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Abstract. A phase-locked loop (PLL) based frequency syn-
thesizer capable of generating highly linear broadband fre-
quency sweeps as signal source of a high resolution 80 GHz
FMCW radar system is presented. The system achieves a
wide output range of 24.5 GHz starting from 68 GHz up to
92.5 GHz. High frequencies allow the use of small antennas
for small antenna beam angles. The wide bandwidth results
in a radar system with a very high range resolution of below
1.5 cm. Furthermore, the presented synthesizer provides a
very low phase noise performance of−80 dBc/Hz at 80 GHz
carrier frequency and 10 kHz offset, which enables high pre-
cision distance measurements with low range errors. This is
achieved by using two nested phase-looked loops with high
order loop filters. The use of a fractional PLL divider and a
high phase frequency discriminator (PFD) frequency assures
an excellent ramp linearity.

1 Introduction

Frequency-modulated continuous-wave (FMCW) radar sys-
tems are widely used in a large field of applications. The
most important industrial markets are e.g. automotive radars
and high precision range measurement radars. This applica-
tions presume special requirements for the radar sensor.

Automotive radars need a high spatial resolution to divert
the antenna beam to separate cars on different lanes in dis-
tances of about 150 m. Because of design specifications, the
antennas have to be very small, and these requirements can
only be fulfilled by using high frequencies in the region of
80 GHz or even higher.

Special range measurement radars for challenging appli-
cations with many disturbing objects also need a high beam
directivity and a small antenna at the same time to be focused
to the target. For these reasons it is also favorable to use high
frequency ranges in this field of application.

In order to separate interfering reflections of disturbing ob-
jects from the desired signal of the radar target, a high range
resolution is necessary. The radar range resolution1R de-
fines the ability to distinguish two targets close to each other.
It can be calculated as:

1R =
c0 ·Bw

2(fmax−fmin)
=

c0 ·Bw

2·1f
, (1)

wherec0 is the speed of light,Bw a factor to describe the
influence of the window function used in signal processing,
and1f the bandwidth of the frequency ramp. With the com-
monly used Hanning window to suppress sidelobes and using
the−6 dB width to define two separable targetsBw = 2.

Table1 shows the range resolution for several bandwidths.
Standard industrial range measurement radar sensors typi-
cally have a bandwidth smaller than 2 GHz due to the com-
plexity of broadband radar systems. State of the art research
FMCW radar system like the COBRA94 (Fraunhofer FHR,
Germany) allow a bandwidth up to 8 GHz (Essen et al., 2005,
2008). The current record in bandwidth of 10 GHz is set
by Nicolson et al.(2008). The presented frequency synthe-
sizer is capable of generating FMCW sweeps with more than
24.5 GHz bandwidth, so the range resolution is improved by
more than a factor of 2. This allows a better separation of
two near targets, where one of them is the wanted signal like
shown in Fig.1. Here, the advantage of ultra high resolu-
tion and high bandwidth FMCW radar systems is clearly vis-
ible. With 4 GHz bandwidth, it is impossible to separate the
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Table 1. Range resolution for different ramp bandwidths using a
Hanning window function in signal processing. Typically, the accu-
racy of single target distance measurements is decades better.

Bandwidth 2 GHz 5 GHz 10 GHz 25 GHz

Resolution 150 mm 60 mm 30 mm 12 mm

two targets. By using 24.5 GHz bandwidth, the signal of the
wanted target can easily be separated from the disturbing tar-
get.

2 Concept of the FMCW-Synthesizer

2.1 Overview

The simplified block diagram of the realized FMCW radar
signal synthesizer is shown in Fig.2. A SiGe monolithic
microwave integrated circuit (MMIC) with a broadband mil-
limeterwave voltage controlled oscillator (VCO) produces
the output signal in a frequency range from 68 GHz to
92.5 GHz (VCO80G, Fig.2) (Pohl et al., 2009; Pohl, 2010).
The MMIC also includes a mixer, a second VCO at 24 GHz
(VCO24G, Fig.2) and two fixed frequency dividers (Pohl
et al., 2011).

