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Abstract. In this paper the fundamental properties of sur-
face waves along conducting cylinders with and without di-
electric coating are investigated for cylinder diameters in the
centimeter range and frequencies in the gigahertz range and
higher. Analytical results for the phase constant and attenua-
tion versus the cylinder radius are derived and cutoff frequen-
cies of various TE, TM, and hybrid waves are computed. The
radial power distribution is computed in order to investigate
the spatial extent of the wave fields.

1 Introduction

Electromagnetic wave propagation along cylinders has been
studied in the past. Pioneering work was done by Sommer-
feld, Hondros, and Goubau from the beginning to mid of last
century. In recently emerging application fields for high-
frequency measurement and monitoring systems the prop-
erties of surface waves along cylinders with dielectric coat-
ing are of particular significance. Exceptionally because of
the availability of frequencies for industrial, scientific, and
medical applications (ISM) in the gigahertz range a study of
cylindrical surface waves in the high-frequency limit where
the diameter of the guiding structure is no longer small com-
pared to wavelength is eligible. An exemplary application is
the monitoring of surface condition and detracting deposits
in ductwork and piping under harsh conditions where ultra-
sound or optical techniques are inapplicable. A possible con-
figuration for monitoring the surface condition of metal pipes
by launching surface waves is suggested in Fig.1. Conical
horns may be used as wave launchers as already presented
by Goubau(1951). In case there is a metal wall dielectric
windows are suitable to provide through-wall transition. A
second horn at the end of the pipe receives the wave. From
a transmission and reflection measurement the propagation
parameters of the surface wave along the pipe can be recon-
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Fig. 1. Example configuration: monitoring the surface condition of
metal pipes by launching surface waves.

structed. This in turn may allow conclusions on the surface
condition like deposits or disruptions.

In this paper we present analytical solutions for the char-
acteristics of electromagnetic axial surface waves along di-
electrically coated conducting cylinders. Dispersion charac-
teristics are derived for TM, TE, and hybrid waves. The ef-
fect of losses due to finite conductivity and dielectric losses
is particularly considered. Emphasis is placed on gigahertz
frequencies and cylinder diameters and layer thicknesses in
the centimeter range. As a result we present analytical so-
lutions for dispersion characteristics and attenuation of dif-
ferent wave modes versus frequency and permittivity with a
focus on the fundamental TM00 mode which is suitable for
wave excitation through a coaxial waveguide structure. Fi-
nally a study of the radial power distribution as a function of
material parameters is also presented.
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Table 1. Classification of complex waves afterIshimaru(1991).

βz αz βx αx the term used

proper waves

+ 0 + 0 Fast wave (waveguide modes)
+ − + + Backward leaky wave
+ 0 0 + Trapped surface wave (slow wave)
+ + − + Zenneck wave
+ 0 − 0 Plane-wave incidence

improper waves

+ − − −

+ 0 0 − Untrapped surface wave
+ + + − Forward leaky wave

2 Review of complex waves

As an introduction to the topic of surface waves we give a
short review of the properties of complex waves as they were
discussed byIshimaru(1991). We consider a 2-D geome-
try with infinite extent in cartesian coordinatesx, y, andz.
There are two media in the half spacesx < 0 andx > 0,
respectively. Directionsx and z are considered directions
of wave propagation. The problem shell not depend ony,
i.e.∂/∂y = 0 for all quantities. We obtain the following wave
equation for a scalar quantityu(x,z):(

∂2

∂x2
+

∂2

∂z2
+k2

)
u(x,z)= 0. (1)

It’s general solution is given by

u(x,z)= e−jkxx−jkzz (2)

wherekx andkz are wave numbers andkx,z = βx,z − jαx,z.
From k2

x + k2
z = k2

= ω2εµ− jωµσ and by comparing real
parts and imaginary parts we get the relations

β2
x −α2

x +β2
z −α2

z = ω2µε,

βxαx +βzαz = ωµσ . (3)

With α =
(
αx αz

)T andβ =
(
βx βz

)T it follows that in the
lossless case (σ = 0) it is β ·α = 0. Several solutions for
wave numbers that satisfy the boundary conditions in each
point of the interface planex = 0 can be found. They may
be classified depending on the values ofαx,z andβx,z. An
overview is given in Table1. Solutions whereαx < 0 will
increase exponentially and are therefore unphysical. They
are termed improper waves. Even though they are unphysical
they yield practically meaningful wave types when the extent
of the interface is not infinite but finite.

