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Abstract. In this contribution a concept of matching the ter-
mination of radiating non-uniform transmission-lines is pro-
posed. Using Transmission-Line Super Theory, position and
frequency dependent line parameters can be obtained. There-
fore, a characteristic impedance can be determined which
is also position and frequency dependent. For a single wire
transmission-line it could be shown that the maximum value
of that characteristic impedance is an optimal termination in
the sense of minimizing the variation of the current on the
line. This indicates that matching is not a local effect at the
position of the concentrated load but a cooperative process
including the whole non-uniform transmission-line. In addi-
tion this choice of termination minimizes the variation of the
radiated power over frequency.

1 Introduction

Usually transmission-lines (TL) are used in a matched state.
A matched termination ensures that the reflection of forward
traveling waves at the end of the line is minimized. This
leads to a minimal variation of the current on the TL. In
the classical transmission-line theory (TLT) matched termi-
nation is achieved by choosing the terminating impedance
corresponding to the constant and real valued characteristic
impedance of the classical TL. However, in many practical
applications non-uniform wire structures are used. Instead
of the mentioned classical TLT in such cases the exact the-
ory in thin wire approximation, the so called Transmission-
Line Super Theory (TLST), is intended to be used which in-
cludes particularly higher order modes and radiation effects.
The transmission-line parameter matrix now is complex val-
ued and a position and frequency dependent function. There-
fore, it is a priori not clear which terminating impedance

minimizes the reflections on the TL. This problem is ana-
lyzed using a simple but non trivial single wire non-uniform
transmission-line. As an indicator of a good matching the
current distribution along the wire at a fixed frequency is
used. The effects to the frequency dependent variation of the
current in the load and the variation of radiated power are
also investigated.

2 The investigated single wire non-uniform
transmission-line

For a single wire transmission-line the parameterization ac-
cording to the arc length is a good choice. In the following
work this paramter is named asζ . It is the so called natural
parameter of the wire. WhenL is the total arc length of the
wire thenζ ∈ [0,L]. Figure1 shows the detailed geometry of
the used non-uniform transmission-line. In reality this could
be the principal structure (center wire) of a wire based open
TEM-waveguide, such as a Nuclear Electromagnetic Pulse
(NEMP) simulator. The horizontal line is part of the infi-
nite PEC ground plane. The total arc length of the used TL
is 1.609 m. On the generator side there is a vertical riser of
10 mm length. The generator (1 V, 50�) is placed between
the beginning of the TL and the ground plane. The terminat-
ing impedance again is positioned between the end of the TL
and the ground plane. Therefore, these terminating elements
can actually be handled as boundary conditions when solving
the TLST equation.

3 Fundamentals of transmission-line super theory

Transmission-line super theory (Haase and Nitsch, 2001;
Haase et al., 2003; Haase, 2005; Nitsch et al., 2009;
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Fig. 1. Geometry and dimensioning of the used single wire non-
uniform transmission-line

Nitsch and Tkachenko, 2010) is a full wave description of
Maxwell’s equations casted into the form of telegrapher’s
equations of classical TLT. Starting point is the parameter-
ized representation of the TL in the thin-wire approximation
(Tesche, 1972). The 3-dimensional curveC(ζ ) parameter-
ized by its natural parameter, the arc lengthζ , describes the
center line of the conductor. It has a circular cross section
of the small radiusr0 and the total lengthL. Additionally
the tangent vectorT (ζ ) and the normal unit vectorNu(ζ )

are required for TLST. The TL is spanned over PEC ground.
Therefore, the mirrored curvẽC(ζ ) and the mirrored tangen-
tial vectors̃T (ζ ) are needed to replace the PEC ground plane
for further calculations.

The first TLST equation is derived from the continuity re-
lation and is

∂

∂ζ
i + jωq = 0 (1)

q being the per-unit length charge andi the current on the
TL. The second TLST equation is derived from the Mixed
Potential Integral Equation (MPIE) (Nitsch et al., 2009) and
becomes

∂

∂ζ

L∫
0

kc(ζ,ζ ′)q(ζ ′)dζ ′
+ jω

L∫
0

kl(ζ,ζ ′)i(ζ ′)dζ ′
= 0. (2)

Equation (2) describes the case where no distributed sources
are present. The brief explanation of the TLST here is also
restricted to a single wire TL for simplicity. The integral ker-
nalskc andkl in the thin-wire approximation become

kc(ζ,ζ ′,k) =
1

ε

[
G(ζ,ζ ′,k) − G̃(ζ,ζ ′,k)

]
(3)

kl(ζ,ζ ′,k) = µ[T (ζ ) · T (ζ ′)G(ζ,ζ ′,k) (4)

−T (ζ ) · T̃ (ζ ′)G̃(ζ,ζ ′,k)].

