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Abstract. A complex-source beam (CSB) is used to inves- complex-source beam (CSB) as the incident field. This can
tigate the electromagnetic scattering and diffraction by thebe achieved by simply assigning a complex-valued location
tip of a perfectly conducting semi-infinite circular cone. The to a dipole source. The width, focus length, and direction
boundary value problem is defined by assigning a complex-of incidence of the CSB can be controlled nearly arbitrar-
valued source coordinate in the spherical-multipole expanily (Orlov and PescheR010. Combining this powerful tool
sion of the field due to a Hertzian dipole in the presence ofwith the spherical-multipole expansion provides a conver-
the PEC circular cone. Since the incident CSB field can begent eigenfunction solution with focusses on the evaluation
interpreted as a localized plane wave illuminating the tip, of the scattered related to the tip of the cone.

the classical exact tip scattering problem can be analysed Section 2 summarizes the solution of Maxwell’'s equations
by an eigenfunction expansion without having the conver-in the presence of a PEC circular cone, and in Sect. 3 the
gence problems in case of a full plane wave incident field.complex-source technique is introduced. Finally, we present
The numerical evaluation includes corresponding near- andome numerical results in Sect. 4.

far-fields.

2 Solution of Maxwell's equations in the presence of a
PEC semi-infinite circular cone

1 Introduction

Consider a perfectly electrically conducting (PEC) circular
Scattering and diffraction of a plane electromagnetic wavecone as illustrated in FidlL with a half outer opening angle
by a semi-infinite perfectly electrically conducting (PEC) cir- o embedded in a homogeneous medium with permittivity
cular cone has often been treated in the literature. A survey and permeability.. We are looking for a solution of the
on this subject can be found in the classical monograph byime-harmonic Maxwell’s equations at a time factor .
(Bowman et al.1987. More recently, the scattered field has o ) )
been obtained by a multipole-based integration of the ex2-1 Helmholtz equation in spherical coordinates
act surface-currents for the case of an incident plane Wave_l_
However, that solution suffers from a missing convergence
of Fhe finally_ obtained muItipoIe serie;, and the application OfACD(r, 9,0) + K20(r, 9, 0) = 0 )
suitable series-transformation techniques has been necessary

to asymptotically derive the corresponding limiting values yith the wave number = w. /g2 can be solved in spherical
(Klinkenbusch 2007 Kijowski and Klinkenbusch2011).  coordinates:, ¢, ¢ (9 represents the polar coordinate.) by a

apex, as the corresponding scattered field can act as a furthgfementary solution

element to complete asymptotic methods like the Geometri-
cal Theory of Diffraction (GTD) and the Uniform Theory of ®"'(r, 9, ) =z, (k) Y] (9, ¢) (2)
Diffraction (UTD).
For the analysis of the influence of the tip on the scat-
tered field, we have used a localized plane wave, that is, a

he homogenous scalar Helmholtz equation
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which have been solved by means of a suitable numerical
procedure, e.g. a bisection method.

Moreover, it has been shown bidtsav et al.2012) that
for all valid eigenvalue pairs)(m) it holds that

CSB m? <v(v+1). (®)

Figure 2 shows the eigenvalue pairs fatg =135 and
vmax = 40 in thev, m-plane.

2.3 Spherical-multipole expansion

Within a homogeneous domain, any solution of Maxwell's
equations outside the sources can be constructed by means

Fig. 1. A PEC, semiinfinite, circular cone located on the negative - . - -
g g of a complete set of spherical-multipole functions defined by

z-axis. The half outer opening angleds. A CSB incides frome-

direction. M) = (r x V) (r) ©)
with z,, being spherical Bessel functions related to (ordinary) N(r) = <EV X (F X V)) ®(r) (10)
Bessel functions by K

(er) = z (r) 3) provided that® is a solution of the scalar homogeneous
w TV 2 VY2 Helmholtz Eq. 1). They are determined according to

Particularly we will need (everywhere regular) sphericaIM 9 0) = 9 11
Bessel functions of the first kind,, (), and spherical Han- van (.0, 9) =2v(cr) Mo (9. ¢) (11)

kel functions of the second kin@'? («r), satisfying the ra- Zy (K1)
diation condition at the chosen time factdr/ " . Nom(r, 9, ¢) == Kr v+ DYon @, p)er (12)
The spherical harmonidg) (¢, ¢) are defined as 1d
- __[er(Kr)]nv,m(ﬂ’ ®)
i krdr

