting. Analogously, ξP,5 is chosen if m5 is very low in
value while a significant share of Doppler information is in345

the [v1,v2] interval. Since this cross-bonded value dependent
weighting affects only wP,4 and wP,5, all ξC,i except ξP,4
and ξP,5 have a constant value of one.

The decision whether an object is classified as a pedestrian
or as a static object and, therefore, is assigned to the class350

P or class S, is made by comparing the united membership
values µP and µS . If µP >µS , the object is assigned to the
class P and otherwise to class S. If both membership values
µP and µS are small and hence the object is unlikely to be
a pedestrian as well as a static object, it is declared as an355

unknown object. This happens almost exclusively in case of
segmentation errors.

4 Experimental results

Because a binary classifier is used and the number of un-
known declared objects is negligible, the quality of the360

pedestrian recognition system can be measured by only two
key figures, rTP and rFP. The true positive rate rTP tells
what fraction of real pedestrians is correctly classified as
such. On the other hand, the false positive rate rFP or
false alarm rate tells what fraction of static objects are clas-365

sified incorrectly as pedestrians. The true negative rate
rTN = 1−rFP and the false negative rate rFN = 1−rTP are
implied under the above-mentioned assuptions.

Fig. 6. Plots of membership functionsfP,i andfS,i that map values of object featuresmi to membership valuesµP,i andµS,i for the
classesP for pedestrians andS for static objects.
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Fig. 7. Example of a single frame Doppler spectrum of a pedestrian.
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increasing wC,i exponentionally:325

wC,i = ξC,i ·w0
C,i ·

(
1+γ ·e−

µC,i
τ

)
. (8)

The exponential function for increasing the base weight w0
C,i

was chosen empirically. While γ and τ parametrize this
value dependent weighting, ξC,i is used for compensating a
certain effect when a pedestrian has an unusual Doppler fre-330

quency distribution. In Fig. 7, a DS of a walking pedestrian is
depicted, obtained from a single data frame. In this case the
object does not contain a resolution cell with a relative radial
velocity in the [v1,v2] interval. Hence, the object feature m4

will be zero and since there are some cells in the [v2,v3] in-335

terval, m5> 0 will hold. Because m4 equals zero, its weight

wP,4 will rise exponentially, and the overall probability µP
for this object to be a pedestrian will be low. This conclusion
would be wrong because the characteristic Doppler informa-
tion for a pedestrian is just concentrated in the [v2,v3] inter-340

val rather than evenly distributed over the [v1,v3] interval. In
this case, where m4 has a very low and m5 a high value, ξP,4
is chosen small (ξP,4 ≈ 1/γ) to reverse the value dependent
weighting. Analogously, ξP,5 is chosen if m5 is very low in
value while a significant share of Doppler information is in345

the [v1,v2] interval. Since this cross-bonded value dependent
weighting affects only wP,4 and wP,5, all ξC,i except ξP,4
and ξP,5 have a constant value of one.

The decision whether an object is classified as a pedestrian
or as a static object and, therefore, is assigned to the class350

P or class S, is made by comparing the united membership
values µP and µS . If µP >µS , the object is assigned to the
class P and otherwise to class S. If both membership values
µP and µS are small and hence the object is unlikely to be
a pedestrian as well as a static object, it is declared as an355

unknown object. This happens almost exclusively in case of
segmentation errors.
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Because a binary classifier is used and the number of un-
known declared objects is negligible, the quality of the360

pedestrian recognition system can be measured by only two
key figures, rTP and rFP. The true positive rate rTP tells
what fraction of real pedestrians is correctly classified as
such. On the other hand, the false positive rate rFP or
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sified incorrectly as pedestrians. The true negative rate
rTN = 1−rFP and the false negative rate rFN = 1−rTP are
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low membership valuesµC,i are weighted stronger by in-
creasingwC,i exponentionally:

wC,i = ξC,i ·w
0
C,i ·

(
1+γ ·e−

µC,i
τ

)
. (8)

