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Abstract. Cooperative sensors allow for reliable detection,
classification and localization of objects in the vehicle’s sur-
roundings – even without a line-of-sight contact to the object.
The sensor principle is based on a communication signal be-
tween the vehicle and a transponder attached to the object
of interest – a pedestrian, for example. Thereby, localization
information is gathered by measuring the round-trip time-of-
flight (RTOF) and evaluating the angle-of-arrival (AOA) of
the incident signal. After that, tracking algorithms are used
to recover the kinematic state of the object providing a basis
for situation assessment. This paper investigates possibilities
and benefits of extending this principle by the communica-
tion of information from inertial sensors which are locally
attached to the transponder. Furthermore, this paper presents
a robust approach for fusing the localization data with dy-
namic object information using the Dempster-Shafer theory.
The approach is evaluated by performing real-world experi-
ments for the analysis of pedestrian accidents.

1 Introduction

Environment perception is still a major challenge for the re-
alization of preventative vehicle safety applications. This in-
cludes detection, classification and tracking of surrounding
objects such as other vehicles or vulnerable road users. Even-
tually, the quality and completeness of environment percep-
tion restricts the depth of intervention and determines the
time at which an action can be taken.

The current performance of local perception sensors such
as radars, lidars, or cameras already allows for the realization
of a wide range of preventative vehicle safety applications.

However, local perception sensors always require a line-of-
sight contact to the object of interest and suffer from uncer-
tainties in the classification of the object type.

Motivated by these limitations, a different sensor concept
based on the secondary radar principle and further referred
to as “cooperative sensor” has been proposed in order to en-
hance the quality and completeness of environment percep-
tion (e.g.,Shi et al., 2005; Andreone et al., 2006; Morhart and
Biebl, 2008; Schwarz et al., 2011). The sensor consists of an
on-board unit that is able to communicate with transponders
which are attached to objects of interest in the vehicle’s sur-
rounding. Transponders cooperate with the vehicle by send-
ing a dedicated response signal which is suited for measur-
ing its relative position, e.g. by time-of-flight (TOF) or signal
strength (RSSI), and allows a for unique target classification.
Additionally, due to diffraction and transmission, localiza-
tion is still possible in presence of a typical occlusion such
as a parking vehicle (see e.g.Morhart and Biebl, 2008).

Particularly in urban scenarios, the past research activities
have demonstrated a better localization performance in com-
parison to using the difference of GPS positions, currently
done in V2X-communication. This is especially important
when map-matching is not applicable – for example when
tracking pedestrians.

This paper introduces the cooperative sensor concept of
the current research project Ko-TAG. Section 3 presents a
suitable algorithm for tracking cooperative pedestrians and
derives its limitations. To overcome the limitations, Sect. 4
discusses possibilities of extending the transponder by iner-
tial sensors, which has not been considered in this context
yet. Therefore, the transponder becomes a sensor itself. In ad-
dition, the approach sets itself apart from convential tracking
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applications for navigation purposes (e.g.,Foxlin, 2005).
Based on the discussion, Sect. 5 derives a robust movement
classificator using the Dempster-Shafer theory that is finally
combined with the cooperative localization data in Sect. 6 .
The proposed method is evaluated in a real-world pedestrian
accident scenario. A summary is given in Sect. 7.

2 Cooperative sensor

The cooperative sensor developed in the research project Ko-
TAG performs distance and angle measurements to localize
transponders in the vehicle’s surrounding. The following re-
sults are based on a system using an ISM carrier frequency at
fc = 2.4 GHz, a bandwith ofB = 83 MHz and a transmission
power ofPx = 20 dBm. Currently, an effort is being made
to convey the system to the ITS band atfc = 5.9 GHz and
a smaller bandwidth ofB ≤ 50 MHz. A system verification
at those frequencies has already been published which in-
dicates a comparable system performance (Schaffer et al.,
2011). Further information about the hardware and the local-
ization principle can be found in various publications (e.g.,
Morhart and Biebl, 2008).

2.1 Distance measurements

The distance between a vehicle and a transponder is deter-
mined by round-trip time-of-flight (RTOF) measurements.
Following the secondary radar principle, an interrogation
pulse of the on-board unit is answered by a transponder af-
ter a defined guard timetw. Therefore, responses of closely
spaced transponders are separated by Time Division Multi-
ple Access (TDMA) by using different guard times. Finally,
the distancer is calculated based on the propagation time
tp between the interrogation pulse and the received answer
r = 1/2× (tp − tw)× c, wherec denotes the speed of light.

