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Abstract. In this paper circuits with impasse points, i.e. with
jumps in their configuration space will be analyzed. These
non-regularized circuits exhibit a fold in their configuration
space, which can lead to difficulties during the simulation
with standard circuit simulators like SPICE. The former de-
veloped geometric approach to simulate these circuits with-
out regularization will be extended by a detailed discussion
of which coordinate system has to be chosen. Furthermore,
two new approaches for a numerically efficient calculation of
the hit points will be shown.

1 Introduction

There is a class of electronic circuits whose configuration
space manifoldS is folded within the embedding spaceE of
currents and voltages. This fold can be related to so-called
impasse points and leads under certain conditions to jumps
from one stable part ofS to another. A classical transient
solution of such non-regularized circuits exhibiting impasse
points is not possible (see e.g.Chua(1980), Reissig(1996),
Chua and Deng(1989a)). However, a common method to
overcome these simulation problems is to regularize the cir-
cuit by adding suitable located parasitic inductors L’s or ca-
pacitors C’s considering Tikhonov’s Theorem (for further lit-
erature seeReissig(1996)). In previous works, a geometric
concept was developed to simulate those circuits without reg-
ularization (see e.g.Thiessen and Mathis(2011a), Thiessen
et al. (2013)). There, several electronic circuits exhibiting
these behavior were studied and different approaches to cal-
culateS, jump and hit points were analyzed (e.g.Thiessen
et al.(2012b), Thiessen et al.(2012a), Thiessen et al.(2011),
Thiessen and Mathis(2011b), Thiessen and Mathis(2011a)).
In this work improvements in the topic of hit point calcu-
lation will be shown. Especially the difficulty of multiple
hit points will be studied in detail. Furthermore, a detailed
description of the geometric system analysis will be given.
There, the question of which coordinate system, i.e. system

of equations, is best placed to deal with those non generic
circuits will be answered.

2 Geometric system analysis

Common circuit simulators (e.g. SPICE) are based on MNA,
which leads in the description of electronic circuits to a
quasilinear differential-algebraic system of equations (DAE)
(cf. Riaza(2008)):
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This system of equations can also be formulated as

B(c)ċ = h(c(t)) . (2)

In the sense of ReichReich (1990) eq. (2) is a triple
(Rk,B,h), whereB : Rk

→ Rk×k is a linear operator andh :

Rk
→ Rk a diffeomorphism. Reich had proven that the DAE

(2) is regular, if there is a differentiable manifoldS ⊂ Rk

and a vector fieldv : S → T S, such that a differential map-
ping w : I → S (I ⊂ R) is a solution of the vector field for
all t ∈ I , if and only if the mappingc : j ◦w : I → Rk is a so-
lution of the DAE, wherej : S → Rk is the natural injection
Reich(1990).

This work focuses on the investigation of non-regular
DAEs where impasse points exists. These impasse points will
be called “jump points”, because the transients will be con-
tinued by jumps inE from one point onS to another.

The systems of equations of the considered nonlinear dy-
namical circuits can be characterized by a semi explicit DAE:

ẋ = g(x,y, t) (3a)

0 = f(x,y, t) (3b)
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Fig. 1.Network for determiningS

The vectorx ∈ Rn corresponds to the capacitor voltages
and inductor currents and the vectory ∈ Rm to additional
voltages and currents in an electronic circuit.

Taken into account thatS can exhibit a fold e.g. respec-
tively an input voltagevs(t) and not respectivelyt , the input
sources have to be treated differently. For describing the be-
havior of the circuit for any input values, the independent
and time dependent input sources will be replaced by nora-
tors and treated as further vectorz fo unknowns (cf. Fig.1).
Therefore, an additional vectorz ∈ Rη has to be consid-
ered in the describing system of equations. The resulting
autonomous, semi explicit system of equations then is de-
scribed by:

ẋ = g(x,y,z) g : Rk
→ Rn (4a)

0 = f(x,y,z) f : Rk
→ Rm (4b)

These system of Eq. (4) forms the basis of the further inves-
tigations. The distinction inx, y andz is essential for calcu-
lating S and the jump and hit points.S can be defined as a
subspace ofE = Rk (wherek = n+m+η) and is represented
by the solution set of the independent algebraic Eq. (4b). The
calculation of the jump and hit points will be shown in Sec-
tion 3 and4.

