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Abstract. In this contribution, a system identification pro-
cedure of a two-input Wiener model suitable for the analy-
sis of the disturbance behavior of integrated nonlinear cir-
cuits is presented. The identified block model is comprised
of two linear dynamic and one static nonlinear block, which
are determined using an parameterized approach. In order
to characterize the linear blocks, an correlation analysis us-
ing a white noise input in combination with a model reduc-
tion scheme is adopted. After having characterized the linear
blocks, from the output spectrum under single tone excita-
tion at each input a linear set of equations will be set up,
whose solution gives the coefficients of the nonlinear block.
By this data based black box approach, the distortion behav-
ior of a nonlinear circuit under the influence of an interfering
signal at an arbitrary input port can be determined. Such an
interfering signal can be, for example, an electromagnetic in-
terference signal which conductively couples into the port of
consideration.

1 Introduction

In order to ensure the reliability of electronic systems even
in harsh electromagnetic environments, it is necessary to an-
alyze the effects of EMI signals on integrated circuits at an
early design stage. Generally, a disturbance signal can couple
into a nonlinear circuit at an arbitrary port. The output signal
will possess interference components, that can significantly
distort the circuit’s functionality. These interference phenom-
ena arise due to intermodulations between the nominal input
signal and the disturbing signal as an effect of the nonlinear
device characteristics (Stegemann et al., 2012, 2011). To es-
timate those interfering products with respect to both inputs,
we model the nonlinear circuits under consideration by the
two input Wiener model shown in Fig.1. In this work, the

black box approach is used to identify the considered model,
as in this case a rapid solution is more important than a de-
tailed consideration of the circuit structure itself. The model
structure is comprised of two linear blocks and a nonlinear
static block. Both linear blocks are described by their lin-
ear transfer function and independently model the frequency
characteristics of the input signalxin and the distortion sig-
nal xdis, respectively. The static nonlinear block is given by
a multivariate polynomial that models the nonlinear behav-
ior of the circuit. In the proposed system identification pro-
cedure for this block oriented model, the parameters of the
linear blocks are obtained by adopting a correlation analysis
using a white noise input. The artificial and not observable
intermediate signals̃xin(t) and x̃dis(t) are avoided with the
assumption of small input signals so that the whole system
can be seen as linear. Then, by applying the determined lin-
ear transfer functions, a linear system of equations is set up
to calculate the parameters of the nonlinear block from fre-
quency domain data. The identified model can be used to cal-
culate characteristic figures of merit for the distortion anal-
ysis of nonlinear circuits, such as intermodulation distortion
components:

IM2 =
AIM2

Afundamental
(1)

IM3 =
AIM3

Afundamental
. (2)

To obtain these values, the outputy is analyzed in the fre-
quency domain. HereAfundamentalis the magnitude at the fre-
quency ofxin andAIM2,3 are the magnitudes of the intermod-
ulation products of second and third order.

Besides the premise that for small input signals the nonlin-
earity can be seen as linear, the proposed identification pro-
cedure does not need other specific assumptions on the struc-
ture of the analyzed circuit. E.g. there is no need to assume an
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Fig. 1. Block-oriented model structure for identification procedure
(cf. Stegemann et al., 2012, 2011).

invertible nonlinearity (cf.Greblicki, 1992) to calculate the
intermediate signals for the identification of the linear blocks.
Furthermore, each block is characterized with only one test
signal, so there is no need for extensive calculations with
different or complex input signals (Pintelon and Schoukens,
2001). In comparison with the classical distortion theory
described in (Weiner and Spina, 1980) or (Wambacq and
Sansen, 1998), the model can be used for EMI induced dis-
tortion analysis at nonsignal inputs, e.g. at the supply voltage.
The applicability of the procedure for multi input distortion
analysis using a simulative approach, is shown in detail for an
operational amplifier in the presence of an interference signal
at the power supply. In (Stegemann et al., 2012) an analytical
approach for the characterization of each block is described.
The remainder of the paper is organized as follows. In sec-
tion 2 the predefined structure of the linear transfer functions
and the multivariate polynomial are described, as well as the
assumptions needed to identify their parameters. The identi-
fication procedure is then described in detail in the Sect.2.1
for the linear dynamical and Sect.2.2for the nonlinear static
block. In Sect.3 the identification procedure is carried out for
a two-stage operational amplifier. The results for the charac-
terized blocks are compared with simulations from Cadence
Spectre.

