Articles | Volume 11
https://doi.org/10.5194/ars-11-87-2013
https://doi.org/10.5194/ars-11-87-2013
04 Jul 2013
 | 04 Jul 2013

Improving the performance of BICM-ID and MLC systems with different FEC codes

T. Arafa, W. Sauer-Greff, and R. Urbansky

Abstract. In bandwidth limited communication systems, the high data rate transmission with performance close to capacity limits is achieved by applying multilevel modulation schemes in association with powerful forward error correction (FEC) coding, i.e. coded modulation systems. The most important practical approaches to coded modulation systems are multilevel coding with multistage decoding (MLC/MSD) and bit interleaved coded modulation with iterative demapping and decoding (BICM-ID).

Multilevel modulation formats such as M-QAM, which can be used as a part of coded modulation systems, have the capability of multilevel protection. Based on this fact, we investigate the methods to improve the performance of BICM-ID using multiple interleavers with different binary channel coding schemes such as convolutional codes, turbo codes and low-density parity-check (LDPC) codes. Moreover, an MLC system with parallel decoding on levels (PDL) at the receiver is considered. In our contribution, we propose to design the individual coding schemes using the extrinsic information transfer (EXIT) charts for individual bit levels in the constellation. Our simulation results show that the BICM-ID systems, taking into account different bit-level protections, can provide an improvement of 0.65 dB, 1.2 dB and 1.5 dB for 256-QAM with turbo, LDPC and convolutional codes, respectively. On the other hand, MLC systems with PDL designed using EXIT charts for individual bit levels can slightly improve the performance and eliminate the error floor compared to the systems with MSD.