The exponential function for increasing the base weight
w0

C,i was chosen empirically. Whileγ andτ parametrize this
value dependent weighting,ξC,i is used for compensating a
certain effect when a pedestrian has an unusual Doppler fre-
quency distribution. In Fig.7, a DS of a walking pedestrian is
depicted, obtained from a single data frame. In this case the
object does not contain a resolution cell with a relative radial

velocity in the[v1,v2] interval. Hence, the object featurem4
will be zero and since there are some cells in the[v2,v3] in-
terval,m5 > 0 will hold. Becausem4 equals zero, its weight
wP,4 will rise exponentially, and the overall probabilityµP

for this object to be a pedestrian will be low. This conclusion
would be wrong because the characteristic Doppler informa-
tion for a pedestrian is just concentrated in the[v2,v3] inter-
val rather than evenly distributed over the[v1,v3] interval. In
this case, wherem4 has a very low andm5 a high value,ξP,4
is chosen small (ξP,4 ≈ 1/γ ) to reverse the value dependent
weighting. Analogously,ξP,5 is chosen ifm5 is very low in
value while a significant share of Doppler information is in
the [v1,v2] interval. Since this cross-bonded value depen-
dent weighting affects onlywP,4 andwP,5, all ξC,i except
ξP,4 andξP,5 have a constant value of one.

The decision whether an object is classified as a pedestrian
or as a static object and, therefore, is assigned to the class
P or classS, is made by comparing the united membership
valuesµP andµS . If µP > µS , the object is assigned to the
classP and otherwise to classS. If both membership values
µP andµS are small and hence the object is unlikely to be
a pedestrian as well as a static object, it is declared as an
unknown object. This happens almost exclusively in case of
segmentation errors.

4 Experimental results

Because a binary classifier is used and the number of un-
known declared objects is negligible, the quality of the
pedestrian recognition system can be measured by only two
key figures,rTP andrFP. The true positive raterTP tells what
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Fig. 8. Averaged Doppler spectra of a walking pedestrian for dif-
ferent walking paces. The angle of movement was ϕ= 45◦ in all
cases. In the investigated range of walking paces from 0.58 m/s to
1.7 m/s, the DS is independent from the pedestrian’s walking pace.

The test sample set consisted in every experiment of about
150 to 600 samples if not mentioned otherwise.370

4.1 Influences on the Doppler spectrum

A walking pedestrian’s DS turned out to be very stable in
terms of outside influences compared to other tested object
features from the frequency image. It is not affected by the
height in which the radar beam hits the person, due to differ-375

ent angles of elevation of the antenna beam as long as enough
power is reflected for proper segmentation in the intensity
image. Furthermore, the DS is fairly independent from the
walking pedestrian’s pace (see Fig. 8). Walking paces from
0.58 m/s to 1.7 m/s were tested and did not affect the pedes-380

trian’s DS because many different velocities within the seg-
mented object occured due to arm and leg swing. Neverthe-
less, the DS obviously is dependent on the pedestrian’s angle
of movement. A radar sensor can only measure the radial
component vrr of an object’s relative velocity vr. A good ap-385

proximation is to assume the pedestrian centered in front of
the sensor, i.e. φ= 0 (see Fig. 9). By using this approxima-
tion, the radial velocity component can be simplified to

vrr = vr ·cosϕ (9)

and it approaches zero for angles of movement near ϕ= 90◦.390

Hence, lateral moving pedestrians have DS very similar to
static objects. In Fig. 10, averaged DS of a walking pedes-
trian are plotted for different angles of movement ϕ. The
closer ϕ approaches 90◦, the DS shows increasing similarity
to the one of static objects (compare to Fig. 5). Hence, the395

true positive rate rTP after classification reaches 95.3 % for
radially moving pedestrians (ϕ= 0◦) and drops to 39.5 % for

Fig. 9. A walking pedestrian with velocity vr relative to the sensor
with angle of movement ϕ has a radial relative velocity component
vrr that is measurable by the radar sensor.
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Fig. 10. Averaged Doppler spectra of a walking pedestrian over
various angles of movement ϕ.

laterally moving pedestrians (ϕ= 90◦). Figure 11 exhibits
that the classification result is better than 88 % for |ϕ| ≤ 75◦.

