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Abstract. We generally categorize the approaches for ultra-
wideband antenna array design, and consequently propose
simplified concepts for antenna arrays for a high-precision,
ultra-wideband FMCW radar 2-D local positioning system
to obtain robustness against multi path interference, perform
angle of arrival analysis, as well as instantaneous heading
estimation. We focus on low-cost and mechanical robust,
industrial-application ready antennas. The antenna arrays are
optimized for operation in the 5 GHz to 8 GHz frequency
range and are designed towards supporting full omnidirec-
tional 360◦ as well as partial half-plane direction of arrival
estimation. Two different concepts for vehicle- as well as
wall-mounted antenna array systems are proposed and dis-
cussed. We propose a wideband unidirectional bow-tie an-
tenna array element having 97 % impedance and 37 % pattern
bandwidth and a robust vehicle mounted omnidirectional an-
tenna element having more than 85 % impedance and pattern
bandwidth.

1 Introduction

With the allocation of the ultra-wideband (UWB) frequency
range for unlicensed use by the FCC in 2002 interest in wide-
band wireless systems has increased tremendously. In partic-
ular wireless positioning systems based on round trip time
of flight (RTOF) benefit from the large available continu-
ous bandwidth, since utilizing ultra-wideband signals their
reliability and accuracy can be enhanced greatly (Mahfouz
et al., 2009). Whereas most commercially available UWB lo-
calization systems are based on short pulses, we focus on a
novel frequency-modulated continuous waveform (FMCW)
concept similar to (Roehr et al., 2008), which is extended to
ultra-wideband FMCW operation in the range from 5 GHz
to 8 GHz and high-precision direction of arrival (DOA) esti-

mation techniques using multiple coherent receive channels.
This allows for high-precision and robust 2-D local position-
ing of vehicles in various industrial scenarios by simultane-
ously incorporating RTOF and angle of arrival (AOA) es-
timations. In addition the use of a vehicular-based antenna
array does allow for an instantaneous heading estimation,
which cannot be achieved by single-antenna systems at all.

Besides the challenges of analog integrated circuit design,
such as highly-linear and broadband FMCW ramp synthesiz-
ers and multiple coherent receive channels, the overall sys-
tem performance is strongly dependent on the antennas. It
is not enough to simply use antennas which offer a wide
impedance bandwidth. Rather great care has to be taken
of radiation characteristics such as a frequency stable pat-
tern and a frequency- and angle-stable phase center. Subse-
quently, when placing the antennas in an array, the antenna
elements cannot be treated as individual sensors. Mutual cou-
pling influences the feed point impedance and the array re-
sponse vector, effects such as array and substrate-guided sur-
face waves may emerge, and a careful and angle-dependent
characterization of the array is necessary. And remembering
that all those challenging effects have to be treated in a wide-
band frequency range really does not simplify the work to
be done. In addition, from McLean’s limit on theQ of small
antennas, the inherent problem of the antenna diameter be-
ing more or less dictated byλlow (Schantz, 2003), the lowest
frequency of operation, but the desired distance between two
antennas in an array being optimally aboutλhigh/2, where
λhigh is the highest frequency of operation, best shows the
slightly paradoxical design challenge in wideband antenna
arrays. In addition to those electromagnetic (EM) challenges,
for the addressed industrial applications the mechanical con-
struction of the antennas also is of major concern. They
have to be robust against vibration, moisture, dust and other
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Fig. 1. Localization scenario. The position of a vehicle, e.g. fork
lifter, is precisely estimated by using RTOF measurements. The
novel concept of using antenna-array based systems also allows
for AOA and instantaneous heading estimation. detail A: planar,
wall- mounted antenna array; detail B: omnidirectional, vehicular
mounted antenna array.

mechanical influences. And, of course, a low cost realization
is desired.