Let us summarize some of the solutions in Table1 in more
detail starting with theZenneck wave. It can exist when at
least one of the two media is lossy. In this case the disper-
sion equation may be solved exact and analytically. For a

x

z

upper halfspace

ε1,µ1,σ1

lower halfspace

ε2,µ2,σ2

Fig. 2. Zenneck wave guiding geometry.

circular cylindrical interface the solution can only be found
numerically. Also for cylinders the solution will depend what
is the outer and what is the inner medium. A trivial exam-
ple is the different nature of a conducting wire and a hollow
waveguide. However, even for a plane interface it is found
that there exists no solution of TEM type.

Assuming a configuration as shown in Fig.2 and restrict-
ing to TM solutions the following differential equation for
Hy is found:

1

σ + jεω

∂2Hy

∂x2
−

(
k2
z

1

σ + jεω
+ jµω

)
Hy = 0. (4)

It is solved in both half-spaces by the ansatzHy = Ce−jkxx .
By further investigating the solution it is readily found that
the wave numberskz, kx,1 andkx,2 correspond to the case
of TM incidence at Brewster’s angle. In this case Brewster’s
angle appears to be complex due to the losses in the medium.
Hence there is no coincidence between planes of constant
amplitude and planes of constant phase planes i.e. the solu-
tion represents an inhomogeneous TEM wave.

The trapped surface waveis a solution that is obtained by
the assumption of loss-free propagation inz direction. Its
phase velocity is given by

vph=
ω

βz

=
ω

kz

=
ω

k
. (5)

Since the phase velocity of a trapped surface wave is smaller
than in free space it belongs to the class of slow wave solu-
tions. From

k2
x +β2

z = k2 (6)

it follows thatk2
x = k2

−β2
z < 0. Furthermore, ifk andβz are

real it is necessary that Re{kx} = 0 i.e.

αx 6= 0 βx = 0. (7)

An example geometry where trapped surface waves can exist
is shown in Fig.3. For both TE and TM waves the same
dispersion relation

kx,1

ε1
tan(kx,1d) = j

kx,0

ε0
(8)

kx,0/1 =

√
k2

0,1−k2
z (9)
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Fig. 3. Slow-wave guiding geometry.

holds. In this case the dispersion relation is transcendental
and may be solved e.g. graphically.

3 Waves along conducting cylinders

Let us review surface waves in cylindrical structures. To start
we discuss conducting cylinders without dielectric coating
first. An efficient way to a general solution of the wave equa-
tion in cylindrical coordinates is to introduce the Hertz’s vec-
tor π(r,t). It must satisfy the Helmholtz equation

1π +k2π = 0. (10)

A practical ansatz in frequency domain is given by

π(r,t)= π(r)ejωt . (11)

Solutions are obtained by introducing the electric and the
magnetic Hertz’s vector in the forms

πm = πm(r,ϕ,z)ez πe= πe(r,ϕ,z)ez . (12)

It can be shown that the choice of one common direction is
sufficient for a complete and general solution. The choice of
the directionez along the cylinder axis is advantageous in this
case. By separation of variables, i.e.πm,e = R(r)8(ϕ)Z(z)

solutions of the form

πe,z = an ·Zn

(
r

√
k2−k2

z

)
e±jnϕe−jkzzejωt TM waves (13)

πm,z = bn ·Zn

(
r

√
k2−k2

z

)
e±jnϕe−jkzzejωt TE waves (14)

are found. HereZn(x) is composed from two particulate so-
lutions of the Bessel differential equation. Considering TM
waves along a cylinder with finite conductivity the continu-
ity of fields from (o)utside to (i)nside yields the dispersion
equation

k2
o

µoso

H(1)′
0 (sor0)

H(1)
0 (sor0)

=
k2

i

µisi

J′

0(sir0)

J0(sir0)
; so,i =

√
k2

o,i −k2
z . (15)

Since we expect solutions withk2
z ≈ k2

out we assume thatso
is very small, i.e.so → 0. Inside the conducting cylinder the

Table 2. TM dominant wave: phase constant versus conductivity
(r = 2.5 cm,f = 2.41 GHz).