For stabilization of the VCOs two PLLs with commer-
cially available off-the-shelf frequency synthesizer chips
(HMC701LP6CE from Hittite Microwave) are used. The fre-
quency of the output signal of the auxiliary VCO (VCO24G)
is divided by 8 to get a low frequency signal, which is
well suited for use with commercial frequency synthesizers.
An external active loop filter is used to close the loop. A
100 MHz ultra low phase noise temperature controlled crys-
tal oscillator (TCXO) provides the reference signal in order
to allow low divider factors in the PLL. For best phase noise
performance, an integer divider PLL synthesizer is used. The
output frequency is fixed to 24 GHz.

The mmWave VCO (VCO80G) is stabilized in a differ-
ent way. First, the output signal is divided by a factor of
4 to obtain a signal in a frequency range from 17 GHz to
23.125 GHz, then this signal is downconverted with the fixed
24 GHz output of the auxiliary PLL. Due to image frequen-
cies this results in an output frequency in the range from
0.875 GHz to 7 GHz, which is well suited for commercial
PLL synthesizer ICs. The loop is closed with an external
loopfilter again. For highly configurable ramp generation
the fractional mode of the commercial frequency synthesizer
chip with a high reference frequency is used. Frequency
ramps are generated by changing the fractional divider inside
the synthesizer IC with the build in ramp generator.

The two PLLs are programmed using a microcontroller
which can be interfaced with a serial to USB converter to a
computer. This assures flexible ramp generation possibilities
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Fig. 1. Simulation of a radar scenario with 4 GHz and 24.5 GHz
sweep bandwidth. Target 1 is positioned 1 m behind the antenna,
followed by Target 2 another 0.1 m behind it.

in relation to start and stop frequency, bandwidth and slope
of the frequency ramp.

2.2 mmWave-Module

The RF-Module contains the high frequency parts of the sys-
tem. It is based on a Rogers RT/duroid 5880 high frequency
substrate mounted on a brass block for a good mechani-
cal stability, and heat transfer. The MMIC is glued into a
milled hole and connected to the substrate with bond wires
as shown in Fig.3. The inductive influence of the short and
well-defined bond wires for the 68 GHz to 92.5 GHz output
is compensated using an Monte-Carlo technique optimized
on-chip matching network (Pohl et al., 2012). To reduce
influences of the ground plane, to lower the supply voltage
swing, and to assure robust signals, all high frequency trans-
mission lines are connected using differential outputs (Rein
and Moller, 1996). Bond wires on the left and right side con-
nect the supply and the tuning voltage for the two VCOs.

Figure4 shows the complete mmW-Module. A rat race
coupler is used to transform the differential 80 GHz signal to
a single ended signal. A pad for a wafer prober (110H-GSG-
150 from PicoProbe) was designed to connect the 80 GHz
output with external measurement equipment. The divide-
by-4 outputs of the 80 GHz signal can also be connected to
measurement equipment by using SMA-connectors to allow
noise characterization with commercially available spectrum
analyzers.

2.3 PLL-Module

A photo of the PLL-Module is shown in Fig.5. It consists
of a low noise power supply to prevent degradation of the
good noise performance. In addition, both PLLs are placed
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Fig. 2. Block diagram of the frequency synthesizer used to generate the wide bandwidth 68 GHz to 92.5 GHz output signal.
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Fig. 3. Section of the MMIC with the two VCOs, the mixer and
the two fixed dividers mounted on a Rogers RT/duroid 5880 high
frequency laminate.

on this module. Each of them includes a PLL synthesizer
IC and an optimized high order (PLL24: 4th order, PLL80:
5th order) active loop filter. The PLL ICs are programmed
via a serial peripheral interface (SPI) using a microcontroller
(ATXMEGA128 from Atmel) on the back side of the mod-
ule. Connection to a computer can be achieved with the build
in Mini-USB-Connector on the lower right side. On the up-
per left side the SMA-connector for a TCXO reference is
visible.

Figure6 shows the detailed schematic of the loop filter. A
low noise operational amplifier (OpAmp) is used to prevent
system noise degradation caused by the high tuning sensitiv-
ity of the VCO. The inverting Op Amp circuit is biased at
half of the charge pump (CP) supply withRb1 andRb2 to
achieve the best operating point. A first part of the filter is
placed in front of the OpAmp to pre-smooth the hard current
pulses of the charge pump. The loop bandwidth was chosen
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Fig. 4. Photo of the complete mmW-Module with the MMIC and
two Samtec QSE high frequency connectors to connect the PLL-
Module.

to achieve a minimal integrated phase noise. For the auxil-
iary VCO (VCO24G, 50 MHz PFD-frequency) a bandwidth
of 530 kHz with a phase margin of 50◦ and for the mmWave
VCO (VCO80G, 20 MHz PFD-frequency) a bandwidth of
270 kHz with a phase margin of 55◦ has been obtained.

