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Abstract. In this contribution, a system identification pro- black box approach is used to identify the considered model,
cedure of a two-input Wiener model suitable for the analy-as in this case a rapid solution is more important than a de-
sis of the disturbance behavior of integrated nonlinear cir-tailed consideration of the circuit structure itself. The model
cuits is presented. The identified block model is comprisedstructure is comprised of two linear blocks and a nonlinear
of two linear dynamic and one static nonlinear block, which static block. Both linear blocks are described by their lin-
are determined using an parameterized approach. In ordezar transfer function and independently model the frequency
to characterize the linear blocks, an correlation analysis useharacteristics of the input signa}, and the distortion sig-
ing a white noise input in combination with a model reduc- nal xgjs, respectively. The static nonlinear block is given by
tion scheme is adopted. After having characterized the lineaa multivariate polynomial that models the nonlinear behav-
blocks, from the output spectrum under single tone excita-or of the circuit. In the proposed system identification pro-
tion at each input a linear set of equations will be set up,cedure for this block oriented model, the parameters of the
whose solution gives the coefficients of the nonlinear block.linear blocks are obtained by adopting a correlation analysis
By this data based black box approach, the distortion behavusing a white noise input. The artificial and not observable
ior of a nonlinear circuit under the influence of an interfering intermediate signal$i,(¢) and xgis(#) are avoided with the
signal at an arbitrary input port can be determined. Such armssumption of small input signals so that the whole system
interfering signal can be, for example, an electromagnetic incan be seen as linear. Then, by applying the determined lin-
terference signal which conductively couples into the port ofear transfer functions, a linear system of equations is set up
consideration. to calculate the parameters of the nonlinear block from fre-
guency domain data. The identified model can be used to cal-
culate characteristic figures of merit for the distortion anal-
ysis of nonlinear circuits, such as intermodulation distortion

1 Introduction

components:
In order to ensure the reliability of electronic systems even A,
in harsh electromagnetic environments, it is necessary to an-"'2 =~ Afundamental @)
alyze the effects of EMI signals on integrated circuits at an A,
early design stage. Generally, a disturbance signal can couplé3 = A (2)
fundamental

into a nonlinear circuit at an arbitrary port. The output signal

will possess interference components, that can significantlyfo obtain these values, the outpuis analyzed in the fre-
distort the circuit’s functionality. These interference phenom-quency domain. HerésndamentaiS the magnitude at the fre-
ena arise due to intermodulations between the nominal inpuguency ofxin andAu, , are the magnitudes of the intermod-
signal and the disturbing signal as an effect of the nonlineaulation products of second and third order.

device characteristicS§fegemann et al2012 2011). To es- Besides the premise that for small input signals the nonlin-
timate those interfering products with respect to both inputs,earity can be seen as linear, the proposed identification pro-
we model the nonlinear circuits under consideration by thecedure does not need other specific assumptions on the struc-
two input Wiener model shown in Fid.. In this work, the  ture of the analyzed circuit. E.g. there is no need to assume an
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- . domain transform&in ( fin) and Xgis( fdis) of the artificial in-
> Hin 7 termediate signalsi (r) andxgis(z) are then given by:
o y
F(: Cin s Ldis > v
) (s ) Xin(fin) = Hin(fin) - Xin(fin) (4)
—Tdis ol Hy, Tdis Xais(fdis) = Hin(fais) - Xdis( fdis) (5)