The measurement procedure is carried out by employing
a signal correlation technique. Data bursts are encoded by
a vehicle specific pseudo random code which is communi-
cated to the transponder by the vehicle’s interrogation pulse.
Finally, the time-of-arrival is determined by correlating the
received input signal with the vehicle’s code and interpolat-
ing the correlation result. Furthermore, the use of orthogonal
random codes ensures that communication from other vehi-
cles does not interfere with the measurement procedure.

In free field conditions, the system enables reliable posi-
tioning within at least 200 m distance and when encoutering
a sight obstruction between the vehicle and the target within
about 30–50 m. The accuracy of the distance measurements
depends on the situation: While cable measurements achieve
an RMSE of aboutσr = 0.05 m, multipath interference causes
additional errors of aboutσr = 0.30 m in line-of-sight (LOS)
conditions andσr = 1.50 m in non-line-of-sight (NLOS) con-
ditions.

2.2 Angle measurements

If a valid transponder response is received, the angle-of-
arrival (AOA) measurement device is triggered to indicate
the time at which the transponder sends out a narrow band
signal directly after the pseudo-noise code. The incident elec-
tromagnetic wave is spatially sampled at six antennas of an
antenna array with an inter-patch distance ofλ/2 installed at
the front bumper of the vehicle.

Phases and amplitudes of the incident signal are used to
determine the AOA using the Multiple Signal Classification
(MUSIC) algorithm. The MUSIC spectrum is evaluated for
incident angles from−60 to 60 degrees, whereas peaks in the
spectrum indicate the AOA of the received signal.

In laboratory conditions, angle measurements can be taken
with an accuracy ofσϕ ≤ 1◦. However, in urban conditions,
the accuracy is more susceptible to multipath reflections es-
pecially in combination with a low SNR. Typically, values of
σϕ = 1–2.5◦ are achieved in LOS scenarios and aboutσϕ = 3–
6◦ in NLOS scenarios within a distance of less than 100 m.

2.3 Communication

The measurement procedure includes the communication of
a data package, mainly to transmit static information about
the object such as its type or its dimensions. In the next hard-
ware generation, the data package is extended to a size of
109 bit which enables the inclusion of dynamic object infor-
mation.

2.4 Inertial sensors

To gather dynamic information, the next transponder genera-
tion is equipped with an inertial sensor system (INS) consist-
ing of a 3-axis accelerometer and 3-axis gyroscope. The main
reason for extending the transponder with inertial sensors
comes from the necessity of identifying special situations
including the cases “transponder not attached to a person”,
“person within a vehicle”, or “free fall”. However, this paper
investigates the possibilities and benefits of further including
dynamic information within the data package. To step ahead
to the performance of the new transponders, the evaluation
has been carried out by a separate unit of inertial sensors at-
tached and synchronized to a recent transponder which al-
lows for offline analysis.

3 Pedestrian tracking

The distance and angle measurementsz = [r ϕ]
T are input

into the object tracking algorithm to filter the measurement
noise and outliers as well as to recover the kinematic state of
the object including its speed. Thereafter, the estimated state1

1The coordinatesx andy denote the relative position with re-
spect to the longitudinal and lateral axis of the vehicle, respectively.
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x̂ = [x y vx vy]
T and its covarianceP = cov(x̂ − x) are the

basis for situation assessment.

3.1 Tracking filter

Typically, tracking algorithms are realized on the basis
of Bayesian filters that employ a motion modelxk+1 =

f (xk,wk) to represent the object dynamics as well as a
measurement modelzk = h(xk,vk) that relates the measure-
mentsz to the object statex. Herein, the random variables
w andv denote the process and the measurement noise with
a known probability distribution, respectively (Bar-Shalom
and Li, 1993).

Further, using the common assumptions of normally dis-
tributed process noisewk ∼N (0,Qk) and measurement
noise vk ∼N (0,Rk) as well as a linear motion model
xk+1 = f xk + wk and measurement modelzk = Hxk + vk,
the optimal filter with respect to a minimum mean squared
error reduces to a standard Kalman filter with a known algo-
rithmic solution.

The pedestrian motion is typically described by a constant
velocity and direction, which leads to a linear model in the
cartesian state space, whereT denotes the sensor sampling
time. The process noise originates from the assumption of a
white noise acceleration with known power densityq. There-
fore, the motion model consists of a single scalar parameterq

(Bar-Shalom and Li, 1993).