It is obvious that antenna design for the addressed high-
precision positioning system is a challenging task. This paper
discusses our advances and concepts towards UWB antenna
arrays for high-precision local positioning, shows some of
our current development prototypes, and gives an overview
on future designs. The paper is organized as follows: in
Sect. 2, a detailed overview on the localization scenario and
the system concept is given. In chapter 3 we then discuss our
work on ultra-wideband antenna arrays. Finally in chapter
4 we draw conclusions from the preceding discussions and
give an outlook on our future work.

2 Localization scenario, system architecture, and
antenna functional specification

2.1 Localization scenario

Whereas a wide range of possible applications for a high-
precision wireless positioning system delivering simultane-
ously range, angle, and heading information can be thought
of, we focus, without loss of generality, on the exemplary
scenario of localizing a fork lifter in a typical industrial ware-
house scenario as illustrated in Figure1. We refer to the ve-
hicle whose position is to be estimated as the measurement

unit (MU) and the units supporting the measurement process
as the reference units (RU). This exemplary scenario can be
applied to arbitrary positioning scenarios which obey the fol-
lowing restrictions in movement between MU and RU: first,
there is only a translational movement between MU and RU
in the x/y-plane, i.e. the z-coordinate is fixed. Second, the ro-
tational movements of the MU are restricted to rotations in
the x/y-plane, which in particular means the z and z’ axes of
the global and MU-local coordinate systems being parallel
all the time.

Several wireless local positioning system configurations
have been proposed over the last years (Gulden et al., 2009).
We consider a typical RTOF scenario: Several RUs are
mounted on precisely known positions in the localization
area. In the example of Figure1, these reference units are
based on planar arrays mounted on the walls of an industrial
warehouse, as shown in detail A. The object or vehicle to
be positioned contains a MU, which is based on an array
configuration capable of omnidirectional DOA estimation,
as illustrated in detail B. Using a secondary FMCW radar
concept described inRoehr et al.(2008) or more detailed in
Roehr(2009), the RTOF between the MU and several RUs
can be measured. A sophisticated wireless synchronization
method ensures the necessary time-synchronous operation of
RUs and MU (Roehr et al., 2008; Roehr, 2009). Based on the
known positions of the RUs and the measured distances be-
tween MU and several RUs, a tri- or multilateration finally
yields the position of the vehicle.

The use of antenna arrays and multiple coherent receive
paths in both the RU and the MU offers several novel oppor-
tunities. First of all, a single antenna system is indeed capable
of estimating the location of the MU, but the vehicle heading
generally can only be estimated by tracking methods or using
additional sensors. The use of an array at the MU allows for
an instantaneous heading estimation by comparing the AOA
of the signals impinging from the RU with the measured MU
position and the RU positions. On the RU side, the multi-
channel concept may be used to include DOA estimation as
an alternative to or support for MU location measurement, as
a method to improve mutual RU synchronization in multipath
environments, and as a possibility to detect and discard erro-
neous distance measurements by non-line of sight (NLOS)
detection. Note that we only consider the use of multiple co-
herent receive (RX) channels and the information obtained
from digitally processing the RX channel outputs on both
the RU and the MU side. No antenna arrays are used in the
transmit (TX) direction.

2.2 System architecture

The system architecture of RU and MU is identical. It is il-
lustrated in Figure2. The actual role in the system is merely
determined by the operating mode: is the device used as ref-
erence for positioning another device then it is a RU. Is it the
device to be positioned then it is an MU.
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Fig. 2.System architecture of both, RU and MU. Each unit includes
four RX and one TX channel. The RX channel outputs (beat signal)
are sampled and handed over to an FPGA implementing the distance
and DOA estimation algorithms.