Conductivityσi phase constantβz phase velocity
(in S m−1) (in m−1) (in % of c0)

101 51.0368 1.0326
102 50.6889 0.3533
103 50.5577 0.0946
104 50.5227 0.0254
105 50.5133 0.0069
106 50.5108 0.0019
107 50.5101 0.0005

wavenumber is predominantly determined by its conductivity
σi . Hence, Re{si} will be a large value and Im{si} will be a
large and negative value. Therefore the approximations

J′

0(u)/J0(u) = j; H0(v) =
2j

π
ln

γ v

2j
; γ = 1.781072... . (16)

are justified. They allow for an iterative numerical solution
algorithm. An exemplary result for a non-magnetic cylinder
in vacuum with radiusr = 2.5 cm at signal frequencyf =

2.41 GHz isα = 2.84 dB km−1.
In the case of TE waves along a cylinder with finite con-

ductivity one obtains the dispersion relation

µi

si

J′

0(sir0)

J0(sir0)
=

µo

so

H(1)′
0 (sor0)

H(1)
0 (sor0)

. (17)

In contrast to the TM case the conditions for dominant wave
with low attenuation lead to inconsistencies. Hence no TM
dominant waves exist. For the properties of possible sub-
sidiary waves with high attenuation it can be said that if

u = r0

√
k2

i −k2
z is large then Im{u} must also be large and

negative. Then, also Im
{
v = r0

√
k2

o −k2
z

}
< 0. This indi-

cates exponentially growing fields in radial direction. There-
fore it can be concluded that leaky waves exist for suffi-
ciently large valuesu. Tables2 and3 show some numeri-
cal results for the phase constant of the TM dominant wave
for a cylinder with radiusr = 2.5 cm and signal frequency
f = 2.41 GHz.

Figure4 shows the numerical result for the attenuation of
the TM dominant wave versus frequency for three different
radii. The conductivity isσ = 107 S m−1.

4 Waves along dielectrically coated cylinders

Finally, we consider a perfectly conducting circular cylin-
der coated with a dielectric material. This structure has been
studied in the past for larger ratios between wavelength and
wire diameter. It is well known as Harms-Goubeau line and
it is shown in Fig.5 together with conical horns as wave
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Table 3. TM dominant wave: phase constant versus radius (f =

2.41 GHz).

Radiusr phase constantβz phase velocity
(in cm) (in m−1) (in % of c0)

0.1 50.51525 0.01066
0.5 50.51107 0.00240
0.9 50.51057 0.00140
1.3 50.51037 0.00100
1.7 50.51026 0.00078
2.1 50.51019 0.00064
2.5 50.51014 0.00055
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Fig. 4. TM dominant wave: attenuation forσ = 107 S m−1.

launchers. We can use the same ansatz as in Sect.3. Again,
we skip the lengthy derivation and refer to the derivation of
Harms(1907). Because of the more intricate boundary con-
ditions, the eigenvalue equation reads[

k2
o

µoso

H(1)′
n (sor1)

H(1)
n (sor1)

−
k2

d

µdsd

J′
n(sdr1)Nn(sdr0)−N′

n(sdr1)Jn(sdr0)

Jn(sdr1)Nn(sdr0)−Nn(sdr1)Jn(sdr0)

]

·

[
µo

so

H(1)′
n (sor1)

H(1)
n (sor1)

−
µd

sd

J′
n(sdr1)N′

n(sdr0)−N′
n(sdr1)J′

n(sdr0)

Jn(sdr1)N′
n(sdr0)−Nn(sdr1)J′

n(sdr0)

]

=
k2
zn

2

r2
1

(
1

s2
d

−
1

s2
o

)2

. (18)
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conical horn
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Fig. 5. Structure of a Harms-Goubeau line.