400

Backtracking from classification decisions to radar raw
data, to see whether the sensor data or the classification al-
gorithm is responsible for misclassified data frames, was ex-
tensively used in empirically optimizing the classifier. As a
result, almost all misclassifications of pedestrians as static405

objects can now be tracked down to sensor data that is indis-
tinguishable, even by hand, from a static object’s raw data. In
Fig. 12, the averaged DS of correct and misclassified pedes-
trians are plotted as well as the averaged DS of static objects
for comparison. The DS of the misclassified pedestrians is410

almost the same as the one of static objects. Thus, in the
case of misclassified pedestrians, the sensor does not deliver
statistically different data from static objects and hence the

Fig. 8. Averaged Doppler spectra of a walking pedestrian for dif-
ferent walking paces. The angle of movement wasϕ = 45◦ in all
cases. In the investigated range of walking paces from 0.58 m s−1

to 1.7 m s−1, the DS is independent from the pedestrian’s walking
pace.

fraction of real pedestrians is correctly classified as such. On
the other hand, the false positive raterFP or false alarm rate
tells what fraction of static objects are classified incorrectly
as pedestrians. The true negative raterTN = 1−rFP and the
false negative raterFN = 1−rTP are implied under the above-
mentioned assuptions.

The test sample set consisted in every experiment of about
150 to 600 samples if not mentioned otherwise.

4.1 Influences on the Doppler spectrum

A walking pedestrian’s DS turned out to be very stable in
terms of outside influences compared to other tested object
features from the frequency image. It is not affected by the
height in which the radar beam hits the person, due to differ-
ent angles of elevation of the antenna beam as long as enough
power is reflected for proper segmentation in the intensity
image. Furthermore, the DS is fairly independent from the
walking pedestrian’s pace (see Fig.8). Walking paces from
0.58 m s−1 to 1.7 m s−1 were tested and did not affect the
pedestrian’s DS because many different velocities within the
segmented object occured due to arm and leg swing.

Nevertheless, the DS obviously is dependent on the pedes-
trian’s angle of movement. A radar sensor can only measure
the radial componentvrr of an object’s relative velocityvr. A
good approximation is to assume the pedestrian centered in
front of the sensor, i.e.φ = 0 (see Fig.9). By using this ap-
proximation, the radial velocity component can be simplified
to

vrr = vr ·cosϕ (9)
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terms of outside influences compared to other tested object
features from the frequency image. It is not affected by the
height in which the radar beam hits the person, due to differ-375

ent angles of elevation of the antenna beam as long as enough
power is reflected for proper segmentation in the intensity
image. Furthermore, the DS is fairly independent from the
walking pedestrian’s pace (see Fig. 8). Walking paces from
0.58 m/s to 1.7 m/s were tested and did not affect the pedes-380

trian’s DS because many different velocities within the seg-
mented object occured due to arm and leg swing. Neverthe-
less, the DS obviously is dependent on the pedestrian’s angle
of movement. A radar sensor can only measure the radial
component vrr of an object’s relative velocity vr. A good ap-385

proximation is to assume the pedestrian centered in front of
the sensor, i.e. φ= 0 (see Fig. 9). By using this approxima-
tion, the radial velocity component can be simplified to

vrr = vr ·cosϕ (9)

and it approaches zero for angles of movement near ϕ= 90◦.390

Hence, lateral moving pedestrians have DS very similar to
static objects. In Fig. 10, averaged DS of a walking pedes-
trian are plotted for different angles of movement ϕ. The
closer ϕ approaches 90◦, the DS shows increasing similarity
to the one of static objects (compare to Fig. 5). Hence, the395

true positive rate rTP after classification reaches 95.3 % for
radially moving pedestrians (ϕ= 0◦) and drops to 39.5 % for
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with angle of movement ϕ has a radial relative velocity component
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laterally moving pedestrians (ϕ= 90◦). Figure 11 exhibits
that the classification result is better than 88 % for |ϕ| ≤ 75◦.

400

Backtracking from classification decisions to radar raw
data, to see whether the sensor data or the classification al-
gorithm is responsible for misclassified data frames, was ex-
tensively used in empirically optimizing the classifier. As a
result, almost all misclassifications of pedestrians as static405

objects can now be tracked down to sensor data that is indis-
tinguishable, even by hand, from a static object’s raw data. In
Fig. 12, the averaged DS of correct and misclassified pedes-
trians are plotted as well as the averaged DS of static objects
for comparison. The DS of the misclassified pedestrians is410

almost the same as the one of static objects. Thus, in the
case of misclassified pedestrians, the sensor does not deliver
statistically different data from static objects and hence the

Fig. 9. A walking pedestrian with velocityvr relative to the sensor
with angle of movementϕ has a radial relative velocity component
vrr that is measurable by the radar sensor.
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Fig. 8. Averaged Doppler spectra of a walking pedestrian for dif-
ferent walking paces. The angle of movement was ϕ= 45◦ in all
cases. In the investigated range of walking paces from 0.58 m/s to
1.7 m/s, the DS is independent from the pedestrian’s walking pace.