The distance as well as DOA estimation is based on a
wideband FMCW radar principle. The FMCW synthesizer
of the RU generates a highly-linear frequency ramp in the
range from 5 GHz to 8 GHz. This ramp is transmitted using
a single TX channel to the MU. The MU, which has been
synchronized to the RU as described inRoehr et al.(2008)
andRoehr(2009), receives the signal from the RU using the
four available RX channels, mixes it down with the locally
generated FMCW ramp, and outputs the amplified and low
pass filtered mixing product (the beat signal) to an analog
to digital converter. Frequency estimation algorithms imple-
mented in an FPGA are used to estimate the time of flight
between both stations based on the beat frequency. Mutual
information between the four coherent receive channels, e.g.
the phase difference, is used to perform spatial signal pro-
cessing such as DOA estimation.

2.3 Antenna functional specification

2.3.1 Pattern

The pattern of the antenna array is specified in terms of indi-
vidual sensor pattern, since the basic assumption of the signal
processing algorithms is that the output signals of the four
RX channels are obtained by sampling the impinging wave
front at the position of the RX antennas, using uncoupled in-
dividual sensors. This means the pattern of each element for
receiving an impinging wave front is of interest.

The desired receiving element patterns are illustrated in
Figure 3. The elevation plane patterns for both the vehicle
and wall-mounted antenna arrays should possess a narrow
beam width to suppress parasitic multipath components due
to ceiling and floor reflections. The wall mounted antenna
array sensors need a unidirectional but wide-angle pattern
avoiding interactions of the array with the mounting struc-
tures, e.g. a wall or the supports of a high-level rack, while
enabling wide-angle RU operation and wide-angle DOA
estimation. In contrast, each vehicle-mounted array sensor

Fig. 3. Desired receiving element patterns for vehicle- and wall-
mounted antenna arrays.(a) view from side showing elevation pat-
tern,(b) view from top showing azimuth pattern.

should possess a full omnidirectional azimuth radiation pat-
tern to enable 360◦ DOA estimation and ensure proper MU
operation regardless of the vehicle’s heading.

2.3.2 Polarization

Since the z and z’ axes of the global and the MU-local coor-
dinate systems are parallel (see Sect. 2.1) a linearly polarized
system may be used. Whereas the planar wall mounted struc-
ture offers a great flexibility in polarization selection, the fact
that the vehicular array will be mounted on the metallic roof
of, e.g. the fork lifter, implies a benefit for vertically polar-
ized antennas.

2.3.3 Phase center and dispersion

The phase center as well as the dispersive properties of an
antenna are important parameters in time-reference radio po-
sitioning systems (Best, 2004) and in the particular case of
FMCW systems, frequency dependent phase center move-
ment has been reported to create a parasitic Doppler effect
(Bares et al., 2003). Phase center displacement effects are
closely related to dispersive effects, which are extensively
treated by the impulse-based UWB community (Schantz,
2003). However, it is generally accepted that those effects
are most pronounced for antennas which rely on frequency-
independent design criteria such as spiral and log-periodic
antennas, which are indeed optimized to operate over a broad
frequency range, but only for signals having a relatively nar-
row instantaneous bandwidth. Dispersive effects are gener-
ally less distinct for impulse-radiating UWB antennas such
as conical or wideband dipole or monopole structures.
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Our concept of a wideband FMCW secondary radar sys-
tem is somewhere in between an impulse-radiating system
and a system of only narrow instantaneous bandwidth, since
the FMCW sweep rate determines the transition from nar-
row to large instantaneous bandwidth. For practically rele-
vant sweep rates the constraints on the time-domain proper-
ties of the antennas will never be as strict as in impulse-based
systems. We thus reduce our attention to antenna elements
being reported in the UWB community to have well-behaved
dispersive properties, assume that the parasitic dispersive ef-
fects can be neglected in our system, and desist from an ex-
tensive treatment of dispersive properties in a first approxi-
mation. Of course, once working concepts for the antenna ar-
rays for wideband FMCW DOA estimation have been found,
a complete characterization and evaluation including phase
center as well as dispersive effects is necessary.

