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Abstract. A complex-source beam (CSB) is used to inves-
tigate the electromagnetic scattering and diffraction by the
tip of a perfectly conducting semi-infinite circular cone. The
boundary value problem is defined by assigning a complex-
valued source coordinate in the spherical-multipole expan-
sion of the field due to a Hertzian dipole in the presence of
the PEC circular cone. Since the incident CSB field can be
interpreted as a localized plane wave illuminating the tip,
the classical exact tip scattering problem can be analysed
by an eigenfunction expansion without having the conver-
gence problems in case of a full plane wave incident field.
The numerical evaluation includes corresponding near- and
far-fields.

1 Introduction

Scattering and diffraction of a plane electromagnetic wave
by a semi-infinite perfectly electrically conducting (PEC) cir-
cular cone has often been treated in the literature. A survey
on this subject can be found in the classical monograph by
(Bowman et al., 1987). More recently, the scattered field has
been obtained by a multipole-based integration of the ex-
act surface-currents for the case of an incident plane wave.
However, that solution suffers from a missing convergence
of the finally obtained multipole series, and the application of
suitable series-transformation techniques has been necessary
to asymptotically derive the corresponding limiting values
(Klinkenbusch, 2007; Kijowski and Klinkenbusch, 2011).
Particularly, we are interested in the fields related the cone’s
apex, as the corresponding scattered field can act as a further
element to complete asymptotic methods like the Geometri-
cal Theory of Diffraction (GTD) and the Uniform Theory of
Diffraction (UTD).

For the analysis of the influence of the tip on the scat-
tered field, we have used a localized plane wave, that is, a

complex-source beam (CSB) as the incident field. This can
be achieved by simply assigning a complex-valued location
to a dipole source. The width, focus length, and direction
of incidence of the CSB can be controlled nearly arbitrar-
ily (Orlov and Peschel, 2010). Combining this powerful tool
with the spherical-multipole expansion provides a conver-
gent eigenfunction solution with focusses on the evaluation
of the scattered related to the tip of the cone.

Section 2 summarizes the solution of Maxwell’s equations
in the presence of a PEC circular cone, and in Sect. 3 the
complex-source technique is introduced. Finally, we present
some numerical results in Sect. 4.

2 Solution of Maxwell’s equations in the presence of a
PEC semi-infinite circular cone

Consider a perfectly electrically conducting (PEC) circular
cone as illustrated in Fig.1 with a half outer opening angle
ϑ0 embedded in a homogeneous medium with permittivity
ε and permeabilityµ. We are looking for a solution of the
time-harmonic Maxwell’s equations at a time factore+jωt .

2.1 Helmholtz equation in spherical coordinates

The homogenous scalar Helmholtz equation

18(r,ϑ,ϕ) + κ28(r,ϑ,ϕ) = 0 (1)

with the wave numberκ = ω
√

εµ can be solved in spherical
coordinatesr,ϑ,ϕ (ϑ represents the polar coordinate.) by a
classical separation ansatz. We finally obtain the following
elementary solution

8m
ν (r,ϑ,ϕ) = zν(κr)Ym

ν (ϑ,ϕ) (2)
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Fig. 1. A PEC, semiinfinite, circular cone located on the negative
z-axis. The half outer opening angle isϑ0. A CSB incides fromx-
direction.

with zν being spherical Bessel functions related to (ordinary)
Bessel functions by

zν(κr) =

√
π

2κr
Zν+1/2(κr) (3)

Particularly we will need (everywhere regular) spherical
Bessel functions of the first kind,jν(κr), and spherical Han-
kel functions of the second kind,h(2)

ν (κr), satisfying the ra-
diation condition at the chosen time factore+jωt .