Remark: As can be seen, the system of equations (1) do
not distinct betweenx, y andz. One method to modify the
system of equations (1) to (4) is shown inThiessen et al.
(2012a) andThiessen et al.(2013). Another method for de-
riving a system of equations of type (4) is by applying the
Augmented Nodal Analysis (ANA) shown inRiaza(2008).
The resulting system of equations derived by the Augmented
Nodal Analysis (ANA) is

C(vc)v̇c = ic (5a)

L(il)i̇l = AT
l e (5b)

0 = Arγ r(A
T
r e) + Al il + Acic + Auiu + Aj is(t) (5c)

0 = vc(t) − AT
c e (5d)

0 = vs(t) − AT
u e (5e)

Here, the vectorsvc and il are counted among the vectorx.
The vectory is composed ofic, iu andeand the input vectors
is andvs are counted among the vectorz.
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Fig. 2.Calculation principle of (a)Pj and (b)Ph

3 Jump points

It was shown byChua and Deng(1989b), that almost all sin-
gular points of an autonomous semi explicit DAE are in fact
impasse points, i.e. jump points. However, e.g. inChua and
Deng(1989a), Chua and Deng(1989b) andAndronov et al.
(1966), the fact thatS could contain a fold respectivelyz was
neglected. Taken this into account and knowing that singular
points are points, where the local solvability toy is not guar-
anteed (e.g.Thiessen et al.(2011), Chua and Deng(1989a)),
the necessary jump condition can be specified by (cf.Chua
and Deng(1989a), Andronov et al.(1966)):

det
(
∂yf(x,y,z)

)
= 0 wheref(x,y,z) = 0 (6)

A point that is specified by eq. (6) and whose neighborhood
includes each a Lyapunov-stable and -unstable point, is de-
fined as proper jump pointPj . This sufficient jump condi-
tion can be verified by calculating the eigenvaluesλi of the
characteristic equation det

(
∂yf(x,y,z) − λ · E

)
= 0, whereE

is the identity matrix (cf. theory of discontinuous oscillators
e.g.Andronov et al.(1966), Mishchenko and Rozov(1980)).
The set of all points fulfilling these two conditions is called
jump-set0, which represents al − 1-dimensional subset of
S. Of course, the calculation of the zero set of all points ful-
filling the m + 1 algebraic equations specified by Eq. (6) is
difficult. However, not all zeros of Eq. (6) are of interest,
but only in the actual chosen jump point during a simula-
tion. Hence, the dynamics onS will be traced till reaching a
stopping pointPs . This stopping point is defined as a point,
where the step size of the numerical solver reaches a lower
boundary (which is related to the machine constant of the
simulating computer). In the next step, the ”nearest” point on
0 will be calculated by choosing a suitable norm and defined
as the actual jump pointPj (cf. Fig. 2 (a)).

4 Hit points

The dynamics onS is specified by Eq. (3a) and (3b). Since
the dynamics is not defined at points on0, the trajectory
increases very fast nearby0 while tracing it. Therefore the
numerical integration is stopped atPs when the step size
reaches the lower boundary. From there, the jump pointPj is
calculated as described in Sect.3. To trace the dynamics, we
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use a variable order solver based on the numerical differenti-
ation formulas (NDFs)Shampine and Reichelt(1997).

Considering that the voltage across a capacitance and the
current through an inductance is preserved, both have iner-
tia through a jump process and do not change (i.e.xj = xh).
Assuming that a jump happens instantaneous, i.e.tj = th, a
further restriction is the fixed value ofz (i.e. vs(tj ) = vs(th),
is(tj ) = is(th)) during a jump. Consequently, a jump takes
place in a tangential space ofRm, which corresponds to the
coordinate space ofy. In the following, the jump space will
be denoted byJS. This corresponds to the jump postulate of
Chua and Alexander(1971).