2.4 Ultra-wideband antenna array concepts

Research on UWB antenna arrays can be categorized into
two tiers: the classical approach which starts by selecting
and optimizing an isolated wideband antenna element, then
integrating the isolated element into an array, and finally ac-
counting for mutual coupling and other parasitic effects by
re-designing the antenna structure or by using compensa-
tion and calibration algorithms in the digital processing do-
main (Wang and Hui, 2011; Dandekar et al., 2002; Adve and
Sarkar, 2000). The major problems in this approach are the
fact that the dimensions of a isolated wideband antenna ele-
ment are usually in the order ofλlow/2, but the desired ele-
ment distanced for grating lobe free operation in the whole
operating frequency range isd < λhigh/2. In addition most
of the proposed UWB antenna elements are, due to their ge-
ometrical construction, not suitable for array integration.

In the last few years a new and promising approach to
UWB antenna array design has emerged, which directly uti-
lizes the coupling between electrically small elements in an
infinite array to realize ultra-wideband performance and then
accounts for the truncation of the infinite array in a second
step (Jones and Rawnick, 2007). Arrays based on the tightly
coupled approaches have been reported to yield extremely
wide impedance bandwidths, have a stable radiation pattern,
due to the small element size ensure a grating-lobe free op-
erating range up to a very high frequency, are suitable for
planar, low-profile implementation, and may also be con-
verted to conformal structures (Munk, 2003; Holland, 2011;
Lee, 2007). However, since tightly coupled antenna arrays
are theoretically based on an infinite periodic structure, their
finite implementations also rely on a large number of ele-
ments (Holland, 2011; Holland and Vouvakis, 2010, 2012)
and thus a large amount of transmit/receive (TR) modules or
independent receive channels is necessary. This dramatically
increases the cost and is not yet suited for civil commercial
low-cost localization systems. As mentioned in Sect. 2.2, in
our particular case the RF frontend is limited to only four

independent receive channels. This is a wide discrepancy be-
tween the large number of required elements for a tightly
coupled realization and a great challenge when considering
the use of tightly-coupled arrays in the proposed localization
system.

It is obvious that neither the classical isolated element
based design method, nor the novel theory of UWB arrays
using tightly-coupled electrically small elements provides an
out-of-the-box solution. We generally focus on the examina-
tion and study of both concepts, but restrict the focus onto
simplified isolated-element based UWB antenna arrays in
this contribution.

The antenna arrays discussed in this section are based on
wideband antenna elements, which in a first step are designed
and optimized in isolation, and then incorporated into an an-
tenna array. After a preliminary study of the vast amount
of UWB antenna elements available in literature, based on
the antenna functional specification from Sect. 2.3 two most
promising antenna elements have been selected as possible
candidates. These are the famous Bow Tie antenna element
for a planar, wall-mounted array, and the monocone antenna
element for the omnidirectional vehicle array. Those basic
concepts have been optimized for the target application needs
and novel design modifications are discussed in the following
section.

2.4.1 The planar wideband reflector backed bow tie
with pattern stabilization

A proposed antenna element for an isolated-element based
wall-mounted antenna array is a Bow Tie antenna printed on
a dielectric substrate, above a planar reflector. A mechani-
cal robust and low-cost separation of antenna and reflector is
achieved by using a readily available PTFE block of thick-
nesst . The planar reflector is in turn printed on a second
dielectric substrate and simultaneously acts as ground plane
for the feed network printed on the opposing side of the re-
flector substrate. This layer stack-up is illustrated in Figure4.
The antenna is fed from the back side by using an impedance
controlled two-wire transmission line, realized by two silver
plated copper wires press fitted into precisely drilled holes
and penetrating the ground plane reflector through an rect-
angular aperture. On both the antenna and the feed network
layer the feed lines are soldered to the antenna and feed net-
work metallization, respectively. Whereas an unlimited vari-
ety of antenna metallization shapes is available and their ben-
efits and drawbacks have been extensively studied in litera-
ture, we focus on a rounded-edge Bow Tie antenna (REBA),
since this has been reported to yield good return loss results
(Qu and Ruan, 2006) and simplifies the design by reduc-
ing the antenna metallization degrees of freedom to merely
three: the opening angleα, the Bow Tie radiusr, and the gap
width w. The entire antenna element has several additional
degrees of freedom which are the PTFE thicknesst , the twin
wire feed line diameterd and conductor separations, and the