Y (3, ¢) = Ny P} (cos)e’™?, (4)
that is, as products of associated Legendre functions of thgvherem andn denote the transvere multipole functions:
first kln.d Pym (cosy) in 9, gnd harmonic functions ip. The 1 Yy, 9)
normalization constan¥” is chosen such that mym(0,¢)=————"——€p

v sing ap (13)
o 27 n Yy (9, @) e
/[|Y5"(ﬁ, @) sing dvde = 1. (5) v ¢
00 Y, T,

] ] ) nv’m(ﬂ’ w) :Me
2.2 Determination of eigenvalues v (14)
1 Y, m(, w)e

For the given geometry the solution has to be-2eriodic siny dp A

in ¢, hence the eigenvalues have to be integral. In order ] . o
to get solutions of the Helmholtz equation for a PEC circu- 10 accomplish that the tangential part of the electric field
lar cone as depicted in Fig, these solutions have to ful- Vvanishes on the PEC cone’s surface, the spherical-multipole
fill the boundary conditions on the cone’s surface. Therefore€Xpansion of the total field reads

we need spherical harmonics that satisfy the Dirichlet condi- 7

tion as well as spherical harmonics that satisfy the NeumantE(r) = Y all DN D)+ = > bl DM D) (15)
condition at® = . This can be achieved by finding eigen- v,m T brm

valuesv,; andv, (Blume and Krebs1994) according to the
transcendental equations

P (cos 9)|po =0 (6) H(r) = é Sl OMID )+ S IO NID ). (16)
Vy,m

and for the magnetic field

Vg,m Vd,m Yy, m
Vg ,m

APy (cos V)

59 %:0 (7) r>r", (r<r’) a7)
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20 oot ot I erated. The beam’s focus, width, and direction can be con-
irichlet eigenvalues X i . . .
Neumann eigenvalues O & = trolled arpltranly by the chosen complex location. The com-
m? =v(v+1) 4 = = plex location vector of the source has the form
I , ;L
15 — B R & XS r.=r,—Jjr;, (21)
B &R AXXKXG . . .
B ® ® & X OXOX wherer.. gives the actual position of the beam’s waist and
BB OCOCOXOX OX r; the direction of incidence. The absolute value-o€orre-
A d to the rayleigh length of th ted Gaussian b
e 10 % % X O OX OX OX OX OX O] spond to the rayleigh length of the generated Gaussian beam.
& ® X OKOX OXOXOXOXOX To clarify this, we insert a complex’ into the free space
B 8 X OXOXOXOXOXOXOXOX Green’s function. We choose a purely imaginary location
B X XKXOXOXOXOXOXOXOXOXO0
B X OXOXOXOXOXOXOXOXOX0OX r/=_jZOez' (22)
51— B XKXOXOXOXOXOXOXOXOXOXOXCH

X X OXOXOXOXOXOXOXOXOX0OX0OX

X OX OX OX OX OXOXOXOXOXOX O X0 That means, the beam has a rayleigh lengtthas it’'s waist

OX OXOXOXOXOXOXOXOXOXOXOXO0X( in the origin, and propagateszirdirection. Assuming a small
I AN AN ANV ANIANIAANI HANIANIAN distancep = /x2 + y? from the z-axis, a second order taylor
0 5 10 15 20 series expansion ¢f —r’| delivers a paraxial approximation:
v
|r—r’|=\/x2+y2+(z+jzo)2 (23)

Fig. 2. Pairs of eigenvalues fatg = 135°, vmax = 20.

(z+Jj )+1 p2 < 0
~ Z Z d——— Z, 7>
/<0 2(z+ jzo) p

wherev,; andv, are eigenvalues of the Dirichlet and Neu-
mann type, respectivelyZ = \/;u/¢ represents the intrinsic  Inserting Eq. 23) into the Green’s function we get:

wave impedance of the homogeneous domain. The indices 1 p—iklr—r|

(I) and (/1) stand for the use of spherical Bessel functions G (r, r’) = e (24)
Jjv or spherical Hankel functions of the second kirfﬁ) are 4 r—r'|

used according to Eqly) (see also Sectl). The multipole N . . jrp?
amplitudesa,, ,, andb,, ., can be determined for a Hertzian ™ 47(; 1 jz) exp| —jk(z +jz0) — 22+ jz0)

dipole source at’ electrically polarized ire, according to

N exp(kzo) . jKp? P
1) _ 270 GO jian oo 18 = et jog) P T/ -
aud,m Kq OVd(Vd+1) vd,—m(r ) Ce, ( ) 47T(Z+jZO) P e 2<Z+ 75) 220 <1+ 22)
et Z a 2
= Y e .

0 Yy, —m

Vn (v +1) Ignoring the factor expczo)/4m(z + jzo), the result of
The electric far-field is found from the asymptotic form of Ed. 24) directly correspond to the form of the Gaussian
the spherical Hankel function of the second kind for large beam:

arguments as 02 2
er exp(—jkz) exp(— ol )exp(— /2) ) . (25)
Exo(r) = (e ) |:Z —j"all, n (20) 2R@) wi2)
9] - r J Vg,m""Vd,m
vd,m By comparing Egs.24) and @5) we can identify following

beam parameters: The radius of curvatiris

Z .
+2% J(””Dbin',mmvn,m} ,

J Vp,m Z%
) ] ] R(z)=z+—. (26)
For the evaluation of the scattered field, we simply need to Z
subtract the incident field from the total field where the in- The radiusw of the beam is
cident field is computed by a similar approach using a free
space spherical-multipole expansion. 7 \?
w = o1+ (2)" @)
3 Complex-source beam wherewy is the radius at the waist:
The complex-source beam (CSB) offers the possibility to de- 220
scribe a focussed beam analytically. If a complex valued lo-¥0 =4/ — - (28)

cation is assigned to a dipole source, a Gaussian beam is gen-
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Emax Emax

i

'Emax

Fig. 3. Ey in thex, z-plane. Fig. 4. Hy in thex, z-plane within a range of < 20m.