F =


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The measurement model describes the nonlinear conver-
sion from polar into cartesian coordinates. However, the
Kalman filter is commonly applied to a linearized formu-
lation of the measurement model leading to a near-optimal
solution referred to as Extended Kalman Filter (EKF) (Bar-
Shalom and Li, 1993). The covariance of the measurements
is known from the sensor evaluation (see Sect. 2).
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r 0
0 σ 2

ϕ

]
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3.2 Tracking limitations

With the above assumptions, the Kalman filter is parameter-
ized with a single noise parameterq that embodies the trade-
off between filter dynamics and estimation accuracy (illus-
trated in Fig.1).

However, both characteristics are extremely important for
situation assessment: reasonable accuracy – especially of the
speed – is needed to predict the pedestrian movement over
the desired time span to release a warning before a collision.
On the other side, in order to reduce the number of false pos-
itives and negatives of the system, a reasonable dynamic be-
havior is needed to react on sudden movement changes.
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Fig. 1. Step response of the tracking filter: Pedestrian suddenly
starts movement towards the street (lateral speed:vy ) at timet = 1.
The higher the value ofq, the faster the change of the speed estimate
v̂y but the larger its uncertaintyσvy = cov(v̂y − vy).

In literature, the problem of maneuvering objects is ad-
dressed by the means of adaptive state estimation (Bar-
Shalom and Li, 1995). Using the input data or the model
residuals, an indicator of the movement type is generated and
utilized for adapting the motion model. However, even the
more sophisticated methods – such as the interactive mul-
tiple model algorithm (IMM) – usually require a substantial
time to generate a robust indicator. To further improve the fil-
ter dynamics, model or parameter switching has to be made
extremly likely, which again causes an increase of the esti-
mation uncertainties.

Consequently, the tracking filter needs additional informa-
tion to optimize the trade-off between dynamics and accu-
racy.

4 Communication of dynamic information

This section investigates possibilities of using the dynamic
information of an INS to overcome the tracking limitations.

4.1 Communication of dynamic states

The INS measures accelerations and yaw rates along the di-
mensions of the sensor coordinate system which depends on
the relative position of the transponder with respect to the
object. Therefore, in order to relate the data to the object, dy-
namic measurements have to be converted into the body co-
ordinate system of the object. The roll and pitch angle are cal-
culated by finding the gravitational vector in the acceleration
data which is assumed to be orthogonal to the motion plane.
Faster changes in the relative position are stabilized by us-
ing the gyroscope measurements. As a result, the angles can
be determined with an accuracy of 1–2◦ RMSE. However,
estimating the yaw angle is generally harder and no robust
approach suited for the application has been presented, yet2.

2Literature suggests to use the data of a magnetometer which is
not reliable in many urban situations; other sources try to estimate
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Fig. 2. Erroneous EKF update: with an initial speed of approx. zero,
the yaw angle used for the EKF update is determined by noise only.
After an update withvxy > 0, the speed vector points with high
certainty to this arbitrary direction.

Consequently, the INS may provide the yaw rateωz and
the acceleration within the motion planeaxy . Furthermore, it
is possible to estimate the speed of a pedestrian within the
motion planevxy by evaluating the step frequency from the
acceleration data and assuming an average step length. The
data introduces further dimensions in the measurement space
and, therefore, requires an extension of the EKF update step,
i.e. Eq. (2). However, the relationshipv2

xy = v2
x +v2

y to relate
vxy to the state spacex, for example, requires the knowl-
edge of the yaw angleψ = atan(vy/vx) to identify the com-
ponentsvx and vy . In the EKF framework, the yaw angle
is taken from the previous state estimate which may lead to
inacceptable errors, explained in Fig.2. As a result, the han-
dling of nonlinearities requires a different filter topology than
the standard tracking problem.

In contrast, the Unscented Kalman Filter (UKF) is able to
handle such nonlinearites without leading to significant in-
consistencies. However, when using the UKF or even more
sophisticated filter topologies, the state estimate benefits
from the dynamic data only after reliable information about
the yaw angle is available. As the yaw angle is only deter-
mined by the cooperative localization data with astandard
motion model with limited dynamics, the communication of
dynamic states does not significantly contribute to the over-
all filter dynamics, especially when dealing with stopping vs.
walking/running in the case of pedestrian tracking.