The test sample set consisted in every experiment of about
150 to 600 samples if not mentioned otherwise.370

4.1 Influences on the Doppler spectrum

A walking pedestrian’s DS turned out to be very stable in
terms of outside influences compared to other tested object
features from the frequency image. It is not affected by the
height in which the radar beam hits the person, due to differ-375

ent angles of elevation of the antenna beam as long as enough
power is reflected for proper segmentation in the intensity
image. Furthermore, the DS is fairly independent from the
walking pedestrian’s pace (see Fig. 8). Walking paces from
0.58 m/s to 1.7 m/s were tested and did not affect the pedes-380

trian’s DS because many different velocities within the seg-
mented object occured due to arm and leg swing. Neverthe-
less, the DS obviously is dependent on the pedestrian’s angle
of movement. A radar sensor can only measure the radial
component vrr of an object’s relative velocity vr. A good ap-385

proximation is to assume the pedestrian centered in front of
the sensor, i.e. φ= 0 (see Fig. 9). By using this approxima-
tion, the radial velocity component can be simplified to

vrr = vr ·cosϕ (9)

and it approaches zero for angles of movement near ϕ= 90◦.390

Hence, lateral moving pedestrians have DS very similar to
static objects. In Fig. 10, averaged DS of a walking pedes-
trian are plotted for different angles of movement ϕ. The
closer ϕ approaches 90◦, the DS shows increasing similarity
to the one of static objects (compare to Fig. 5). Hence, the395

true positive rate rTP after classification reaches 95.3 % for
radially moving pedestrians (ϕ= 0◦) and drops to 39.5 % for
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various angles of movement ϕ.

laterally moving pedestrians (ϕ= 90◦). Figure 11 exhibits
that the classification result is better than 88 % for |ϕ| ≤ 75◦.
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Backtracking from classification decisions to radar raw
data, to see whether the sensor data or the classification al-
gorithm is responsible for misclassified data frames, was ex-
tensively used in empirically optimizing the classifier. As a
result, almost all misclassifications of pedestrians as static405

objects can now be tracked down to sensor data that is indis-
tinguishable, even by hand, from a static object’s raw data. In
Fig. 12, the averaged DS of correct and misclassified pedes-
trians are plotted as well as the averaged DS of static objects
for comparison. The DS of the misclassified pedestrians is410

almost the same as the one of static objects. Thus, in the
case of misclassified pedestrians, the sensor does not deliver
statistically different data from static objects and hence the
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and it approaches zero for angles of movement nearϕ = 90◦.
Hence, lateral moving pedestrians have DS very similar to
static objects. In Fig.10, averaged DS of a walking pedes-
trian are plotted for different angles of movementϕ. The
closerϕ approaches 90◦, the DS shows increasing similarity
to the one of static objects (compare to Fig.5). Hence, the
true positive raterTP after classification reaches 95.3 % for
radially moving pedestrians (ϕ = 0◦) and drops to 39.5 % for
laterally moving pedestrians (ϕ = 90◦). Figure11 exhibits
that the classification result is better than 88 % for|ϕ| ≤ 75◦.

Backtracking from classification decisions to radar raw
data, to see whether the sensor data or the classification al-
gorithm is responsible for misclassified data frames, was ex-
tensively used in empirically optimizing the classifier. As a
result, almost all misclassifications of pedestrians as static
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Fig. 11. Classification result rTP for pedestrians walking with dif-
ferent angles of movement ϕ.
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Fig. 12. Averaged Doppler spectra of correct classified and incor-
rect classified pedestrians walking with various angles of move-
ment. The similarity of Doppler spectra of incorrect classified
pedestrians and static objects is a limitation of the radar sensor in
pedestrian recognition, since the sensor does not deliver statistical
different in this case.

developed classification algorithm is optimal within the re-
strictions of the chosen method for pedestrian recognition.415