2 Identification procedure for distortion analysis

In this section the identification procedure for both, the lin-
ear dynamic and the nonlinear static block of the multi-input
Wiener model is described. The goal is to characterize each
block of the model shown in Fig.1 by using either simu-
lated or measured input and output data. For this purpose, the
transfer characteristics of each block are given as predefined
functions, for which we determine a parametrization that ap-
proximates the input/output behavior of the circuit. Since we
are interested in a frequency domain analysis, we character-
ize each linear dynamic block by a rational function of the
form:

H(s) =

∑M
m=0amsm∑N
n=0bnsn

, (3)

i.e. the linear blocksHin andHdis are assumed to be com-
pletely described by linear transfer functions. The frequency

domain transforms̃Xin(fin) andX̃dis(fdis) of the artificial in-
termediate signals̃xin(t) andx̃dis(t) are then given by:

X̃in(fin) = Hin(fin) · Xin(fin) (4)

X̃dis(fdis) = Hin(fdis) · Xdis(fdis) (5)

This way, the dynamic behavior of a nonlinear circuit is mod-
elled by a linear transfer function for each input, that filters
the input signals of the circuit. Note, that from the knowledge
of Hdis, i.e. the frequency response of the distortion signal, it
is possible to estimate the frequency range in which a circuit
is most susceptible to EMI as the frequency range in which
Hdis exhibits its highest gain (Stegemann et al., 2012). The
intermodulation products betweenxin(t) and xdis(t) at the
output arise due to a nonlinear transformation, which is de-
scribed by a static nonlinear functionF(x̃in, x̃dis). This static
nonlinearity is characterized by theK-th degree multivariate
polynomial:

F(x̃in, x̃dis) = f (x,y) =

K∑
k=0

K−k∑
l=0

αk,lx
kyl . (6)

The coefficientsαk,l are referred to asnonlinearity coeffi-
cients. For the black box characterization of every block, a
relationship between the input of each block to the overall
output of the system has to be determined. This can only
be done by using suitable test signals (Bai et al., 2007). In
Sect.2.1, the determination of the parametersam andbn of
the linear blocks using a Gaussian white noise input and a
correlation analysis is described. In order to characterize the
linear blocksHin and Hdis independently of the nonlinear
blockF(x̃in, x̃dis), the amplitude of the white noise signal has
to be small. When determining the linear blocks, we assume
that the output is at most weakly distorted by the nonlinear-
ity. That is, we considery(t) to be

y(t) ≈ L−1
{Hin(s)} ∗ xin(t) +L−1

{Hdis(s)} ∗ xdis(t), (7)

whereL−1 is the inverse Laplace transform and∗ denotes
the convolution operation. Once the linear blocks are identi-
fied, the artificial intermediate signals̃xin(t) and x̃dis(t) can
be calculated by Eqs. (4) and (5). Using sinusoid input func-
tions for the nominal input and the distortion signal, the non-
linearity coefficients of the multivariate polynomial in Eq. (6)
can be determined using the spectral approach described in
Sect.2.2.

2.1 Identification of the linear blocks

In the context of linear and time invariant systems, a suitable
way to characterize transfer characteristics is by means of
white noise (Meyer, 2011). The identification procedure for
the linear blocks of the multi input Wiener model is based
on the definitions of the autocorrelationrxx(t1, t2) and the
crosscorrelationrxy(t1, t2) of a white noise process, which
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can be represented by their mean value and only depends on
the time differences (Meyer, 2011):

rxx(τ ) = lim
T →∞

1

2T
·

+T∫
−T

x(t)x(t + τ)dt, (8)

rxy(τ ) = lim
T →∞

1

2T
·

+T∫
−T

x(t)y(t + τ)dt. (9)