Fig. 1. Block-oriented model structure for identification procedure This way, the dynamic behavior of a nonlinear circuit is mod-
(cf. Stegemann et al2012 2011). elled by a linear transfer function for each input, that filters
the input signals of the circuit. Note, that from the knowledge
of Hyjs, i.€. the frequency response of the distortion signal, it
invertible nonlinearity (cfGreblicki, 1992 to calculate the is possible to estimate the frequency range in which a circuit
intermediate signals for the identification of the linear blocks. is most susceptible to EMI as the frequency range in which
Furthermore, each block is characterized with only one testHgis exhibits its highest gainStegemann et al2012. The
signal, so there is no need for extensive calculations withintermodulation products betweesh () and xgis(f) at the
different or complex input signal®{ntelon and Schoukens output arise due to a nonlinear transformation, which is de-
2001). In comparison with the classical distortion theory scribed by a static nonlinear functidi(Xin, Xqis). This static
described in \einer and Spinal980Q or (Wambacg and nonlinearity is characterized by ti#-th degree multivariate
Sansen1998, the model can be used for EMI induced dis- polynomial:
tortion analysis at nonsignal inputs, e.g. at the supply voltage. C Kk
The applicability of the procedure for multi input distortion - . —
analysis using a simulative approach, is shown in detail for an® (¥in: Xdis) = .f (¥, y) = Z Z a2ty (6)
operational amplifier in the presence of an interference signal =01=0
atthe power supply. Inf§tegemann et a2012 an analytical  The coefficientsy;; are referred to asonlinearity coeffi-
approach for the characterization of each block is describedgients For the black box characterization of every block, a
The remainder of the paper is organized as follows. In secrelationship between the input of each block to the overall
tion 2 the predefined structure of the linear transfer functionsoutput of the system has to be determined. This can only
and the multivariate polynomial are described, as well as theye done by using suitable test signa®ai et al, 2007). In
assumptions needed to identify their parameters. The identisect.2.1, the determination of the parametess andb, of
fication procedure is then described in detail in the S2dt.  the linear blocks using a Gaussian white noise input and a
for the linear dynamical and Se@.2for the nonlinear static  correlation analysis is described. In order to characterize the
block. In Sect3the identification procedure is carried outfor |inear blocksHi, and Hgis independently of the nonlinear
a two-stage operational amplifier. The results for the characplock F (%, %4is), the amplitude of the white noise signal has
terized blocks are compared with simulations from Cadenceg be small. When determining the linear blocks, we assume
Spectre. that the output is at most weakly distorted by the nonlinear-
ity. That is, we considey(¢) to be

2 ldentification procedure for distortion analysis Y(t) ~ LY Hin(s)} * xin(t) + £ Hais(s)} * xdis(t),  (7)

In this section the identification procedure for both, the lin- \yhere £-1 is the inverse Laplace transform amdienotes
ear dynamic and the nonlinear static block of the multi-inputhe convolution operation. Once the linear blocks are identi-
Wiener model is described. The goal is to characterize eacljeq, the artificial intermediate signafs, (r) and#gis(t) can
block of the model shown in Figl by using either simu-  pe calculated by Egs4) and 6). Using sinusoid input func-
lated or measured input and output data. For this purpose, thgons for the nominal input and the distortion signal, the non-
transfer characteristics of each block are given as predefineﬁlnearity coefficients of the multivariate polynomial in EG) (

proximates the input/output behavior of the circuit. Since wegget 2.2

are interested in a frequency domain analysis, we character-
ize each linear dynamic block by a rational function of the 2.1 |dentification of the linear blocks
form:
y In the context of linear and time invariant systems, a suitable
H(s) = > m—0mS" 3) way to gharacterlze transfer c.hara'cFerls_tlcs is by means of
S’:obns" ’ white noise Meyer, 2011). The identification procedure for
the linear blocks of the multi input Wiener model is based
i.e. the linear blockdd, and Hyjs are assumed to be com- on the definitions of the autocorrelation, (11, r2) and the
pletely described by linear transfer functions. The frequencycrosscorrelation,, (¢1, z2) of a white noise process, which
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can be represented by their mean value and only depends as nonlinearly dependent ag, andb,, too. The goal is to

the time differencesMeyer, 2011):

+T

I (T) = Tlim % . /x(t)x(t +1)dr, (8)
-T
1 +T
rey(T) = Tli_r)noo o /x(t)y(t +7)dr. (9)

-T

Here,x(¢) is the white noise inputy(z) is the output signal
andt =t — 11 is the time difference. Using Eq8), Eq. @)
can be written as followd\eyer, 2011):

ny(‘lf) =1 (1) - h (7).

By transforming Eq.10) into the frequency domain, we ob-
tain the expression for determining the transfer function:

Sxy(s) = Sxx(8) - Heorr (5),

(10)

(11)

find a set of coefficients that minimizes the error E®)(An
approximated solution of this minimization problem can be
found using an iterative scheme, such as the Gauss-Newton
method, which has been adopted in this work. However, the
method requires the knowledge of an initial guess as a start-
ing point for the iteration and, due to the nonlinear depen-
dency ona,, andb,, it can not be guaranteed that a global
minimum will be found Boyd, 2004 (Dahmen 2008. In
order to determine such an initial solution, we convert the
problem into a similar but linear one, which we obtain by
multiplying the error function in EqJ@2) by the yet unknown
denominatomVes(s):

e(s) = Heorr(s) - Nest(s) — Zes((s). (13)