4.2 Occluded pedestrians

In this paper, two types of occlusions were investigated. In
the first case, a pedestrian is hidden behind a single parked
car and in the second case the pedestrian is in the gap be-420

tween two parked cars (see Fig. 13). In both cases the
pedestrian moves laterally while being occluded such that

Fig. 13. Top: A lateral moving pedestrian is occluded behind a
single parked car. Bottom: Now the lateral moving pedestrian is in
a gap between two parked cars, where the radar wave can propagate
due to multiple reflections.

the pedestrian is not in the line of sight to the sensor. The
lateral movement is typical for pedestrians who try to cross
the street without looking.425

In the case where the pedestrian is in the shadowed area
hidden behind one parked vehicle at the side of the road, the
radar waves cannot hit the pedestrian directly. Therefore, the
signal reflected by the pedestrian and received by the sen-
sor is very weak. As a result, the pedestrian blurs with the430

blocking car and often the segmentation algorithm is not able
to seperate the two objects. In the classification step the true
positive rate drops to rTP = 6.6%, which is only slightly bet-
ter than the false alarm rate of rFP = 1.4%.

If the pedestrian is moving laterally in a gap between two435

parked cars at the side of the road (see Fig. 13), the radar
wave can propagate in this gap because of multiple reflec-
tions. Thus, the pedestrian reflects more power back to the
radar sensor and can be segmented properly in the radar raw
data if the gap is not smaller than 50 cm. Also, the recogni-440

tion result is much better, as the true poistive rate rises to val-
ues up to 29.4 %. This result is remarkable because now the
recognition rate is only ten percent less than rTP = 39.5% in
the case of a lateral moving pedestrian in line of sight (see
Fig. 11). The recognition results for different sizes l of the445

gap are shown in Tab. 3. Note that the false alarm rate rFP is
significantly higher in case of narrow gaps up to 50 cm due
to segmentation problems in the blurred occluded areas.

4.3 False alarms

False alarms, meaning that static objects are incorrectly clas-450

sified as pedestrians, are consequences of three root causes.
Firstly, parasitic antenna side lobe effects can cause signif-
icant fractions in the DS of static objects that seem to have
a higher velocity than static objects should have. Secondly,

Fig. 11. Classification resultrTP for pedestrians walking with dif-
ferent angles of movementϕ.

objects can now be tracked down to sensor data that is indis-
tinguishable, even by hand, from a static object’s raw data. In
Fig. 12, the averaged DS of correct and misclassified pedes-
trians are plotted as well as the averaged DS of static objects
for comparison. The DS of the misclassified pedestrians is
almost the same as the one of static objects. Thus, in the
case of misclassified pedestrians, the sensor does not deliver
statistically different data from static objects and hence the
developed classification algorithm is optimal within the re-
strictions of the chosen method for pedestrian recognition.

4.2 Occluded pedestrians

In this paper, two types of occlusions were investigated. In
the first case, a pedestrian is hidden behind a single parked
car and in the second case the pedestrian is in the gap be-
tween two parked cars (see Fig.13). In both cases the
pedestrian moves laterally while being occluded such that
the pedestrian is not in the line of sight to the sensor. The
lateral movement is typical for pedestrians who try to cross
the street without looking.

In the case where the pedestrian is in the shadowed area
hidden behind one parked vehicle at the side of the road, the
radar waves cannot hit the pedestrian directly. Therefore, the
signal reflected by the pedestrian and received by the sensor
is very weak. As a result, the pedestrian blurs with the block-
ing car and often the segmentation algorithm is not able to
seperate the two objects. In the classification step the true
positive rate drops torTP= 6.6%, which is only slightly bet-
ter than the false alarm rate ofrFP= 1.4%.

If the pedestrian is moving laterally in a gap between two
parked cars at the side of the road (see Fig.13), the radar
wave can propagate in this gap because of multiple reflec-
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to seperate the two objects. In the classification step the true
positive rate drops to rTP = 6.6%, which is only slightly bet-
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parked cars at the side of the road (see Fig. 13), the radar
wave can propagate in this gap because of multiple reflec-
tions. Thus, the pedestrian reflects more power back to the
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data if the gap is not smaller than 50 cm. Also, the recogni-440

tion result is much better, as the true poistive rate rises to val-
ues up to 29.4 %. This result is remarkable because now the
recognition rate is only ten percent less than rTP = 39.5% in
the case of a lateral moving pedestrian in line of sight (see
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significantly higher in case of narrow gaps up to 50 cm due
to segmentation problems in the blurred occluded areas.
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Fig. 13. Top: A lateral moving pedestrian is occluded behind a
single parked car. Bottom: Now the lateral moving pedestrian is in
a gap between two parked cars, where the radar wave can propagate
due to multiple reflections.