Adv. Radio Sci., 11, 297–305, 2013 www.adv-radio-sci.net/11/297/2013/



M. Gardill et al.: Single-element based ultra-wideband antenna array concepts 301

Fig. 4. Geometry and layer stack up of proposed Bow Tie antenna
element. The groundplane of the feed network layer simultaneously
acts as antenna reflector.

Fig. 5. Fabricated Bow Tie antenna element.(a) Perspective view,
(b) view from top,(c) feed network metallization including balun
and d) antenna using differential feed.

substrate thicknessest1 and t2 of antenna and feed network
substrates, respectively.

The Bow Tie antenna in free space, as well as on a dielec-
tric half space, has been treated extensively in literature. In
this conceptual-focused paper we omit a detailed discussion
and refer the reader toCompton et al.(1987) andAllen et al.
(2007). To couple out the radiated power into the air we use a
planar reflector below the substrate. This is the classical ap-
proach to convert a bidirectional antenna into a unidirectional
one. However, in contrast to narrowband antennas where typ-
ically an antenna-reflector spacing oft = λd/4 is used, there
is really no optimum spacing for wideband antennas above
ground: In the low frequency limit, i.e. for a small antenna
reflector spacing, the current in the antenna is shorted due
to the reflector currents, the radiation resistance is lowered
and hence the input impedance is strongly influenced. In the
high frequency limit, i.e. for a large antenna reflector spacing,
the input impedance is less altered, but for a spacing larger
thanλd/4 the pattern in broadside direction breaks down un-
til having a deep null at an antenna reflector spacing ofλd/2
, compare the far field simulation results from Figure 7 and
note the breakdown in broadside direction of about 6 dB for
8 GHz.

Our solution to this inherent problem is as follows:
whereas the simplified theory of reflector backed antennas
is based on infinitely large reflectors, each physical realiza-
tion will, of course, use a reflector of finite extend. On the
edges of the finite-size reflector diffractions will occur, which

Table 1. Optimized parameters of Bow Tie antenna element. All
dimensions are given in mm, angles in degree.

r α w hsubs wsubs t s d

12 68 1.6 40 40 8.5 1.8 0.8

usually have a parasitic effect on the antenna pattern and of-
ten are tackled by using absorbing materials at the reflector
edges. The diffracted field can, in a first approximation, be
thought of as being generated from line currents flowing on
the edges of the reflector. When limiting the size of the re-
flector to a width corresponding to aboutwsubs= λhigh, the
wavelength at the highest frequency of operation, the fields
radiated from the in-phase currents on the left and right edges
will counteract the emerging breakdown in broadside direc-
tion and stabilize the radiation pattern, while leaving the
impedance characteristics of the antenna nearly untouched.
Hence the antenna can be placed at a larger distance than
λd,high/4 from the reflector, without occurrence of the pat-
tern breakdown in broadside direction. However, the radia-
tion from the truncated reflector edges also has a negative
effect: the front to back ratio of the pattern is severely de-
graded. Nevertheless this approach clearly shows that intro-
ducing two in-phase line currents, neighbored at a distance
of aboutλhigh/2 to the Bow Tie center, the pattern can be
stabilized. Using the above mentioned theory the antenna el-
ement was optimized for the frequency range from 5 GHz to
8 GHz and several prototypes were manufactured. The opti-
mized antenna dimensions are given in Table 1.