Because we introducedE , a hit pointPh can be calculated
by the intersection ofJS defined inPj andS excluding the
jump point itself (Ph ∈ (JSPj

∩S)�0) (see Fig.2 (b)).
Thus, the problem of the hit point calculation can be de-

fined as

0 = f(xj ,y,zj ) =: h(y), (7)

with the constraint

yh 6= yj . (8)

In Thiessen and Mathis(2011a), Sarangapani et al.and
Thiessen et al.(2012a) the hit point calculation was done
in two steps: First a pointPj ′ outsideS was chosen so
thatPh′ ∈ (JS ′

Pj ′ ∩S). In the next step, the actual hit point
Ph ∈ (JSPj

∩S)�0 with the initial conditionPh′ was cal-
culated. There, the difficulty was to chose a suitable pointPj ′

outsideS, so that the numerical solver is able to findPh′ .
Another approach (cf.Thiessen et al.(2011)) to calculate a

hit point was to use a bisection method. This provided a set of
possible points from which the closest to the corresponding
jump point was chosen.

Now, an efficient approach to calculate the hit points of
circuits with only one fold inS based on the penalty function
will be shown.

4.1 Penalty function

The basic idea of a penalty function is to convert the zero
problem of Eq. (7) with a constraint (8) in a zero problem
without constraint (cf.Florian Jarre(2003)).

Thus, the optimization problem

h(y) → min with y 6= yj , (9)

whereh : Rm
→ Rm can be transformed to

p(y, r) := [h(y) + r · l(y)] → min . (10)

The penalty functionp(y, r) consists of the weighted sum
of the objective functionh(y) and the penalty functionl(y).
The penalty function itself can be weighted by the vectorr =

(r1, r2, . . . , rm)T which is chosen to ber = r ·(1,1, . . . ,1)T in
this work.

Here, an easy penalty function for the constraint of eq. (8)
was chosen:

l(y) =
1

‖y − yj‖2
(11)

It follows that l(y) → 0 for y 6= yj andl(y) → ∞ for y ≈

yj .
To achieve a more robust solution, suitable initial condi-

tions yh,0 outsideS has to be chosen. It became apparent,
that the addition of the inverse of the last step1y to yj ,
yields a more robust numerical solution than by choosing
e.g.yh,0 = 0. This can be explained by the switching process
of the considered circuits.

FromPh the dynamics can be traced, till reaching0 again.

5 Multiple hit points

Another problem appears if the configuration spaceS of the
electronic circuit is multiple folded, so that there are multiple
possible hit points (cf. Fig.3).

v2

v1JS
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Ph5

Ph3

Fig. 3.Multiple hit points

In these cases, the penalty function approach is not suit-
able and a new approach based on the homotopy method is
needed.

5.1 Homotopy method

The homotopy method is used to solve nonlinear algebraic
equations of the form (7). The advantage is that the conver-
gence region is much larger than the one by applying the
penalty approach. Starting from an easy zero problem, the
system of equations will be deformed byλ till reaching the
original zero problem. This continuous deformation process
is achieved by solvingH(y,λ) = 0. A general homotopy can
be given as follows:

H(y,λ) = λh(y) + (1− λ)B(y) = 0 . (12)

This homotopy consists of a linear combination of two real
functions:h(y), whose zeros are sought andB(y), a func-
tion for which a zero is known. The difficulty is to choose
the proper functionB(y) for the corresponding zero problem
Trajkovic and Mathis(1995).
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Fig. 4. (a)Analyzed TD circuit;(b) two TD characteristics

The zero curve of the homotopy mapH(y,λ) (homotopy
path) can be tracked by different techniques. One technique,
which is used in this work, is to use an ODE-based algorithm
(cf. Watson(1990)). For this, the parametrization is not based
on λ but on the arc lengths of the homotopy path. There-
for, the equationH(y(s),λ(s)) = 0 has to be differentiated
with respect tos and solved forλ andy. The main advantage
for using the arc length method is because therewith regres-
sive homotopy paths can be traced. A disadvantage of such a
multiple-step method is, that the error of the approximation
of y increases with every step. By using a predictor corrector
method, the error accumulation can be counteracted.