As we can see in Eq26), the radius of curvature gets large we can construct a spherical multipole expansion of the
for z <« zo. That means that there are nearly plane wavescalar free space Green’s function:
fronts close to the beam’s waist which are — due to the trans-

i ile — : 1 e—iklr=r'|
verse Gaussian profile — also localized. g(r,r’) = T (35)
T |r—r|
o0 +n
4 Treatment of a complex-valued coordinate in the = Z Z Jn kPR @ (e Y Y™ (9, )Y (9, ¢).

spherical-multipole expansion n=0m=—n

The following equations are special cases of the Gegenbaudrhis expansion is valid for any complex locatief if the

addition theorem applied to spherical Bessel functions of zecondition Eq. 81) is fulfilled. If it is not, » andr’ can be per-
roth order muted due to the Green’s function symmetry. This paper only

deals with CSBs that point directly to the tip of the cone, so

e = Y Diten e o), (29 e o e e o b o
is

SR g)an PO RS @) -
They are valid for arbitrary complexr’, y, x and provided  This must be considered for the multipole expansions in sec-
that 'tion 2.3 particulary for Eq. 17), if a complex-source beam
e < 1| 31) is used.
and 5 Numerical results
R= \/r2 +7r2—2rr'cosy. (32)  The following results are for a circular cone with a half open-

ing angle of 48 (9o = 135°) and are calculated with multi-
Having two position vectors(r, 9, ¢) andr’(r'9', ¢’), the pole expansions according to the preceding sections using
distancelr — r’| between this positions can be expressed bya maximum ordetmax = 40. The coordinates of the CSB

R if we choose arer’ = (124 j48) m, ' = 90°, ¢’ = 0°; this means that the
_ _ beam has a rayleigh length of 48 m and propagates from
cosy = cosy cosy’ + siny sind’ coslg — ¢'). (33)  direction to the tip of the cone. The electric field of the beam

is polarized iny-direction. The wave number ig = 5/m.
Figure 3 shows they-component of the electric field in a
x, z-crosscut through the cone. The beam is partly reflected
Z Y™, ) Y™ (9, ¢) (34) and and there is interference between the incident and the re-
2" +1,=, flected field. Above the beam’s part that has passed the tip
we can observe less strong interference with scattered parts

By combining Egs.Z9), (30) and the relation

P,(cosy) =
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'Emax

Fig. 5. H; in thex, z-plane withinr < 20m.

Fig. 7. Far-field pattern with the magnitude of the electric field.

0

Fig. 6. Current density distribution on the cone’s surface in the re-
gionr < 40m. View fromz-direction. The beam incides from right-
hand side.

Fig. 8. Magnitude of the electric far-field plotted agaimsty.

be a consequence of the creeping waves, which can be ob-

of the beam. In the shadow region of the cone we can clearlygerved in Fig6 of the current density.
see diffracted spherically shaped wavefronts. Figuiand

5 show thex- and thez-component of the magnetic field.
While the incident part of the magnetic field is polarized in

z-direction, the reflected part is polarized.nin both fig-  The scattering of an electromagnetic CSB by a semi-infinite

ures diffracted parts can be found. Fig@shows the cur-  jrcylar cone has been analysed using spherical multipole ex-

rent density distribution on the cone’s surface, which can beyansions, Convergent results of the total or scattered field can

calculated with be obtained for both near- and far-field. So far, only beams
ointing directly to the tip of the cone have been considered.

Js(r)=—ep x H(r)|p=v,- (37) Euture%vork wi>|l| expandpthis approach to other geometries,

There are two notable creeping waves in the shadow regio®.g- elliptic cones. Furthermore the requirements for CSBs

of the cone. Finally, the magnitude of the scattered far-field isPointing in arbitrary directions will be investigated, so that

examined; in Fig7 it is shown in the form of a far-field pat-  Other parts of the cone can be illuminated.

tern, in Fig.8it is plotted against, ¢. The beam is reflected

In every ‘_j'reCt'on ofy; the highest values are observed in AcknowledgementsThis work was supported by the Deutsche

the direction of propagation. For 96 ¢ < 135’ we observe  gqrschungsgemeinschaft (KL815/10-1&2).

two relatively small maxima, particulary in Fi§. This might

6 Conclusions
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