tions. Thus, the pedestrian reflects more power back to the
radar sensor and can be segmented properly in the radar raw
data if the gap is not smaller than 50 cm. Also, the recog-
nition result is much better, as the true poistive rate rises to
values up to 29.4 %. This result is remarkable because now
the recognition rate is only ten percent less thanrTP= 39.5%
in the case of a lateral moving pedestrian in line of sight (see
Fig. 11). The recognition results for different sizesl of the
gap are shown in Table3. Note that the false alarm raterFP
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Table 3. Classification result for a lateral moving pedestrian in a
gap between two parked cars.

Size of gapl 30 cm 50 cm 70 cm 90 cm 110 cm

rTP 20.9 % 29.4 % 28.5 % 20.1 % 25.2 %

rFP 17.6 % 9.5 % 2.4 % 5.4 % 1.4 %
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Table 3. Classification result for a lateral moving pedestrian in a
gap between two parked cars.

Size of gap l 30 cm 50 cm 70 cm 90 cm 110 cm

rTP 20.9 % 29.4 % 28.5 % 20.1 % 25.2 %

rFP 17.6 % 9.5 % 2.4 % 5.4 % 1.4 %

Fig. 14. A real urban traffic scene used for measuring the false
alarm rate. On the left a photography of the scene is depicted and
on the right the corresponding intensity image from the radar raw
data.

errors in the ego velocity compensation can offset the DS455

and finally, in case of errors in the segmentation step, reso-
lution cells from the noisy surroundings of an object can get
assigned to the object, resulting in DS fractions with higher
velocity than possible for static objects. To see how good the
specifity of the pedestrian recognition system is in practice,460

a real urban traffic scene was chosen (see Fig. 14). The ve-
hicle drives along a road with lots of highly reflective static
objects, such as cars, in the measurement range, which is the
worst case scenario in terms of false alarms, since highly re-
flective objects cause high amplitudes of antenna side lobe465

effects. As a result, in the described traffic scenario, a false
alarm rate of rFP = 4.9% was obtained.

4.4 Driver assistance system scenario

A practical use of the introduced pedestrian recognition sys-
tem would be collision avoidance by warning the driver of a470

pedestrian which moves towards the road, occluded in a gap
in a row of roadside parked cars. This scenario consists of
parked cars as highly reflective static objects, lateral move-
ment of the pedestrian, occlusion and linear movement of the
measurement vehicle with about 8.5 m/s. With the combina-475

tion of all those influences in one real scenario, a recognition
rate of rTP = 19.3% was achieved. The false alarm rate in
this particular measurement was rFP = 3.2%.

5 Discussion

The gathered results reveal three main development areas for480

future radar sensors used for pedestrian recognition: Doppler
frequency resolution, antenna side lobes and spatial resolu-
tion.

Doppler frequency resolution: An object at the position
(r, φ) with relative velocity vr to the radar sensor (see Fig. 9)485

has a relative radial velocity component given by

vrr = vr ·cos(ϕ−φ) . (10)

(Equation (9) is the approximation of this equation assum-
ing φ= 0). If the object moves on a straight lateral path
(ϕ = 90◦), it still causes a small Doppler shift given by490

vrr = vr ·sinφ with absolute maxima at the azimuthal borders
of the measurement range ±φ̂. The described experimen-
tal results for recognizing lateral walking pedestrians (see
Sect. 4.1) are based on a walking pace of about vr = 1.2m/s.
The theoretical maximum of the radial relative velocity com-495

ponent in this case is vrr = 0.17m/s at |φ|= φ̂, which is
only about a fifth of the smallest measurable radial velocity
of 0.77 m/s, given by the radar sensor’s Doppler frequency
measurement resolution. Nevertheless, in the experiment the
recognition rate of rTP = 39.5% is much higher than the ex-500