The spherical harmonicsYm
ν (ϑ,ϕ) are defined as

Ym
ν (ϑ,ϕ) = Nm

ν P m
ν (cosϑ)ejmϕ, (4)

that is, as products of associated Legendre functions of the
first kind P m

ν (cosϑ) in ϑ , and harmonic functions inϕ. The
normalization constantNm

ν is chosen such that

ϑ0∫
0

2π∫
0

∣∣Ym
ν (ϑ,ϕ)

∣∣2 sinϑ dϑdϕ = 1. (5)

2.2 Determination of eigenvalues

For the given geometry the solution has to be 2π -periodic
in ϕ, hence the eigenvaluesm have to be integral. In order
to get solutions of the Helmholtz equation for a PEC circu-
lar cone as depicted in Fig.1, these solutions have to ful-
fill the boundary conditions on the cone’s surface. Therefore
we need spherical harmonics that satisfy the Dirichlet condi-
tion as well as spherical harmonics that satisfy the Neumann
condition atϑ = ϑ0. This can be achieved by finding eigen-
valuesνd andνn (Blume and Krebs, 1994) according to the
transcendental equations

P m
νd

(cos ϑ)|ϑ0 = 0 (6)

∂P m
νn

(cos ϑ)

∂ϑ

∣∣∣∣
ϑ0

= 0 (7)

which have been solved by means of a suitable numerical
procedure, e.g. a bisection method.

Moreover, it has been shown by (Katsav et al., 2012) that
for all valid eigenvalue pairs (ν,m) it holds that

m2
≤ ν(ν + 1) . (8)

Figure 2 shows the eigenvalue pairs forϑ0 = 135◦ and
νmax = 40 in theν,m-plane.

2.3 Spherical-multipole expansion

Within a homogeneous domain, any solution of Maxwell’s
equations outside the sources can be constructed by means
of a complete set of spherical-multipole functions defined by

M(r) = (r × ∇)8(r) (9)

N(r) =

(
1

κ
∇ × (r × ∇)

)
8(r) (10)

provided that8 is a solution of the scalar homogeneous
Helmholtz Eq. (1). They are determined according to

Mν,m(r,ϑ,ϕ) =zν(κr) mν,m(ϑ,ϕ) (11)

Nν,m(r,ϑ,ϕ) = −
zν(κr)

κr
ν(ν + 1)Yν,m(ϑ,ϕ)er

−
1

κr

d

dr
[rzν(κr)]nν,m(ϑ,ϕ)

(12)

wherem andn denote the transvere multipole functions:

mν,m(ϑ,ϕ) = −
1

sinϑ

∂Yν,m(ϑ,ϕ)

∂ϕ
eϑ

+
∂Yν,m(ϑ,ϕ)

∂ϑ
eϕ

(13)

nν,m(ϑ,ϕ) =
∂Yν,m(ϑ,ϕ)

∂ϑ
eϑ

+
1

sinϑ

∂Yν,m(ϑ,ϕ)

∂ϕ
eϕ .

(14)

To accomplish that the tangential part of the electric field
vanishes on the PEC cone’s surface, the spherical-multipole
expansion of the total field reads

E(r) =

∑
νd ,m

aII (I )
νd ,m N II (I )

νd ,m (r) +
Z

j

∑
νn,m

bII (I )
νn,m MII (I )

νn,m (r) (15)

and for the magnetic field

H (r) =
j

Z

∑
νd ,m

aII (I )
νd ,m MII (I )

νd ,m (r) +

∑
νn,m

bII (I )
νn,m N II (I )

νn,m (r). (16)

r > r ′ , (r < r ′) (17)
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Fig. 2.Pairs of eigenvalues forϑ0 = 135◦, νmax= 20.

whereνd andνn are eigenvalues of the Dirichlet and Neu-
mann type, respectively.Z =

√
µ/ε represents the intrinsic

wave impedance of the homogeneous domain. The indices
(I ) and(II ) stand for the use of spherical Bessel functions
jν or spherical Hankel functions of the second kindh

(2)
ν are

used according to Eq. (17) (see also Sect.4). The multipole
amplitudesaνd ,m andbνd ,m can be determined for a Hertzian
dipole source atr ′ electrically polarized ince according to

aII (I )
νd ,m = −κ2

0Z0
(−1)m

νd(νd + 1)
N

I (II )
νd ,−m(r ′) · ce , (18)

bII (I )
νn,m = −jκ2

0
(−1)m

νn(νn + 1)
M

I (II )
νn,−m(r ′) · ce . (19)

The electric far-field is found from the asymptotic form of
the spherical Hankel function of the second kind for large
arguments as

E∞(r) =

(
e−jκr

κr

)[∑
νd ,m

−j νd aII
νd ,mnνd ,m (20)

+
Z

j

∑
νn,m

j (νn+1)bII
νn,mmνn,m

]
.