Figure6 shows the simulated and measured return loss of
the optimized antenna element when using a differential feed
structure as well as a simple rat-race based balun, as shown
in Fig. 5, respectively. Using the differential feed a−10 dB
return loss range from 5 GHz to 14.5 GHz, i.e. a 97 %
impedance bandwidth, is achieved. The rat-race balun lim-
its the usable bandwidth to the range of 5 GHz to 8 GHz, but
still meets the requirements of our target application. An ex-
cellent agreement between simulated and measured results is
obvious. Radiation pattern simulations and measurements for
broadside direction are shown in Fig.7. The stability of the
pattern in broadside direction over frequency, as well as the
successful avoidance of the pattern breakdown in the high-
frequency limit is obvious.

A four-element linear array has been built from the planar
wideband reflector backed Bow Tie antennas by mounting
the antenna elements on a laser-cut acrylic plate. An element
distance ofd = 46.567 mm corresponding to a 0.9λ distance
at f = 5.794 GHz was selected. The distance selection was
based on two facts: firstly, the novel FMWC DOA estimation
algorithm uses the start frequency of the FMCW ramp as ref-
erence for the DOA estimation. Since the initial test system
is operating in the 5.8 GHz ISM band, the above mentioned
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Fig. 6.Measured return loss of proposed Bow Tie antenna.−10 dB
return loss range using differential feed is from 5 GHz to 14.5 GHz,
i.e. 97 % bandwidth. Rat-race limits useable bandwidth from 5 GHz
to 8 GHz.
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Fig. 7. Simulated and measured H-plane patterns of proposed Bow
Tie antenna. (top) Simulation on infinite ground plane showing pat-
tern breakdown at high-frequency limit, (center) simulation results
on truncated reflector showing breakdown compensation, and (bot-
tom) measurements of proposed element proving breakdown com-
pensation.

reference frequency results. Secondly, the desired range of
ambiguity-free DOA estimation has been lowered to a range
of 45◦ from broadside direction. This allows to use the rela-
tively large elements with an element spacing up toλ. A pho-
tograph of the prototype array is included as inset in Fig.8
and the simulated 4-port S-parameter results are given in the
plot of Fig.8. The simulation results show a good impedance
match in the desired operating frequency range from 5 GHz
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Fig. 8. Simulated four-port S-Parameters of Bow Tie antenna array
using differential feed. Return loss is marginally altered, transmit
mode coupling is below−20 dB.

to 8 GHz and an acceptable transmit mode coupling of max-
imum −20 dB to neighbored elements. A full measurement
characterization of the prototype array in receive mode is on-
going.

In conclusion, the Bow Tie based antenna array concept
may be suitable if the desired ambiguity-free DOA estima-
tion range can be limited to±45◦ from broadside direction,
since the widthwsubsof the wideband elements is in the order
of a wavelength at the lowest frequency of operation. While
not inherently offering a narrow elevation pattern, this can be
achieved by connecting several vertically stacked Bow Tie
elements in phase. Still some work has to be done on inte-
grating the antenna elements onto a common substrate and
above a common large reflector. In particular this means that
the pattern stabilization mechanism, which is based on the
reflector truncation, has either to be omitted, or implemented
by means of another stabilization method.

2.4.2 The monocone above ground

The theory of Bow Tie antennas and monocone antennas es-
sentially has the same origin and their electromagnetic be-
havior is comparable to a great extent. Monocone structures
above ground planes can be derived from biconical structures
using image theory, which have been extensively treated by
Schelkunoff(1951). Planar Bow Tie structures in turn can
be analytically treated by deriving their characteristic modes
in a sphero-conal coordinate system degraded to its planar
equivalent (Stockbroeckx and Vander Vorst, 2000). Hence
both antenna types are based on the same radiation mecha-
nism, which idealizes them for a paired used in the proposed
FMCW localization system. Again we skip a detailed treat-
ment of monocone structures in this paper, refer the inter-
ested reader to the provided literature, and discuss the con-
ceptual benefits and the optimized antenna element in this
section.