pected rate of about rTP≈ 4%, caused by false alarms, even
if the pedestrian is central in front of the sensor (φ= 0) where
Eq. (10) gives vrr = 0. This leads to the conclusion that mi-
cro Doppler effects (see (He, 2010)), e.g. swinging arms and
legs, cause artefacts in the DS, which lead to these classifica-505

tion results.
For a particular driver assistance system, a use case could

be to require direct measurement (without the help of micro
Doppler effects) of a lateral walking pedestrian’s radial ve-
locity component vrr in a range of |φ| ≥ 3◦, given a walking510

pace of vr = 1.0m/s. This requirement gives a blind spot
of 5.2 m width centered in front of the vehicle in 50 m dis-
tance. This blind spot could be observed by other sensor
systems since it is usually directly visible. To fulfill these
requirements, a radar sensor with vrr-measurement resolu-515

tion of at least 0.052 m/s or, respectively, Doppler frequency
measurement resolution of 26.5 Hz is needed. The required
measurement resolution is about fifteen times higher than the
resolution of the radar sensor employed in this paper.

Antenna side lobe effects: Parasitic effects because of an-520

tenna side lobes affect the intensity image (ghost targets ap-
pear) as well as the frequency image (see Sect. 4.3), espe-
cially in the surrounding of highly reflective objects. The
impact of antenna side lobes on the intensity image was mod-
eled using a measured antenna pattern. Although in theory525

compensation of this effect would be possible, further im-
provements of todays radar sensors concerning side lobes are
needed. The knowledge of these effects is the key to optimize
the segmentation algorithm.

Spatial resolution: If a pedestrian is in line of sight and not530

more than about 35 m distant from the sensor, the radar sen-

Fig. 14. A real urban traffic scene used for measuring the false
alarm rate. On the left a photography of the scene is depicted and
on the right the corresponding intensity image from the radar raw
data.

is significantly higher in case of narrow gaps up to 50 cm due
to segmentation problems in the blurred occluded areas.

4.3 False alarms

False alarms, meaning that static objects are incorrectly clas-
sified as pedestrians, are consequences of three root causes.
Firstly, parasitic antenna side lobe effects can cause signif-
icant fractions in the DS of static objects that seem to have
a higher velocity than static objects should have. Secondly,
errors in the ego velocity compensation can offset the DS
and finally, in case of errors in the segmentation step, reso-
lution cells from the noisy surroundings of an object can get
assigned to the object, resulting in DS fractions with higher
velocity than possible for static objects. To see how good the
specifity of the pedestrian recognition system is in practice,
a real urban traffic scene was chosen (see Fig.14). The ve-
hicle drives along a road with lots of highly reflective static
objects, such as cars, in the measurement range, which is the
worst case scenario in terms of false alarms, since highly re-
flective objects cause high amplitudes of antenna side lobe
effects. As a result, in the described traffic scenario, a false
alarm rate ofrFP= 4.9% was obtained.

4.4 Driver assistance system scenario

A practical use of the introduced pedestrian recognition sys-
tem would be collision avoidance by warning the driver of a
pedestrian which moves towards the road, occluded in a gap
in a row of roadside parked cars. This scenario consists of
parked cars as highly reflective static objects, lateral move-
ment of the pedestrian, occlusion and linear movement of the
measurement vehicle with about 8.5 m s−1. With the combi-
nation of all those influences in one real scenario, a recogni-
tion rate ofrTP = 19.3% was achieved. The false alarm rate
in this particular measurement wasrFP= 3.2%.

5 Discussion

The gathered results reveal three main development areas for
future radar sensors used for pedestrian recognition: Doppler
frequency resolution, antenna side lobes and spatial resolu-
tion.

Doppler frequency resolution:An object at the position
(r, φ) with relative velocityvr to the radar sensor (see Fig.9)
has a relative radial velocity component given by

vrr = vr ·cos(ϕ−φ) . (10)

Equation9 is the approximation of this equation assuming
φ = 0. If the object moves on a straight lateral path (ϕ = 90◦),
it still causes a small Doppler shift given byvrr = vr · sinφ

with absolute maxima at the azimuthal borders of the mea-
surement range±φ̂. The described experimental results for
recognizing lateral walking pedestrians (see Sect.4.1) are
based on a walking pace of aboutvr = 1.2m s−1. The theo-
retical maximum of the radial relative velocity component in
this case isvrr = 0.17m s−1 at |φ| = φ̂, which is only about a
fifth of the smallest measurable radial velocity of 0.77 m s−1,
given by the radar sensor’s Doppler frequency measurement
resolution. Nevertheless, in the experiment the recognition
rate ofrTP= 39.5% is much higher than the expected rate of
aboutrTP ≈ 4%, caused by false alarms, even if the pedes-
trian is central in front of the sensor (φ = 0) where Eq. (10)
givesvrr = 0. This leads to the conclusion that micro Doppler
effects (see (He, 2010)), e.g. swinging arms and legs, cause
artefacts in the DS, which lead to these classification results.