In general, the wave numberkz can be complex, which ren-
ders it difficult to find a solution. However, if we consider
a loss-free dielectric material, then we know thatkz is a
real number. In addition, we know that the wave number
is bounded bykfree< kz < kd. Bessel functions of first and
second kind are real for real-valued arguments. The Han-
kel function of first kind and even ordersn = 0,2,4,... will
give for an argument which has only an imaginary compo-
nent a number with only an imaginary component. For odd
ordersn = 1,3,5,... the result is purely real. Asso has only
an imaginary component, we know that the contribution of
the Hankel functions will be real-valued, like the contribu-
tion of the Bessel functions. Hence, to find solutions of the
eigenvalue equation, we can just consider the real part of
eigenvalue equation.

Furthermore, we see that forn = 0 the equation decouples
into two separate equations, where the first factor of Eq. (18)
will result in TM waves and the second factor in TE waves.
In general, however, we have hybrid waves. The question is,
whether we can find a fundamental wave, i.e. a wave which
has no cutoff frequency.

As shown byFikioris and Roumeliotis(1979), Eq. (18)
can be simplified and we obtain formulas for different values
of n. Forn = 0 orn = 1, we have TM0m waves

J0(sdr1)N0(sdr0)−N0(sdr1)J0(sdr0) = 0, (19)

TE0m waves

J0(sdr1)N1(sdr0)−N0(sdr1)J1(sdr0), (20)

hybrid waves, HE1m, wherem > 1

M1 = J1(sdr1)N1(sdr0)−N1(sdr1)J1(sdr0), (21)

and hybrid waves, EH1m, wherem > 1

L1 = J1(sdr1)N
′

1(sdr0)−N1(sdr1)J
′

1(sdr0). (22)

For finding the cutoff frequencies, we have to find the zeros
of these equations. Using the formula

sd = ωcutoff

√
εr,dµr,d−εr,oµr,o

c
, (23)

we obtain the cutoff frequencies. The constantc is the speed
of light in vacuum. For the TM and TE waves, we can
also state a closed form expression. When the frequency is
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Table 4. TM waves: some cutoff frequencies.

εr,d thicknessd = 1 mm thicknessd = 5 mm thicknessd = 20 mm
f01 f02 f03 f01 f02 f03 f01 f02 f03

(in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz)

2 149.90 299.79 449.68 29.97 59.95 89.93 7.49 14.98 22.48
4 86.54 173.08 259.62 17.30 34.61 51.92 4.32 8.65 12.98
6 67.03 134.07 201.10 13.40 26.81 40.22 3.35 6.70 10.05
8 56.65 113.31 169.96 11.33 22.66 33.99 2.83 5.66 8.49

Table 5. TE waves: some cutoff frequencies.

εr,d thicknessd = 1 mm thicknessd = 5 mm thicknessd = 20 mm
f01 f02 f03 f01 f02 f03 f01 f02 f03

(in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz)

2 74.94 224.84 374.74 14.98 44.96 74.94 3.74 11.24 18.73
4 43.27 129.81 216.35 8.65 25.96 43.27 2.16 6.49 10.81
6 33.51 100.55 167.58 6.70 20.11 33.51 1.67 5.02 8.37
8 28.32 84.98 141.63 5.66 16.99 28.32 1.41 4.24 7.08

large enough, we can use the asymptotic approximation of
the Bessel functions. Therefore, we obtain

ωm,cutoff = m ·
π

d

c
√

εr,dµr,d−εr,oµr,o
(24)

and

ωm,cutoff =
1

d

(
m+

1

2

)
π ·

c
√

εr,dµr,d−εr,oµr,o
(25)

for the TM and TE case, respectively, whered = r1 − r0 is
the thickness of the dielectric coating.

Regarding Eq. (19), we find thatsd = 0 satisfies this equa-
tion. Hence, there is a fundamental TM wave, similar to the
one we had in the case of the uncoated conducting cylinder.
However, by deriving the Eqs. (19) through (22), it appears
that for n = 1 againsd = 0 is a valid solution (Fikioris and
Roumeliotis, 1979). Therefore, there is also a fundamental
hybrid wave HE11 so that on a dielectric coated conducting
cylinder two fundamental waves exist. The cutoff frequen-
cies for different configurations are presented in Tables4, 5
and6.