G(ζ,ζ ′,k) and G̃(ζ,ζ ′,k) are the Green’s functions of the
real and the mirrored wires in free space, respectively. To
avoid a singularity in the Green’s function forζ = ζ ′ the ob-
servation point (described by the parameterζ ) is shifted from

the wire center in normal direction to the wire surface.

G(ζ,ζ ′,k) =
exp(−jk|C(ζ ) + Nu(ζ )r0 − C(ζ ′)|)

4π |C(ζ ) + Nu(ζ )r0 − C(ζ ′)|
(5)

G̃(ζ,ζ ′,k) =
exp(−jk|C(ζ ) + Nu(ζ )r0 − C̃(ζ ′)|)

4π |C(ζ ) + Nu(ζ )r0 − C̃(ζ ′)|
(6)

Herek = ω/c is the wave number andr0 the wire radius.
For the solutions of Eqs. (1) and (2) it is known (Nitsch

et al., 2009) that the currenti fullfills a second-order ODE of
the form(

∂2

∂ζ 2
+ jωP11(ζ )

∂

∂ζ
+ ω2P12(ζ )

)
i(ζ ) = 0. (7)

Together with the continuity Eq. (1) the wave-propagation
Eq. (7) can be transformed into the TLST equation of the
form

∂

∂ζ

[
q

i

]
+ jω

[
P11 P12
1 0

]
︸ ︷︷ ︸

:=P

[
q

i

]
=

[
0
0

]
. (8)

This is a coupled first-order ODE for the per-unit length
chargeq and the currenti. The general solution can be ex-
pressed in terms of the matrizantM (Gantmacher, 1984) as

[
q(ζ ′)

i(ζ ′)

]
=Mζ ′

ζ

{
−jωP

}[q(ζ )

i(ζ )

]
. (9)

The calculation of the per-unit length parameter matrixP
is done numerically by an iteration process described in de-
tail in (Rambousky et al., 2012b). Due to experiences made
so far with different cable configurations and comparisons
with experimental and numerical (e.g., Method of Moments
codes) results, already the first iteration parameter matrix,

P
(1)

is accurate enough (Rambousky et al., 2012a).
The so far used charge-current representation for the TLST

equation is advantageous for performing the iteration pro-
cess but it is difficult to determine the boundary conditions
for the charge distribution. Voltage and current are funda-
mental quantities that can be measured easily. Therefore, the
potential-current representation for the parameter matrix, de-
noted byP

∗
is more appropriate. It has to be considered that

potential is not a uniquely defined quantity and generally
does not equal voltage. However, it is assumed that at least at
the ends of the TL potential almost equals voltage. After the
first iteration step is performed in charge-current represen-
tation, the TLST parameter matrix in potential-current repre-

sentation,P
∗(1)

, can be calculated fromP
(1)

and inserted into
the corresponding TLST equation

∂

∂ζ

[
ϕ

i

]
+ jω

[
P

∗(1)
11 P

∗(1)
12

P
∗(1)
21 P

∗(1)
22

]
︸ ︷︷ ︸

:=P
∗(1)

[
ϕ

i

]
=

[
0
0

]
. (10)
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The general solution of Eq. (10) then is[
ϕ(ζ ′)

i(ζ ′)

]
=Mζ ′

ζ

{
−jωP

∗(1)
}[

ϕ(ζ )

i(ζ )

]
. (11)

In our example the boundary value conditions are given
by the generator voltage,U0, the generator’s internal
impedance,Z0, and a varying terminating load impedance,
ZL. The relationship between these values and the potential
and current values at the beginning and the end of the TL is
expressed by

ϕ(0) = U0 − Z0 · i(0) (12)

ϕ(L) = ZL · i(L) (13)

After transferring that boundary value problem into the
Cauchy problem Eq. (11) the current on the TL can be easily
determined.

4 Transmission-line super theory analysis

4.1 Super theory transmission-line parameters

In TLST the transmission-line parametersP
∗

become com-
plex valued and position and frequency dependent for the
first and higher iterations. For a single wire TL the param-
eter matrix is a 2 by 2 matrix and is now fully occupied. In
classical TLT the parameter matrix is off-diagonal and real
valued and the (1,2) element is the per-unit length inductance
and the (2,1) element the per-unit length capacitance. How-
ever, for the first and higher iterations in TLST the parameter
matrix elements have no direct physical meaning (Nitsch and
Tkachenko, 2009). The reason is that they depend on the cho-
sen gauge (e.g., Lorenz gauge, Coulomb gauge) and the fact
that potential is not a unique quantity. Only for a pure TEM-
mode the voltage between two points on the transmission-
line is just the difference between the potentials.