For a particular driver assistance system, a use case could
be to require direct measurement (without the help of mi-
cro Doppler effects) of a lateral walking pedestrian’s radial
velocity componentvrr in a range of|φ| ≥ 3◦, given a walk-
ing pace ofvr = 1.0m s−1. This requirement gives a blind
spot of 5.2 m width centered in front of the vehicle in 50 m
distance. This blind spot could be observed by other sensor
systems since it is usually directly visible. To fulfill these re-
quirements, a radar sensor withvrr-measurement resolution
of at least 0.052 m s−1 or, respectively, Doppler frequency
measurement resolution of 26.5 Hz is needed. The required
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measurement resolution is about fifteen times higher than the
resolution of the radar sensor employed in this paper.

Antenna side lobe effects:Parasitic effects because of an-
tenna side lobes affect the intensity image (ghost targets ap-
pear) as well as the frequency image (see Sect.4.3), espe-
cially in the surrounding of highly reflective objects. The
impact of antenna side lobes on the intensity image was mod-
eled using a measured antenna pattern. Although in theory
compensation of this effect would be possible, further im-
provements of todays radar sensors concerning side lobes are
needed. The knowledge of these effects is the key to optimize
the segmentation algorithm.

Spatial resolution:If a pedestrian is in line of sight and not
more than about 35 m distant from the sensor, the radar sen-
sor’s spatial resolution is sufficient. However, if the pedes-
trian is occluded behind other objects, the corresponding
radar data starts to blur with nearby objects. A finer spa-
tial resolution might improve the separability of the objects
in this case. If the pedestrian is further away from the sensor,
the spatial resolution cells grow, since their width is a func-
tion of the azimuth angle. Hence, a distant pedestrian covers
only few resolution cells, resulting in a DS of just few single
peaks, which might not represent the DS well. A finer spa-
tial resolution would improve the accuracy of the DS in this
matter.

6 Summary and conclusions

Because pedestrians are point targets for radar sensors, object
features from the intensity image cannot be used to distin-
guish between pedestrians and small static objects. Hence,
information from the Doppler frequency image is needed.
The DS, which is the histogram of the measured radial rel-
ative velocities of an object, turned out to be a stable object
feature, holding the required information to reliably seperate
pedestrians from static objects. A simple classification al-
gorithm, based on five object features, was found with clas-
sification results compareable to modern machine learning
algorithms. Radial moving pedestrians in line of sight can
be recognized up to 95.3 % of the samples. The recogni-
tion rate drops to 39.5 % for lateral moving pedestrians and
to 29.4 % for lateral moving pedestrians occluded in a gap
between two parked cars. In case of misclassifications of
pedestrians as static objects, the radar sensor does not de-
liver statistically different data as from static objects, making
it impossible for classification systems (machine learning as
well as the proposed solution) to decide for the correct class
using only information from single radar raw data frames.
Hence, pedestrian recognition using only single radar raw
data frames shows poor classification results.

The radar sensor’s main limitations in this use case turned
out to be insufficient Doppler shift measurement resolution
and antenna side lobe effects. Possibly, a finer spatial reso-
lution would also improve the sensor’s performance in rec-

ognizing occluded pedestrians. Our findings indicate that
pedestrian recognition using this low-level approach is lim-
ited. Only radar data with higher Doppler frequency mea-
surement resolution (independent of the used technology,
e.g. 24 GHz, 77 GHz) would make major recognition im-
provements possible. This requirement of future automo-
tive radar sensors is in line with claims in (Rasshofer, 2007).
In state-of-the-art research on pedestrian recognition, today’s
radar sensors are mostly used to support camera-based sys-
tems (Geŕonimo, 2010).
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