From this definition it is now possible to formulate a lin-
ear least squares problefap and Zundel981), which is
solved by minimizing the squared error

with s = j - 2 f. From Eq. (1), the characterization of the r _ i 1E(sm) |2,
transfer functions is possible by measuring the response of =}

a linear system to a white noise input and calculating the

autocorrelation of the input, as well as the crosscorrelatiorPVer every frequency,, - jw,. For this linear optimization
between the output and input signal. By means of this cor-Problem there exists a qniqug solutipn, since the.probk_em is
relation analysis and by the assumption Ef), fve obtaina  CONvVex Boyd, 2004). Taking this solution as a starting point,
data set forHfi, and Hgis With respect to frequency, by record- the Gauss—Newton iteration is applied to successively im-
ing the output wile stimulating the respective inpator xgis ~ Prove the solution of Eq.1@). After having found a possi-
with a white noise signal and zeroing the other input. Note,ble solution for a transfer function, one should try to reduce
that we can only expect to obtain approximative results forthe order of this function, which is possible for the numera-
the transfer functions, since no infinitely long signals can betor and the denominator polynomial separately. That is, we
considered. In order to characterize the parameters of the rd¥ish to find a solution for the linear blocks providing as less
tional transfer function given in Eq3), we adopt a com- poles and zeros as possible with no loss in accuracy. For this
plex curve fitting method to determine the coefficients. A Purpose, an overall iteration scheme is applied, which suc-
first guess of the degree of the nominator and the denomic€ssively reduces the degree of the nominator and the de-
nator polynomialZes(s) and Nes(s), respectively, has to be nominator, until a predefined error limit is reached. If a rapid
chosen with the help of the data obtained from the corre-increase of the error is observed during order reduction, the
lation analyis described above. Relying on the approximatecdolution found up to this point will be usedipitelon and
characteristics in the frequency domain, we first chose a relaSchoukens2003). A flow-chart of the applied reduction al-
tively high degree to overestimate, but to completely describedorithm is depicted in Fig2.

the system’s dynamic#{ntelon and Schouken2001). The
coefficientsa,, andb, of (11) will then be determined by
a nonlinear fitting problem for which we need a good ini-

(14)

2.2 ldentification of the nonlinear block

il B fthe G N lorith bHaving successively identified the linear blocks, both for the
tial guess. By means of the Gauss-Newton algorithm we o input and for the distortion signal, the static nonlinear block

talln t,? etllnear trar(ljsfer ftl;]nCtIO(;]S fofr ttr:Oﬂ?dis arf1d bf[i”' '?_S b can be determined, since the artificial intermediate signals
a last step, we reduce the order ot the transter TUnclion by, a4 74 can now be calculated by Eg#l) @@and 6). We
an iterative approach. Eqg3)(is nonlinearly dependent on

th ficient db. of it inat dd ) calculate the coefficients of the multivariate polynomial in
€ coetlicientss,, andb, o Its nominator and denomina- Eqg. (6) by simulating or measuring the quasi periodic output
tor polynomials. That is, the error defined as the dn‘ferencefor a single frequency excitation at both inputs, as:

of the estimated transfer functibiles(s) and the character-
istics resulting from the correlation analydigqr(s) at the
specific frequencies,

e(s) = Heorr(s) — Hes((s),

1Either beingHyjs or Hj, in the general form of Eq.3).

(15)
(16)

Xin(t) = Ain COS(27 fint + ¢in)
Xdis(t) = AdisCOS(27 fdist + Pdis)-

(12) The outputy(¢) will then be composed of various harmon-

ics and intermodulation products gf,(r) andxgis(¢). Given
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Start module vectors and by Eql7) the output frequencies are
reduce number calc. related to the input frequencies. Using this concept, we can
of poles coefficients . . . .
construct the following linear system of equations with the

coefficients of §) as unknowns:

rel. or abs. error
within limits?

reduce number yes
of zeros

]

Ca =b. (19)

no

calc. Here, the vectob on the right hand side contains the complex

coefficients

amplitudes (absolute values and phases) of the simulated or
measured output spectrum oft) at the frequencies calcu-
lated by Eq. 17) which are listed in ascending order. The
entries of the matriXC are calculated as follows: For each
frequency from Eq.17) the resulting signal amplitude and
phase is calculated by:

rel. or abs. error
within limits?

restore zeros and restore poles and
stop reduction stop reduction

1 - . - g
I qi.li = Wlxmlklxaisllexp[.l (k - arg(¥in) +1 - arg(Xis) 1. (20)

Since different module vectors can result in the same fre-
guency, there are less unique frequencies than module vec-
tors. Because the vectércontains the complex amplitdues
aeduction done for these unique frequencies only, the values BEf) @re
=g connected with the rows of C by their frequency, hence
the index. The corresponding colurjinin the matrixC for

Fig. 2. Flow-chart of the algortihm for order reduction of the iden- eggch complex value given by EQQ) is then calculated by
tified linear transfer functions. its indicesk and!:

reduce poles? reduces zeros?