Figure 2 shows the real part of the (1,2) element of the

parameter matrixP
∗(1)

for several frequencies. The position
and frequency dependency resulting from the non-uniformity
of the TL can clearly be seen. The imaginary part of the (2,1)
element is depicted in the same way in Fig.3. As the imag-
inary parts ofP ∗(1)

12 andP
∗(1)
21 are a kind of measure of the

radiated losses of the TL, Fig.3 shows the increasing radia-
tion of the TL with increasing frequency.

4.2 Definition of a TLST characterstic impedance

In classical TLT the characteristic impedance,ZC , of the TL
is calculated using the per-unit length inductance,L′, and the
per-unit length capacitance,C′ as

ZC =

√
L′

C′
. (14)

Although having in mind that for TLST the elements of
the off-diagonal elements of the parameter matrix have a pri-
ori not the physical meaning of a per-unit length inductance

Fig. 2.Real part ofP ∗(1)
12 for the frequencies of 100 MHz, 500 MHz,

1000 MHz and 1500 MHz.

Fig. 3. Imaginary part ofP ∗(1)
21 for the frequencies of 100 MHz,

500 MHz, 1000 MHz and 1500 MHz.

and capacitance it is possible to define a TLST characteristic
impedance,ZTLST

C likewise to Eq. (14) as

ZTLST
C := Re

{√
P

∗(1)
12 ·

(
P

∗(1)
21

)−1
}

. (15)

In our case the imaginary part of

√
P

∗(1)
12 ·

(
P

∗(1)
21

)−1
is

smaller than 15 % compared to the real part on the whole line
and for each regarded frequency. Therefore, with Eq. (15) we
define ourZTLST

C as a real value which also corresponds to
the classical definition of the characteristic impedanceZC .
The physical unit of bothZC andZTLST

C is the Ohm.
For the frequencies of 100 MHz, 500 MHz, 1000 MHz and

1500 MHz the position dependent values ofZTLST
C are shown

in Fig. 4. The higher the frequency the lower is the maxi-
mum value ofZTLST

C and the more oscillations occur mainly
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Fig. 4. Real part of the TLST characteristic impedance,ZTLST
C

, for
the frequencies of 100 MHz, 500 MHz, 1000 MHz and 1500 MHz.

around the upper bend of the TL. It has to be mentioned that
the calculation of the transmission-line parameters and the
TLST characteristic impedance is independent of the choice
of the generator and the terminating impedance.

4.3 Finding an optimal terminating impedance

In classical TLT the characteristic impedance is a real val-
ued constant. A terminating load with that characteristic
impedance is called a matched load. In that case there is no
reflection of the forward traveling wave in the load at the end
of the TL and therefore no standing waves on the TL. Having
in mind that for non-uniform transmission lines there will not
exist a perfect matched situation the task for finding an op-
timal terminating impedance is minimizing the variation of
the current on the TL.

Regarding the position and frequency dependent TLST
characteristic impedance of Fig.4 three possibilities are
striking for a first choice of the terminating impedance: the
value ofZTLST

C at the end of the line, the maximum value or
the average value ofZTLST

C over the TL.
For the following analysis a generator with a voltage of

1 V and an internal impedance of 50� was taken. WithU0 =

1V , Z0 = 50� and the terminating impedanceZL the TLST
equation can be solved using[
ϕ(ζ,k)

i(ζ,k)

]
=Mζ

0

{
−jωP

∗(1)
(ζ,k)

}[
ϕ(0,k)

i(0,k)

]
. (16)

The wave number is defined byk = 2πf/c with f being the
frequency andc the propagation velocity of electromagnetic
waves on the TL.

For a frequency of 500 MHz the end point value ofZTLST
C

on the line is 270�, the mean value 391� and the maximum
value 424�. For these values ofZTLST

C and additionally for

Fig. 5.Current on the TL for a frequency of 500 MHz and different
terminating impedances,ZL.

the short circuited case and 1000� the modulus of the cur-
rent on the TL is depicted in Fig.5. It is clearly seen that
the probably intuitive choice of the end point value ofZTLST

C

does not minimize the variation of the current on the TL.
The least variation of the current on the TL is achieved with
a terminating impedance with the maximum value ofZTLST

C .
This clearly indicates that matching is not a local effect at
the position of the concentrated load but a cooperative pro-
cess including the whole wire.