In the following the problem of multiple hit points will be
displayed by the example of two series connected resonance
tunneling diodes (cf. Fig.4 (a)) Thiessen et al.(2012b). The
chosenV -I characteristics of the tunnel diodes is shown in
Fig.4 (b). A good approximation of theseV -I characteristics
can be achieved by using the following equation (cf.Chang
et al.(1993)):

Gj (VDj ) = e ·

(
c1 · VDj ·

[
tan−1(c2 · VDj + c3)

−tan−1(c2 · VDj + c4)
]
+ c5 · V m

Dj + c6 · V l
Dj

)
, (13)

whereci are constants related to the peak and valley currents
and voltages,e is a scaling factor andm and l are integer
fitting factors.

By using a norator, as explained in Section2, the con-
figuration spaceS of the series connection can be deter-
mined by solving the system of equationsI = G1(VD1),I =

G2(VD2),Vsum = VD1 + VD2 (cf. Fig. 5).
It is noteworthy that the configuration space of the series

connection consists of two separated manifolds: one main
part proceeding through the origin and a second separated
single loop which can only be reached by choosing suitable
initial conditions (cf.Thiessen et al.(2012b)). If the current
I is increased from zero, the first jump point of the non-
regularized circuit of Fig.4 (a) will be reached at the point
Pj . From there, there are five possible hit points as shown in
Fig. 5).

For the sake of completeness, the transients of the cor-
responding regularized circuit are also shown in Fig.5) by
the green lines with arrows. The regularized circuit can be
achieved by adding small capacitances parallel to the diodes
(cf. Thiessen et al.(2012b)).
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To calculate the hit points, the FPN homotopy shown in
Rahimian et al.(2011) is used. The FPN homotopy con-
sists of a combination of the fixed-point (FP) and Newton
(N) function approach and can be formulated in two steps:
(1) The functionh(y) to be solved is multiplied by the fixed-
point function giving

hfp(y) = h(y)(y − y0) . (14)

(2) The functionB(y) is formed by a combination of the
fixed-point and Newton function (cf.Rahimian et al.(2011))
yielding

B(y) = (y − y0) + (hfp(y) − hfp(y0)) = 0 . (15)

Inserting Eq. (14) and eq.(15) in Eq. (12) gives

H(y,λ) = λhfp(y)+

(1− λ) ·
(
(y − y0) + (hfp(y) − hfp(y0))

)
= 0 . (16)

After some rearrangements, eq.(16) simplifies to

H(y,λ) = (1+ h(y) − λ) · (y − y0) . (17)

With this homotopy, the corresponding homotopy path for
calculating the hit points of the series connection can be seen
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in Fig. 6. The jump pointPj was chosen as starting point
y0, which is also a solution ofh(y). To calculate further ze-
ros exceptPj , the homotopy path was progressed beyond
λstart= 1. Therefore, a bifurcation point (BP) was inserted
atPj (cf. Dhooge et al.(2006)).

The numerical calculation of the homotopy path was done
by a numerical continuation method, which includes a pre-
dictor corrector method. Therefore, theMATLAB toolbox
CL MATCONTwas usedDhooge et al.(2006).

As can be seen from Fig.5 and Fig.6 not all hit points can
be calculated with this method. The hit points on the sep-
arated single loop cannot be calculated, but all hit points on
the main part ofS. This results due to the fact, thatS consists
of two separated manifolds.

The hit points on the separated single loop are in fact insta-
ble points and could be calculated by choosing suitable initial
conditions. But, for tracking the transients, only the stable hit
points are of interest, which arePh2 andPh4. Now the ques-
tion is, which of these both points is the right hit point ?

In the work ofChua and Alexander(1971) there is an iner-
tia postulate which says: trajectories on a stable branch will
continue on a stable part till reaching a jump point and than
jump to the ”nearest” stable part ofS. But a complete proof
of this postulate is still pending. One possibility to verify this
postulate is to analyze the catchment area of the dynamic of
the corresponding regularized circuit, but this will be the fo-
cus on further studies.