Although monoconical structures are one of the oldest an-
tenna elements – the first one was already used by Marconi
at the radio station in Poldhu, Cornwall (Simons, 1996) –
they still are subject to current research and due to their
wide bandwidth became a quasi-reference in UWB antenna
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Fig. 9. Technical drawings of proposed monocone antennas Type1
(left), Type2 (center), and exploded view of Type 1 (right).

designs. Recent publications are often dealing with improv-
ing the electromagnetic characteristics (Aten and Haupt,
2009; Taniguchi and Kobayashi, 2003; Hu et al., 2011), but
an important fact which often is neglected is the design of
practically relevant antenna structures which cover both, de-
sired electromagnetic radiation characteristics as well as a ro-
bust mechanical construction protecting the antenna from en-
vironmental influence such as dust, moisture, vibrations and
other mechanical influences, and enabling it to be mounted
on various objects. Since every additional structure intro-
duced into the area surrounding an antenna changes its elec-
tromagnetic behavior, the aforementioned practically rele-
vant characteristics are not simply a problem of mechanical
design, but detailed and in-depth treatment of electromag-
netic and mechanical characteristics is necessary.

For the development of a simplified isolated-antenna el-
ement based vehicle mounted antenna array, we concen-
trate our research onto the development of a practically
relevant monocone antenna, which can easily be manufac-
tured, mounted, and offers the necessary mechanical stabil-
ity. A technical drawing of the proposed monocone antenna
is given in Fig.9. The basic construction of the proposed
monocone antenna, referred to as Type 1, is illustrated in
Fig. 9. The key concept of the antenna is a metallic conical
structure of heighthconewhich has two cylindrical extensions
on the top and the bottom, with heightshcyl andhcoax, respec-
tively. The upper cylindrical extension is used for impedance
tuning and serves as a fixture against lateral movements in
a second version of the monocone antenna, referred to as
type 2 (Fig.9). The lower cylindrical extension is inserted
into a hole drilled in the antenna socket. The socket acts as
the ground plane, or counterpoise system, and as a fixture
for the antenna module. To fix the cone in the right position
above the socket two PTFE parts are used. The inner PTFE
part has an exact imprint of the cone, such that the cone can
be pressed into it and is securely fixed. The lower cylindrical
extension of the inner PTFE part is then tightly pressed into
the hole drilled into the socket and thus precisely aligns the
axes of the cone lower cylindrical extension, inner PTFE part
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Fig. 10.Simulated (dashed lines) and measured (solid lines) return
loss results for antenna Type 1 (green) and antenna Type 2 (blue).

cylindrical extension, and the hole drilled in the socket. The
lower parts form a coaxial structure which is used to feed
the antenna element. To protect the antenna structure from
environmental influences the outer PTFE cylinder is used. A
holed drilled in the cylinder exactly matches the outer diam-
eter of the inner PTFE part and when putting over the outer
PTFE part over the combination of inner PTFE and cone,
a tightened unit is created. This unit is then inserted into the
socket, compare the explosion drawing from Fig.9. The con-
struction is inherently self-fixed against lateral movements,
but a vertical fixture of all parts has to be ensured. This is
realized by means of nylon threaded rods, which are screwed
into four threads in the outer PTFE cylinder, which penetrate
the socket through four drills, and which are then locked on
the bottom side of the socket with nylon nuts. This method
of fixing the antenna structure increases the antenna dimen-
sions, since minimum necessary material thicknesses for the
screws, the drills, and the threads have to be taken care of. In
addition the nylon screws introduce an inhomogeneity into
the dielectric near the cone apex disturbing the outward prop-
agating spherical waves and thus have a negative influence on
the antenna characteristics.

Hence, the monocone Type 2 was developed. Whereas it
is generally based on the same construction principles, it en-
sures the vertical stability of all components using adhesive
connections which can be realized by pretreatment of the
PTFE surfaces with a reactive process gas or an n-Heptane
based liquid primer. Without the need for nylon bolts the an-
tenna can be reduced in size and its characteristics can be
optimized. In addition the adhesive serves as seal between
the antenna parts and realizes an effective protection against
moisture and dust.