Here,x(t) is the white noise input,y(t) is the output signal
andτ = t2 − t1 is the time difference. Using Eq. (8), Eq. (9)
can be written as follows (Meyer, 2011):

rxy(τ ) = rxx(τ ) · h(τ). (10)

By transforming Eq. (10) into the frequency domain, we ob-
tain the expression for determining the transfer function:

Sxy(s) = Sxx(s) · Hcorr(s), (11)

with s = j · 2πf . From Eq. (11), the characterization of the
transfer functions is possible by measuring the response of
a linear system to a white noise input and calculating the
autocorrelation of the input, as well as the crosscorrelation
between the output and input signal. By means of this cor-
relation analysis and by the assumption Eq. (7), we obtain a
data set forHin andHdis with respect to frequency, by record-
ing the output wile stimulating the respective inputxin or xdis
with a white noise signal and zeroing the other input. Note,
that we can only expect to obtain approximative results for
the transfer functions, since no infinitely long signals can be
considered. In order to characterize the parameters of the ra-
tional transfer function given in Eq. (3), we adopt a com-
plex curve fitting method to determine the coefficients. A
first guess of the degree of the nominator and the denomi-
nator polynomialZest(s) andNest(s), respectively, has to be
chosen with the help of the data obtained from the corre-
lation analyis described above. Relying on the approximated
characteristics in the frequency domain, we first chose a rela-
tively high degree to overestimate, but to completely describe
the system’s dynamics (Pintelon and Schoukens, 2001). The
coefficientsam and bn of (11) will then be determined by
a nonlinear fitting problem for which we need a good ini-
tial guess. By means of the Gauss-Newton algorithm we ob-
tain the linear transfer functions for bothHdis andHin. As
a last step, we reduce the order of the transfer function by
an iterative approach. Eq. (3) is nonlinearly dependent on
the coefficientsam andbn of it’s nominator and denomina-
tor polynomials. That is, the error defined as the difference
of the estimated transfer function1 Hest(s) and the character-
istics resulting from the correlation analysisHcorr(s) at the
specific frequencies,

e(s) = Hcorr(s) − Hest(s), (12)

1Either beingHdis or Hin in the general form of Eq. (3).

is nonlinearly dependent onam andbn, too. The goal is to
find a set of coefficients that minimizes the error Eq. (12). An
approximated solution of this minimization problem can be
found using an iterative scheme, such as the Gauss-Newton
method, which has been adopted in this work. However, the
method requires the knowledge of an initial guess as a start-
ing point for the iteration and, due to the nonlinear depen-
dency onam andbn, it can not be guaranteed that a global
minimum will be found (Boyd, 2004) (Dahmen, 2008). In
order to determine such an initial solution, we convert the
problem into a similar but linear one, which we obtain by
multiplying the error function in Eq. (12) by the yet unknown
denominatorNest(s):

ẽ(s) = Hcorr(s) · Nest(s) − Zest(s). (13)

From this definition it is now possible to formulate a lin-
ear least squares problem (Tao and Zunde, 1981), which is
solved by minimizing the squared error

E =

M∑
m=1

|ẽ(sm)|2, (14)

over every frequencysm · jωm. For this linear optimization
problem there exists a unique solution, since the problem is
convex (Boyd, 2004). Taking this solution as a starting point,
the Gauss–Newton iteration is applied to successively im-
prove the solution of Eq. (12). After having found a possi-
ble solution for a transfer function, one should try to reduce
the order of this function, which is possible for the numera-
tor and the denominator polynomial separately. That is, we
wish to find a solution for the linear blocks providing as less
poles and zeros as possible with no loss in accuracy. For this
purpose, an overall iteration scheme is applied, which suc-
cessively reduces the degree of the nominator and the de-
nominator, until a predefined error limit is reached. If a rapid
increase of the error is observed during order reduction, the
solution found up to this point will be used (Pintelon and
Schoukens, 2001). A flow-chart of the applied reduction al-
gorithm is depicted in Fig.2.