. kD (k+1+1)
a predefined order of the polynomial output nonlinearity / = 2
F(Xin(t), Xdis(¢)), we construct a linear system of equations
in the complex domain from the output spectrunyof). The The fraction is the sum from 1 té+/ which equals the
solution of this system of equations yields the coefficientsnumber of all nonlinear coefficients up to the order/ — 1.
apg fork,l=1,..., K in (6). We fix the orderk by omitting Thus, it can be seen as the starting index for the coefficients
those components in the output spectrum, whose amplitude@f orderk +1. As the index | (or k) is unique for each or-
do not exceed a predefined threshold. Given the input freder, since the sum of k and | stays the same, it can be used
quenciesfi, and fgis, the output frequencies generated by a {0 obtain the column index. Consequently, the rows of the
polynomial nonlinearity are calculated using the concept ofMatrix C contain the complex amplitudes from EQQ for
module vectors\{/einer and Spinal980. That is, thei-th @ specific frequency equal to the frequency in the vesfor

F1+1 (21)

mixing frequency of ordek + 1 is given by: whereas the complex amplitudes are linked with the columns
of C by their indices k and | according to ER1). Due
fikl =M i1 - fgxc, a7 to the number of frequencies generated by the nonlinear-

ity, Eg. (14) is an overdetermined system of equations, for
Here fexc=I[—fin,— fdis. fdis. fin] is the row vec- which aleast squares solution can be obtained. After having
tor containing the input and the distortion frequency solved Eq. {9) to geta, we obtain the nonlinearity coef-
(i.e. the excitation frequencies). The row vector ficients by division with the corresponding binomial coeffi-
mi=[m_g, ,m_p,mp mp ] is the i-th module  cient (see e.giVeiner and Spinal980or Maas 2003:
vector of orderk +1, whose entries are positive natural

numbers and which obey: _ kbt 29
Wt = G k! (22)
m*fin+m*fdis+mfin+mfdis=k+l‘ (18)
For a given ordek + [ there exist 3 Modelling a two-stage operational amplifier
. A4k+1—1 The described procedure is now used to model the opera-
i=1., ( k41 ) tional amplifier given in Fig3 within a simulation approach.
Comparative simulations were made with Cadence Spectre.
2Chua and Ng1979, p. 5, for whichk = 2 (no. of input fre- The input signal equals the differential signal between the
guencies) and = k + (order of mixing product). inputs vout1 and voutz, Where the interfering signalgis(z)
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Fig. 3. Operational Amplifier with interferring signal;s(¢) at the supply voltage
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Fig. 4. Transfer functiong7in v, @anNd Hdis, oy Fig. 5. Nonlinear characteristic in dependency of both input signals.

varies the reference current of the differential stage whichPolynomial was set t&k' = 9. The obtained model is now
leads to a mixing between both inputs. In this case the interused for the distortion analysis of the given circuit. As the
fering signal does not directly influence the differential out- intermodulation products of second and third order and their
put vouts — voute because of the common mode rejection of figures of merit are of particular interest, these intermodula-
the input stage. Thus, two transfer functions are identified fortion components can be calculated from the amplitudes at the
both iNputsHin, vo1s Hin.vour Helis veyy @8N His, v, accord-  frequenciesfin & fyis for the second order angh - 2 fais for

ing to the outputeur1 and voure. The resulting bode plots — the third order components as:
of the transfer function#fin, ., and Hyis v, 8re shown in ar1 - |H sl fais) Xais fiio)|

Fig. 4. The procedure yields the same results for the outpuim, = (23)
voutz, With just a 180 phase shift forHin ,,,,. These results @10

were achieved by a transient simulation with Gaussian WhitqwI _o12- | H rais( fais) X dis( fais) |2 (24)
noise input with a maximum level of 45 V. Based on the 3= a10 ’

identified frequency response, a frequency range of 10 kHz ) o ]
up to 10MHz was chosen to conduct the order reduction! N estimated characteristics offnd IMs, in dependency

scheme oP.1 of the distortion amplitudegis, are depicted in Fig. In this
For comparison purposes a counter simulation was donec@s€ the magnitude of the nominal input signal was set to

using the XF-analysis in Cadence Spectre. As it can be sees MV- The counter simulation was done by a Harmonic Bal-
from Fig. 4, there is a very good agreement between the cal-21C€ simulation of the whole circuit in Cadence Spectre with
culated and the simulated transfer functions. The resulting?WePdis.

polynomial from Eq. 6) is shown in Fig.5, which was cal-

culated for a magnitude of 2 mV for both inputs at frequen-

cies of 200 kHz for the nominal input and 18 kHz for the in-

terfering signal, respectively. In this case, the order of the
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