For the evaluation of the scattered field, we simply need to
subtract the incident field from the total field where the in-
cident field is computed by a similar approach using a free
space spherical-multipole expansion.

3 Complex-source beam

The complex-source beam (CSB) offers the possibility to de-
scribe a focussed beam analytically. If a complex valued lo-
cation is assigned to a dipole source, a Gaussian beam is gen-

erated. The beam’s focus, width, and direction can be con-
trolled arbitrarily by the chosen complex location. The com-
plex location vector of the source has the form

r ′
c = r ′

r − jr ′

i , (21)

wherer ′
r gives the actual position of the beam’s waist and

r ′

i the direction of incidence. The absolute value ofr ′

i corre-
spond to the rayleigh length of the generated Gaussian beam.
To clarify this, we insert a complexr ′ into the free space
Green’s function. We choose a purely imaginary locationr ′:

r ′
= −jz0ez . (22)

That means, the beam has a rayleigh lengthz0, has it’s waist
in the origin, and propagates inz-direction. Assuming a small
distanceρ =

√
x2 + y2 from the z-axis, a second order taylor

series expansion of|r−r ′
| delivers a paraxial approximation:

|r − r ′
| =

√
x2 + y2 + (z + jz0)2 (23)

≈

(
(z + jz0) +

1

2

ρ2

(z + jz0)

)
, ρ � z, z > 0

Inserting Eq. (23) into the Green’s function we get:

G(r,r ′) =
1

4π

e−jκ|r−r ′
|

|r − r ′|
(24)

≈
1

4π(z + jz0)
exp

(
−jκ(z + jz0) −

jκρ2

2(z + jz0)

)

=
exp(κz0)

4π(z + jz0)
exp

−jκz −
jκρ2

2

(
z +

z2
0
z

) −
ρ2

2z0
κ

(
1+

z2

z2
0

)
 .

Ignoring the factor exp(κz0)/4π(z + jz0), the result of
Eq. (24) directly correspond to the form of the Gaussian
beam:

exp(−jκz)exp

(
−

jκρ2

2R(z)

)
exp

(
−

ρ2

w2(z)

)
. (25)

By comparing Eqs. (24) and (25) we can identify following
beam parameters: The radius of curvatureR is

R(z) = z +
z2

0

z
. (26)

The radiusw of the beam is

w(z) = w0

√
1+

(
z

z0

)2

, (27)

wherew0 is the radius at the waist:

w0 =

√
2z0

κ
. (28)
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Fig. 3.Ey in thex,z-plane.

As we can see in Eq. (26), the radius of curvature gets large
for z � z0. That means that there are nearly plane wave
fronts close to the beam’s waist which are – due to the trans-
verse Gaussian profile – also localized.

4 Treatment of a complex-valued coordinate in the
spherical-multipole expansion

The following equations are special cases of the Gegenbauer
addition theorem applied to spherical Bessel functions of ze-
roth order

sin(κR)

κR
=

∞∑
n=0

(2n + 1)jn(κr)jn(κr ′)Pn(cosγ ), (29)

−
cos(κR)

κR
=

∞∑
n=0

(2n + 1)jn(κr)yn(κr ′)Pn(cosγ ). (30)

They are valid for arbitrary complexr,r ′,γ,κ and provided
that

|re±jγ
| < |r ′

| (31)

and

R =

√
r2 + r ′2 − 2rr ′ cosγ . (32)