2.2 Identification of the nonlinear block

Having successively identified the linear blocks, both for the
input and for the distortion signal, the static nonlinear block
can be determined, since the artificial intermediate signals
x̃in and x̃dis can now be calculated by Eqs. (4) and (5). We
calculate the coefficients of the multivariate polynomial in
Eq. (6) by simulating or measuring the quasi periodic output
for a single frequency excitation at both inputs, as:

xin(t) = Ain cos(2πfint + φin) (15)

xdis(t) = Adiscos(2πfdist + φdis). (16)

The outputy(t) will then be composed of various harmon-
ics and intermodulation products ofxin(t) andxdis(t). Given
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Fig. 2. Flow-chart of the algortihm for order reduction of the iden-
tified linear transfer functions.

a predefined order of the polynomial output nonlinearity
F(x̃in(t), x̃dis(t)), we construct a linear system of equations
in the complex domain from the output spectrum ofy(t). The
solution of this system of equations yields the coefficients
αk,l for k, l = 1, . . . ,K in (6). We fix the orderK by omitting
those components in the output spectrum, whose amplitudes
do not exceed a predefined threshold. Given the input fre-
quenciesfin andfdis, the output frequencies generated by a
polynomial nonlinearity are calculated using the concept of
module vectors (Weiner and Spina, 1980). That is, thei-th
mixing frequency of orderk + l is given by:

fi,k+l = mi,k+l · f
T
exc. (17)

Here f exc = [−fin,−fdis,fdis,fin] is the row vec-
tor containing the input and the distortion frequency
(i.e. the excitation frequencies). The row vector
mi,k+l = [m−fin ,m−fdis,mfin ,mfdis] is the i-th module
vector of orderk + l, whose entries are positive natural
numbers and which obey:

m−fin + m−fdis + mfin + mfdis = k + l. (18)

For a given orderk + l there exist2

i = 1, ..,

(
4+ k + l − 1

k + l

)
2Chua and Ng(1979), p. 5, for whichK = 2 (no. of input fre-

quencies) andn = k + l (order of mixing product).

module vectors and by Eq. (17) the output frequencies are
related to the input frequencies. Using this concept, we can
construct the following linear system of equations with the
coefficients of (6) as unknowns:

Cα̃ = b. (19)

Here, the vectorb on the right hand side contains the complex
amplitudes (absolute values and phases) of the simulated or
measured output spectrum ofy(t) at the frequencies calcu-
lated by Eq. (17) which are listed in ascending order. The
entries of the matrixC are calculated as follows: For each
frequency from Eq. (17) the resulting signal amplitude and
phase is calculated by:

qk,l,i =
1

2k+l
|x̃in|

k
|x̃dis|

l exp[j (k · arg(x̃in) + l · arg(x̃dis)]. (20)

Since different module vectors can result in the same fre-
quency, there are less unique frequencies than module vec-
tors. Because the vectorb contains the complex amplitdues
for these unique frequencies only, the values Eq. (20) are
connected with the rowsi of C by their frequency, hence
the index. The corresponding columnj in the matrixC for
each complex value given by Eq. (20) is then calculated by
its indicesk andl:

j =
(k + l) · (k + l + 1)

2
+ 1+ l. (21)

The fraction is the sum from 1 tok + l which equals the
number of all nonlinear coefficients up to the orderk + l −1.
Thus, it can be seen as the starting index for the coefficients
of orderk + l. As the index l (or k) is unique for each or-
der, since the sum of k and l stays the same, it can be used
to obtain the column index. Consequently, the rows of the
matrix C contain the complex amplitudes from Eq. (20) for
a specific frequency equal to the frequency in the vectorb,
whereas the complex amplitudes are linked with the columns
of C by their indices k and l according to Eq. (21). Due
to the number of frequencies generated by the nonlinear-
ity, Eq. (14) is an overdetermined system of equations, for
which a least squares solution can be obtained. After having
solved Eq. (19) to get α̃, we obtain the nonlinearity coef-
ficients by division with the corresponding binomial coeffi-
cient (see e.g.Weiner and Spina, 1980or Maas, 2003):

αk,l =
k! · l!