From the bottom of the socket a flange-mount SMA con-
nector with extended PTFE dielectric and extended inner
conductor is used to interface the antenna. As can be seen
from the technical drawings, the dielectric from the connec-
tor and antenna are pressed against each other, where the
low flexural strength of PTFE ensures a tight connection.
In contrast it can be seen that a small gap of heighthspr
between the center conductors of the coaxial construction
exist. This gap is filled with golden a spring-like mesh (a
FuzzButton), which is tightly pressed against the conductors
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Table 2. Optimized geometry of monocone antennas Type 1 and
Type 2. All dimensions are in millimeters.

hgnd hcone hcyl hcoax w1 w2 dtop ddiel

1 8.1 2 2.2 1.25 8.67 21 4.1
1 8.1 2 2.2 1.25 8.67 16 4.1
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Fig. 11.Measured Co-polar and X-polar elevation pattern of Type 1
(top) and Type 2 (bottom) antennas, respectively. Groundplane size
dplate= 300mm.

of SMA connector and cone and thus ensures a reliable coax-
ial connection avoiding any imperfections in the feed line
impedance.

Starting from rough estimates on the necessary dimensions
of the conical structure obtained from theory and previous
examinations on biconical structures, we numerically opti-
mized the antenna geometry in the frequency range from
5 GHz to 8 GHz using a commercially available electromag-
netics software package. The optimized values are given in
Table 2.

Return loss simulation and measurement results for both
the Type 1 and Type 2 antenna variants are given in Fig.10
and farfield patterns in Fig.11. Since the antenna is designed
to operate above a ground plane such as the roof of a vehicle,
the antenna is inserted into a metallic plate of diameterdplate.
Where according to image theory the ideal pattern should
have a maximum along the ground plane, the effects of edge
diffractions on the finite ground plane result in the pattern
maximum at aboutθ ≈ 30◦, compare Fig.11. As stated in
Sect. 2.3.1 this is indeed not optimum, but inherently based
on the ground plane size. The larger the ground plane, the
smaller the elevation of the pattern maximum becomes.

Fig. 12.Photograph and geometry of four-element monocone UCA.
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Fig. 13.Simulated four-port S-Parameters of Type 2 Monocone an-
tenna array embedded in groundplane of diameterdplate= 300mm.
In comparison to Bow Tie antenna, larger transmit mode coupling
is obvious.

The proposed monocone antenna elements can be used to
build arbitrary planar array geometries above a ground plane,
whereas the Type 2 element adds, due to its reduced diameter,
more flexibility and allows for smaller element spacings. For
example, Fig.12shows a photograph as well as the geometry
of a four-element uniform circular array with an grid spacing
of dgrid = 25mm, corresponding toλ/2 at 6 GHz.

Figure13 shows the simulated S-Parameter results for the
linear array withd = 25 mm. Compared to the linear Bow
Tie array, larger mutual coupling is obvious.

The proposed Monocone element promises to be a suit-
able element for vehicle-based wideband arrays with flexible
array configurations. A detailed characterization of various
array structures and the parasitic effect of mutual coupling,
as well as possible compensation methods will follow.

3 Conclusions

We discussed the use of and requirements on vehicle- and
wall-mounted antenna arrays for DOA estimation in a novel
high-precision FMCW Radar 2-D local positioning system.
We categorized the concepts of UWB antenna array de-
sign and discussed two simplified isolated antenna element
approaches in detail. Simulation results and where avail-
able measurements have illustrated the viability of both ap-
proaches.

Much research work still has to be done towards fully-
integrated antenna arrays for UWB DOA estimation for the
target application. The planar Bow Tie elements need to be
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integrated on a common substrate and therefore the method
for pattern stabilization has to be improved. The proposed
monocone antennas are a useful and practical antenna design,
but a further improvement of their elevation-plane radiation
pattern is desirable.
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