3 Measurements

3.1 Phase noise

In order to test and to characterize the synthesizer, phase
noise measurements have been performed in different tem-
perature ranges.

Figure7 shows the measured phase noise at a center fre-
quency of 80 GHz and at a temperature of 20◦C. Further
measurements show that the degradation over temperature
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Fig. 5. Photo of the PLL-Module with low noise power supply, the
commercial Hittite HMC701LP6CE PLL synthesizer ICs and the
active high order loop filter for both phase-locked loops.
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Fig. 6. Schematic of the 5th order active loop filter for optimal
phase noise characteristics.

(−45◦C to 90◦C) is below 3 dB. Measurements have been
done with a spectrum analyzer (8565E from Agilent) using
the divide-by-4 outputs and adding 12 dB to compensate an
influence of the fixed divider.

The inband phase noise of about−80 dBc/Hz is deter-
mined by the PLL noise floor. It almost perfectly fits the
predicted phase noise values. The difference at offset fre-
quencies lower than 2 kHz is due to measurement inaccuracy
because of the carrier drift. At offset frequencies greater than
the loop bandwidth, the phase noise approaches the free run-
ning VCO’s phase noise.

3.2 Ramp generation

Almost the complete VCO bandwidth can be used in FMCW
ramping mode. Figure8 shows the tuning voltage in con-
tinuous sawtooth ramping mode. A FMCW bandwidth of
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Fig. 7. Measured phase noise of the mmW-VCO output signal at
80 GHz and 20◦C against previously simulated and free-running
VCO phase noise.
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Fig. 8. Measured tuning voltage in continuous FMCW sawtooth
ramping mode with a ramp time of 1 ms.

24.5 GHz with an output frequency from 68 GHz to 92.5 GHz
is achieved with fractional frequency divider factors between
N = 35 andN = 280. In Fig.8, an example with 1 ms ramp-
time is shown. The ramp duration can be programmed in
wide ranges.

Figure9 shows the measured spectrum of the divide-by-4
output while in ramping mode. Here, the wide bandwidth
of 24.5 GHz ((23.125–17 GHz)= 6.125 GHz= 24.5 GHz/4
at the divide-by-4 output) is clearly visible. The output power
of the mmW output is 10 dBm to 12 dBm and much smoother
than the output power of the unbuffered divide-by-4 output
(Pohl et al., 2009).

3.3 Radar performance

For demonstrating the FMCW synthesizer performance, a
mixer and an IF-stage including analog digital conversion
and signal processing were added to complete the FMCW
radar (Pohl et al., 2012).

Figure10 shows a first measurement of a radar scenario
with 24.5 GHz FMCW bandwidth and a ramp duration of
4 ms. A W-band waveguide transition is used to connect the
antenna to the FMCW system. The complete signal process-
ing is done by using MathWorks MATLAB after digitization
of the IF-signal with an 1 MSPS ADC and transferring the
data to the computer over USB. Reflections caused by the
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Fig. 9. Spectrum of the divide-by-4 measurement output in max-
hold mode while ramping from 68 GHz to 92.5 GHz. The output
power of the 80 GHz mmW generator is much smoother and shows
a very small variation of≈2 dB (10 dBm to 12 dBm).
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Fig. 10. IF spectrum of the measured radar scenario with two 3 mm
diameter steel rods as targets.

antenna are visible at small distances. The targets 1 and 2
are steel rods with 3 mm diameter in about 2.58 cm distance
from each other. These targets have a small radar cross sec-
tion (RCS), but can easily be detected and separated by the
sensitive high resolution FMCW radar.

4 Conclusions

A configurable PLL based frequency synthesizer for gener-
ation of highly linear broadband frequency ramps was pre-
sented, and its usability was confirmed by different measure-
ments. Furthermore, the suitability for use as a FMCW sig-
nal source was approved by first measurements in a complete
FMCW radar system with an outstanding maximum band-
width of 24.5 GHz. The use of commercially available semi-
conductor components in combination with the SiGe MMIC
allows a cost-effective realization of ultra high resolution
FMCW radar systems, which is suitable for mass produc-

tion. This allows new fields of application for future FMCW
radar sensors.
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