(k + l)!
α̃k,l (22)

3 Modelling a two-stage operational amplifier

The described procedure is now used to model the opera-
tional amplifier given in Fig.3 within a simulation approach.
Comparative simulations were made with Cadence Spectre.

The input signal equals the differential signal between the
inputs vout1 and vout2, where the interfering signalvdis(t)
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Fig. 3.Operational Amplifier with interferring signalvdis(t) at the supply voltage
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Fig. 4.Transfer functionsHin,vout1 andHdis,vout1

varies the reference current of the differential stage which
leads to a mixing between both inputs. In this case the inter-
fering signal does not directly influence the differential out-
put vout1− vout2 because of the common mode rejection of
the input stage. Thus, two transfer functions are identified for
both inputsHin,vout1, Hin,vout2, Hdis,vout1 andHdis,vout2 accord-
ing to the outputsvout1 andvout2. The resulting bode plots
of the transfer functionsHin,vout1 andHdis,vout1 are shown in
Fig. 4. The procedure yields the same results for the output
vout2, with just a 180◦ phase shift forHin,vout2. These results
were achieved by a transient simulation with Gaussian white
noise input with a maximum level of 45 µV. Based on the
identified frequency response, a frequency range of 10 kHz
up to 10 MHz was chosen to conduct the order reduction
scheme of2.1.

For comparison purposes a counter simulation was done,
using the XF-analysis in Cadence Spectre. As it can be seen
from Fig.4, there is a very good agreement between the cal-
culated and the simulated transfer functions. The resulting
polynomial from Eq. (6) is shown in Fig.5, which was cal-
culated for a magnitude of 2 mV for both inputs at frequen-
cies of 200 kHz for the nominal input and 18 kHz for the in-
terfering signal, respectively. In this case, the order of the
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Fig. 5.Nonlinear characteristic in dependency of both input signals.

polynomial was set toK = 9. The obtained model is now
used for the distortion analysis of the given circuit. As the
intermodulation products of second and third order and their
figures of merit are of particular interest, these intermodula-
tion components can be calculated from the amplitudes at the
frequenciesfin ±fdis for the second order andfin ±2fdis for
the third order components as:

IM2 =
α11 · |Hf dis(fdis)Xdis(fdis)|

α10
(23)

IM3 =
α12 · |Hf dis(fdis)Xdis(fdis)|

2

α10
. (24)

The estimated characteristics of IM2 and IM3, in dependency
of the distortion amplitudevdis, are depicted in Fig.6. In this
case the magnitude of the nominal input signal was set to
2 mV. The counter simulation was done by a Harmonic Bal-
ance simulation of the whole circuit in Cadence Spectre with
sweptvdis.
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4 Conclusion and outlook

In order to derive expressions for analyzing the intermod-
ulation products of an input signal and an interfering sig-
nal of a nonlinear circuit, an identification procedure to ob-
tain parametrized transfer functions for a multi input Wiener
model from input and output data has been described. The
linear transfer functions of the linear blocks for both inputs
were derived by a correlation analysis with white noise ex-
citation signals at both inputs and deriving the output by
a transient simulation. In this context, an order reduction
scheme was proposed to calculate a solution according to
specific needs of accuracy or simplicity, regarding the maxi-
mum number of poles and zeros of the estimated linear trans-
fer functions. From the simulated output spectrum with sin-
gle tone stimulation at both inputs, a set of linear equations
has been set up to determine the nonlinearity coefficients of
the nonlinear block. The proposed identification procedure is
suitable to examine the frequency range in which a circuit
is most susceptible to a distortion signal, such as an electro-
magnetic interference signal. Having identified each block of
the multi input Wiener model, expressions for the emerging
intermodulation products can be obtained. Although the re-
sults in this paper were obtained by conducting simulation,
the proposed identification procedure can be used in a mea-
surement setup as well. Future work will deal with this mea-
surement set up and consideration of the input signals used
for the identification process.
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