4.2 Communication of movement classification

Another possibility consists of using a movement classi-
ficator using features from the INS data and adapting an
optimized motion model to the situation. The movement
of a pedestrian, for example, can be classified ass ∈ S =

{S,W,R}, whereasS: Standing,W : Walking, R: Running.
Typically, the classifier is carried out in a Bayesian frame-
work with features chosen in order to minimize the proba-

the yaw angle from motion characteristics which also suffers from
a lack of robustness.

bility of false classification. The training causes the classi-
fier to select low frequency features, e.g. the step frequency,
which are very distinct in the different classes. While this
leads to the aforementioned advantages, the use of low fre-
quency features introduces a significant lag – typically in the
order of seconds – that inhibits the improvement of the filter
dynamics. On the other side, omitting those features leads to
an inaccaptable probability of false classification (see Fig.3).
However, looking at the acceleration signal (e.g. Fig.4), a
maneuver can be suspected much earlier with a different con-
cept of classification.

5 A fast and robust movement classificator

This section proposes a robust classificator that is suited for
faster detection of movement changes.

5.1 Dempster-Shafer classificator

To achieve a faster movement classification, only high fre-
quent features may be considered for classification. As a
result, classes may not be separable in the reduced feature
space, further illustrated in Fig.3. However, instead of map-
ping every element of the feature space to a classF 7→ S,
the Dempster-Shafer theory suggests mapping every element
of the feature space to the power set of the basis classes
F 7→ 2S . Thereby, the classifier may express its uncertainty
within a set of basis classes.

The classificator may be realized as follows: For every
classA the two discriminatorsgPl and gBel define the re-
gions of plausibility (Pl) and belief (Bel), with the aim that
the Bel-region contains only samples that belong toA and
the inverse of the Pl-region contains no samples that belong
to A. The region inbetween Pl and Bel is considered to be
unknown�A = {A∪ ¬A} with respect to classA.

While a strict criterion would lead to large “unknown”
regions, the conditions need to be relaxed in order to min-
imize the relevant volume between Pl and Bel. A feasible
cost criterion can be formulated by the use of slack vari-
ablesξ for every samplefi and the classification operator
yA(gPl,gBel) : F 7→ {∅,A,¬A,�A}:

ξi =


0 if yA(fi)= A|A or yA(fi)= ¬A|¬A

1 if yA(fi)= ¬A|A or yA(fi)= A|¬A

α if yA(fi)=�A

β if yA(fi)= ∅

(3)

argmax
gPl,gBel

∑
i

ξi (4)

Parameter 0< α < 1 regulates the penalty of a sample be-
ing classified as “unknown” with respect to a misclassified
sample, i.e. the volume of the “unknown” region vs. consis-
tency. In addition, to avoid inconsistencies,β � 1 is set to
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Fig. 3. Simulation example: while a linear Bayes classifiergBy
leads to a probability of false classification of about 30 %, the
Dempster classificator reduces this probability to 0.5 % by assign-
ing ambiguous regions to the unknown state�A. Though offering a
higher consistency, the Dempster classificator is only able to distin-
guish betweenA and¬A with a probability of 67 %.

a large value. Finally, Eq. (4) is used to find the optimized
regions3 for Bel and Pl.

The classification result is represented in a mass-
function m : {∅,A,¬A,�A} 7→ [0,1] s.t.

∑
mi = 1 which

can be found by using the classification probabilities, e.g.
mA = Pr(A|yA = A)δ,m¬A = Pr(¬A|yA = A)δ,m�A = 1−

δ, while 0< δ < 1 denotes a factor of mistrust. Finally, the
classification results of the classes inS are combined using
Dempster’s rule of combination.

As a result, the classificator will be faster and more con-
sistent than its Bayesian equivalent. However, during longer
maneuvers, the classificator fails to persistently distinguish
between related classes, e.g.R andW , that require the evalu-
ation of low frequent features. Therefore, both classificators
can be combined to yield a fast and robust result.

5.2 Fusion of Bayes and Dempster-Shafer

Likewise, using the classification probabilities of the con-
fusion matrix, the result of a Bayesian movement classifi-
cator can be translated into a Dempster-Shafer mass func-
tion. However, when encoutering conflicting situations, the
combination of the two classificators may lead to erroneous
results when applying Dempster’s rule. Such situations oc-
cur for example at the beginning of maneuvers in which the
Bayesian classificator lags, while the Dempster classificator
has already switched to a new state. Therefore, the masses
mDS andmBy are combined by using Yager’s rule which pe-
nalizes conflicting situations by increasing the weight of the

3In our problem we used a linear classifier in the feature space.
Classes that are not linearly separable in the feature space can be
transformed to a different feature space by using a kernel function
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Fig. 4. Motion classification of the fused system output in com-
parison to the acceleration signals. The classificator combines the
characteristics of a fast detection of movement changes as well as a
reliable movement classification during long-term maneuvers.

unknown state:
m(A)=

∑
X∩Y=AmBy(X)mDS(Y )

m(�)=mBy(�)mDS(�)+
∑
X∩Y=∅

mBy(X)mDS(Y )

m(∅)= 0
(5)

To reduce complexity, the fused result is mapped to an ex-
tended state space[0,1]

|2S |
7→ S+

= {S,W,R,�} including
the unknown state�.