Having two position vectorsr(r,ϑ,ϕ) and r ′(r ′ϑ ′,ϕ′), the
distance|r − r ′

| between this positions can be expressed by
R if we choose

cosγ = cosϑ cosϑ ′
+ sinϑ sinϑ ′ cos(ϕ − ϕ′) . (33)

By combining Eqs. (29), (30) and the relation

Pn(cosγ ) =
4π

2n + 1

+n∑
m=−n

Ym
n (ϑ,ϕ)Ym∗

n (ϑ ′,ϕ′) (34)

Fig. 4.Hx in thex,z-plane within a range ofr ≤ 20m.

we can construct a spherical multipole expansion of the
scalar free space Green’s function:

g(r,r ′) =
1

4π

e−jκ|r−r ′
|

|r − r ′|
(35)

=

∞∑
n=0

+n∑
m=−n

jn(κr)h(2)
n (κr ′)Ym

n (ϑ,ϕ)Ym∗
n (ϑ ′,ϕ′).

This expansion is valid for any complex locationr ′, if the
condition Eq. (31) is fulfilled. If it is not, r andr ′ can be per-
muted due to the Green’s function symmetry. This paper only
deals with CSBs that point directly to the tip of the cone, so
there is only a complexr ′-component (Katsav et al., 2012).
In this caseγ is real and the condition that has to be fulfilled
is

|r| < |r ′
| . (36)

This must be considered for the multipole expansions in sec-
tion 2.3, particulary for Eq. (17), if a complex-source beam
is used.

5 Numerical results

The following results are for a circular cone with a half open-
ing angle of 45◦ (ϑ0 = 135◦) and are calculated with multi-
pole expansions according to the preceding sections using
a maximum orderνmax = 40. The coordinates of the CSB
arer ′

= (12+j48) m,ϑ ′
= 90◦, ϕ′

= 0◦; this means that the
beam has a rayleigh length of 48 m and propagates fromx-
direction to the tip of the cone. The electric field of the beam
is polarized iny-direction. The wave number isκ = 5/m.
Figure 3 shows they-component of the electric field in a
x,z-crosscut through the cone. The beam is partly reflected
and and there is interference between the incident and the re-
flected field. Above the beam’s part that has passed the tip
we can observe less strong interference with scattered parts
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Fig. 5.Hz in thex,z-plane withinr ≤ 20m.

Fig. 6. Current density distribution on the cone’s surface in the re-
gionr ≤ 40m. View fromz-direction. The beam incides from right-
hand side.

of the beam. In the shadow region of the cone we can clearly
see diffracted spherically shaped wavefronts. Figure4 and
5 show thex- and thez-component of the magnetic field.
While the incident part of the magnetic field is polarized in
z-direction, the reflected part is polarized inx. In both fig-
ures diffracted parts can be found. Figure6 shows the cur-
rent density distribution on the cone’s surface, which can be
calculated with

J s(r) = −eϑ × H (r)|ϑ=ϑ0 . (37)

There are two notable creeping waves in the shadow region
of the cone. Finally, the magnitude of the scattered far-field is
examined; in Fig.7 it is shown in the form of a far-field pat-
tern, in Fig.8 it is plotted againstϑ,ϕ. The beam is reflected
in every direction ofϕ; the highest values are observed in
the direction of propagation. For 90◦ < ϑ < 135◦ we observe
two relatively small maxima, particulary in Fig.8. This might

Fig. 7.Far-field pattern with the magnitude of the electric field.

Fig. 8.Magnitude of the electric far-field plotted againstϑ,ϕ.

be a consequence of the creeping waves, which can be ob-
served in Fig.6 of the current density.

6 Conclusions

The scattering of an electromagnetic CSB by a semi-infinite
circular cone has been analysed using spherical multipole ex-
pansions. Convergent results of the total or scattered field can
be obtained for both near- and far-field. So far, only beams
pointing directly to the tip of the cone have been considered.
Future work will expand this approach to other geometries,
e.g. elliptic cones. Furthermore the requirements for CSBs
pointing in arbitrary directions will be investigated, so that
other parts of the cone can be illuminated.
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