In Fig. 6 is shown that the above argumentation also holds
for a much higher frequency of 1500 MHz. However, be-
cause of the frequency dependency of the TLST parameters,
the end point value ofZTLST

C on the line is now 256�, the
mean value 367� and the maximum value 396�. For broad-
band applications there will be no single optimal terminating
impedance for all frequencies. An averaged value of the dif-
ferent maximum values ofZTLST

C over the TL for the desired
frequency range should be taken in such a case.

4.4 Current in the terminating load

The frequency behavior of the current in the terminating load
is investigated for the frequency range between 100 MHz and
1500 MHz. As stated before the maximum, mean and end
point value ofZTLST

C varies over frequency. This is shown
in Fig. 7 for the maximum value over the TL, denoted as
Zmax

C . The averaged value ofZmax
C over the considered fre-

quency range is about 420� which corresponds to a fre-
quency of about 550 MHz. So the different terminating loads
for the previous used frequency of 500 MHz (see Fig.5) can
be taken for a first proof of concept.

Figure8 shows the current in the terminating load of the
non-uniform TL for the mentioned choices ofZL. The differ-
ent pronounced variations can clearly be seen. Of course, the
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Fig. 6.Current on the TL for a frequency of 1500 MHz and different
terminating impedances,ZL

Fig. 7. Frequency dependence of the maximal value of the TLST
characteristic impedance,ZTLST

C

current itself declines with higher values ofZL. Although the
maximum value ofZTLST

C is not constant over the frequency
range we can recognize the lowest variation in the terminat-
ing load current. It has to be mentioned that using the mean
value ofZTLST

C also gives a relatively small variation of the
current.

4.5 Radiated power of the TL

The averaged power radiated from a non-uniform
transmission-line generally can be obtained by the dif-
ference of the power, which is fed into the TL at the
beginning and the power which arrives at the terminating
load. In (Nitsch and Tkachenko, 2010; Rambousky et al.,

Fig. 8.Frequency dependence of the current in the terminating load
for different proposed values of the terminating load,ZL

Fig. 9. Frequency dependence of the radiated power for different
proposed values of the terminating load,ZL

2012b) it is shown that for a single wire TL the averaged
radiated power can be calculated from the complex valued
transmission-line parameters according to

Prad = −
ω

2

L∫
0

[
Im
(
P

∗(1)
12

)
|i|2 + Im

(
P

∗(1)
21

)
|ϕ|

2 (17)

+ Im
(
ϕ
(
P

∗(1)
11 − P

∗(1)†
22

)
i†
)]

dζ.

In Eq. (17) P
∗(1)†
22 and i† denote the complex conjugate of

the matrix elementP ∗(1)
22 and the currenti, respectively.

The radiated power of the non-uniform TL for the different
terminating loads of Sect.4.4 is shown in Fig.9. Again one
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can notice that a terminating load corresponding to the max-
imum value ofZTLST

C minimizes the variation ofPrad in the
considered frequency range. The mean value ofZTLST

C also
leads to a very good reduction of variation in the radiated
power but already the end point value shows a significant en-
hancement.

5 Conclusions

On a non-uniform TL the non-uniformity itself produces re-
flections all over the TL. In this respect it is not possible to
have absolutely no reflections on the line as it is known from
classical TLT in the matched state. Therefore, a matched non-
uniform TL can be regarded as a TL with minimum variation
of the current caused by the right choice of the terminating
impedance. In this sense matching is not a local effect at the
TL’s end but a cooperative process involving the whole non-
uniform TL. It could be shown that with the TLST parame-
ters a kind of characteristic impedance can be defined which
is position and frequency dependent. Taking the real part of
the maximum value of that TLST characteristic impedance
as terminating load of the TL, the variation of the current on
the line can be minimized.

Although the so defined TLST characteristic impedance
is frequency dependent an averaged value for a desired fre-
quency range can be taken as a fixed terminating load. It
could be shown that such a choice also minimizes the vari-
ation of the current in the terminating load and the radiated
power in that frequency range.

The concept of defining a TLST characteristic impedance
can be extended to multi-wire transmission-lines. In this case
P∗(1)

12 and P∗(1)
21 become matrices. The definition ofZTLST

C

like in (15) can also be achieved in matrix notation using
the inverse ofP∗(1)

21 and performing the root operation on the

matrix productP∗(1)
12 ·P∗(1)−1

21 by means of matrix diagonaliza-
tion. Future work has to show whether the proposed concept
is applicable to non-uniform multi-wire transmission-lines.
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