Figure 4 shows the result of a test data sequence of the
classificator fusion for pedestrian tracking. It can be observed
that the movement state is assigned to “unknown” after about
200 ms and to ”walking” after about 1 s. This behavior com-
bines the advantages of a Bayesian classificator that enables
the determination the exact type of motion in a long-term
maneuver and a fast Dempster classificator that improves the
filter dynamics and consistency.

6 Fusion of movement classication with localization
information

The robust classificator is used for improving the tracking
results of the cooperative sensor.

6.1 Extension of an IMM-Filter

The structure of an IMM enables the combination of local-
ization information and movement classification on the ba-
sis of motion model probabilities. Using a Markov transition
matrix5 and the model residuals, the basic structure of an
IMM determines a suboptimal4 estimate of the motion model
probabilities Pr(Mi) for a given set of models5.

4The IMM reduces the exponentially growing hypothesis tree to
a number of hypotheses that is equal to number of motion models

5Here: a low noise constant velocity model (M1), a constant po-
sition model (M2), and a high noise constant velocity model (M3)
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Fig. 5. Model probabilities Pr(Mi) and lateral speed estimatev̂y of
a sequence recorded by the test vehicle.

Pr(Mi |s
+)=

{
Pr(Mi )

∑
s∈S Pr(Mi |s)Pr(s+|s)∑

i Pr(M=Mi )
∑
s∈S Pr(Mi |s)Pr(s+|s)

s+ ∈ S
Pr(Mi) s+ =�

Thereafter, the IMM probabilitiesP(Mi) are combined
with the result of the movement classificators+ by consid-
ering the probability Pr(Mi |s) (motion modelMi best de-
scribes the object dynamics whens is in effect) and the prob-
ability Pr(s+|s) (accounts for misclassification). Using the
updated model probabilities, the state and covariance can be
calculated as a weighted mixture of every model.

To avoid information loops due to correlations in the clas-
sification error, the updated probabilities are not fed back to
the IMM. Also, to account for data outages, one can buffer
the last data package and predict it to the current fusion time
by using a similar markov chain.

6.2 Evaluation in a pedestrian accident scenario

The proposed algorithm was realized in a test vehicle with a
cooperative on board unit and real-time kinematic platform.
Additionally, a pedestrian equipped with a transponder, iner-
tial sensors and a DGPS-platform was situated on a sidewalk.
The test sequence is comparable to the situation in Fig.1 and
consists of stopping, and walking and stopping in the lateral
direction.

Figure5 shows a typical plot of the estimated versus the
true lateral speedvy with and without using the commu-
nication of dynamic states. With a very reliable detection
of standing, the error and the uncertainty ofvy is almost
zero, whereas without communication the uncertainty equals
σvy = 0.3 m s−1. While walking, the communication of the
movement state and speed reduce the estimation uncertainty
by a factor of 2 to aboutσvy = 0.3 m s−1.

Furthermore, the transition between standing and walking
is detected about 400 ms earlier than in the case without com-
munication. Likewise, the transition between walking and
standing is detected about 250 ms earlier.

Figure 5 indicates that the transition from walking to
standing is hardly lagged from the true pedestrian speed
whereas the first transition lags by about 500 ms – although
the transition was detected by the classficator fusion much
earlier in time. The effect results from the unknown yaw an-
gle that needs to be estimated from the localization data first.
Herein, the choice of a better motion model makes the filter
more sensitive to changes in direction, but still requires time
to average over the noise.

7 Conclusions

The tracking filter of cooperative objects suffers from a trade-
off in filter dynamics and accuracy. However, both are needed
to convey the early detection into an early warning for the
driver. This paper discusses methods to overcome those lim-
itations by the use of inertial sensor data. Based on the dis-
cussion, a fast and robust movement classificator is derived
by combining a Bayesian and Dempster-Shafer classificator.
The classification result is combined with the cooperative lo-
calization on the basis of motion model probabilities using an
IMM-framework. Finally, a real world evaluation indicates
improvements in both filter dynamics and accuracy.
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