Although more waves can exist than just the fundamental
TM00 wave, we are interested in its properties as we can eas-
ily excite this type of wave with, e.g. a horn structure. In
Fig.6 we can see the dispersion behavior of the fundamental
TM00 wave. This wave is propagating on a cylindrical con-
ductor with radiusr = 2.5 cm and which has a dielectric coat-
ing with relative permittivityεr = 8 and thicknessd = 5 mm.
We can observe that for the lower frequencies thekz ≈ ko,
while for high frequencieskz ≈ kd. This indicates that for
high frequencies the wave is guided closer to the conductor,
i.e. the wave is contained mostly in the dielectric.
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Fig. 6. Dispersion diagram of the TM00 fundamental mode.

The power transported in the dielectric is

Pd = 2π

r1∫
r0

1

2
ErHϕrdr =

kz

4πωεd
ln

r1

r0
|I |

2, (26)

while the power transported in the exterior is

Pa= π |aa
0|

2
√

εa

µa
|sa|

2kzka
1

2ςa
2
· [F(ςar)−F(ςar1)], (27)

where

F(ςar) = (ςar)
2
{

2

ςar
jH(1)

0 (jςar)H
(1)
1 (jςar)

+ [H(1)
0 (jςar)]

2
+[H(1)

1 (jςar)]
2
}
, (28)
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Table 6. Hybrid waves: some cutoff frequencies.

εr,d thicknessd = 1 mm thicknessd = 5 mm thicknessd = 20 mm
f12 f13 f14 f12 f13 f14 f12 f13 f14

(in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz) (in GHz)

2 149.90 299.79 449.69 30.01 59.97 89.95 7.59 15.03 22.51
4 86.54 173.08 259.62 17.33 34.62 51.93 4.38 8.68 13.00
6 67.03 134.07 201.10 13.42 26.82 40.22 3.39 6.72 10.07
8 56.65 113.31 169.96 11.34 22.66 33.99 2.86 5.68 8.51
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Fig. 7. Spatial power distribution of the TM00 fundamental mode,
shown is the fraction of the total powerPtot that is guided inside
a cylindrical surface with radiusr. The thickness of the dielectric
layer isd = 5 mm.

andςa =

√
k2
z −k2

a as given byGoubau(1950). The spatial
power distribution for a conductor with radius 2.5 cm and di-
electric coating with thicknessd = 5 mm and relative permit-
tivities εr = 2 andεr = 8, respectively, is shown in Fig.7.
More than 75 % of the power is contained within a 5 cm
radius when the relative permittivity isεr = 8.

5 Conclusions

In this paper the fundamental properties of surface waves
along conducting cylinders have been investigated for cylin-
der diameters in the centimeter range and frequencies in the
gigahertz range and higher. For cylinders without additional
dielectric coating the TM00 dominant wave (axial Sommer-
feld wave) has been considered. Its dispersion and atten-
uation characteristics have been derived and the effect of
cylinder radius and conductivity on the phase constant has
been studied. As an exemplary result on the guiding prop-
erties it can be concluded that for a radiusr = 2.5 cm, fre-
quencyf = 2.41 GHz, and conductivityσ = 107 S m−1 75 %
of the total power are carried within a radius ofr = 1 m.

For the case of conducting cylinders with additional dielec-
tric coating on their surface TM0m, TE0m, and hybrid waves
have been studied. We computed cutoff frequencies for var-
ious material parameters and derived and approximate for-
mula for the wave attenuation assuming perfect conductor
and dielectric losses. Again the effect of cylinder radius
and permittivity has been studied. As an exemplary result
on the guiding properties with additional dielectric coating it
can be said that for a cylinder radiusr = 2.5 cm, frequency
f = 2.41 GHz, and dielectric coating with relative permittiv-
ity εr = 8 and thicknessd = 1 mm 75 % of the total power are
carried within a radius ofr = 10 cm.
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