6 Conclusions

In this work, a detailed description of the geometric system
analysis was given. Thereby it was explained why the system
of equations yielding from the ANA is the most suitable for
applying the geometric approach. Furthermore, the penalty
and the homotopy approach for a numerically efficient cal-
culation of the hit points were shown. The penalty function
method turned out to be suitable for circuits with only one
fold in S, but not for several folded configuration spaces. By
using a homotopy method with a proper homotopy function,
all hit points can be calculated assumingS consists only of
one manifold. In this work a non generic case, whereS con-
sists of two separated manifolds was shown. In those cases,
not all hit points can be calculated without further arrange-
ments. Furthermore, the question of choosing the right hit
points appeared, but shall be studied in further investigations.

Acknowledgements.The authors would like to thank the German
Research Foundation (DFG) for the financial support and Serdar
Ediz for his valuable contributions to the topic of hit point calcula-
tion.

References

Andronov, A., Vitt, A., and Khăıkin, S.: Theory of Oscilators, In-
ternational Series of Monographs in Physics, Vol. 4., Pergamon
Press Ltd., 1966.

Chang, C., Asbeck, P., Wang, K.-C., and Brown, E.: Analysis
of Heterojunction Bipolar Transistor/Resonant Tunneling Diode
Logic for Low-Power and High-Speed Digital Applications,
IEEE T. Electr. Dev., 40, 685–691, 1993.

Chua, L.: Dynamic nonlinear networks: State-of-the-art, IEEE T.
Circuits Syst., 27, 1059–1087, 1980.

Chua, L. and Alexander, G.: The Effects of Parasitic Reactances on
Nonlinear Networks, IEEE T. Circuits Syst., 18, 520–532, 1971.

Chua, L. O. and Deng, A.-C.: Impasse Points. Part 1: Numerical As-
pects, International Journal of Circuit Theory and Applications,
17, 213–235, 1989a.

Chua, L. O. and Deng, A.-C.: Impasse Points, Part 2: Analytical
Aspects, Int. J. Circ. Theor. App., 17, 271–282, 1989b.

Dhooge, A., Govaerts, W., Kuznetsov, Y. A., Mestrom, W., Riet,
A. M., and Sautois, B.: MATCONT and CLMATCONT: Con-
tinuation toolboxes in matlab, 2006.

Florian Jarre, J. S.: Optimierung, Springer-Verlag, 2003.
Mishchenko, E. F. and Rozov, N. K.: Differential Equations with

Small Parameters and Relaxation Oscillators, Plenum Press,
1980.

Rahimian, S. K., Jalali, F., Seaderc, J., and White, R.: A new homo-
topy for seeking all real roots of a nonlinear equation, Computers
and Chemical Engineering, 35, 403–411, 2011.

Reich, S.: On a Geometrical Interpretation of Differential-Algebraic
Equations, Circ. Syst. Sign. Pr., 9, 367–382, 1990.

Reissig, G.: Differential-Algebraic Equations and Impasse Points,
IEEE T. Circuits Syst., 43, 122–133, 1996.

Riaza, R.: Differential-Algebraic Systems: Analytical Aspects and
Circuit Applications, World Scientific, 2008.

Sarangapani, P., Thiessen, T., and Mathis, W.: Differential Alge-
braic Equations of MOS Circuits and Jump Behavior (accepted),
Advances in Radio Science.

Shampine, L. F. and Reichelt, M. W.: The MATLAB ODE Suite,
SIAM Journal on Scientific Computing, 18, 1–22, 1997.

Thiessen, T. and Mathis, W.: Geometric Dynamics of Nonlinear Cir-
cuits and Jump Effects, International Journal of Computations
& Mathematics in Electrical & Electronic Engineering (Compel
2011), 30, 1307–1318, 2011a.

Thiessen, T. and Mathis, W.: Geometrical Interpretation of Jump
Phenomena in Nonlinear Dynamical Circuits, in: Joint 3rd Int’l
Workshop on Nonlinear Dynamics and Synchronization (INDS
2011) & 16th Int’l Symposium on Theoretical Electrical Engi-
neering (ISTET 2011), 1 –5, 2011b.

Thiessen, T., Gutschke, M., Blanke, P., Mathis, W., and Wolter,
F.-E.: A Numerical Approach for Nonlinear Dynamical Circuits
with Jumps, in: 20th European Conference on Circuit Theory and
Design (ECCTD 2011), 461–464, 2011.
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