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Abstract. In this contribution a coherent relation between the ing point of view. The second, algebraic reconstruction tech-
algebraic and the transform-based reconstruction technigueique is attributed t®ender et aland, in principal, is an ac-
for computed tomography is introduced using the mathemateomplishment of the Polish mathematician Stefan Kaczmarz
ical means of two-dimensional signal processing. There aravho proposed an iterative method to approximate solutions
two advantages arising from that approach. First, the algeef systems of linear equationkd&czmarz 1937). In terms of
braic reconstruction technique can now be used efficientlyinear algebra this technigue is well known.

regarding memory usage without considerations concerning The main contribution of this paper is the reinterpretation
the handling of large sparse matrices. Second, the relationf the algebraic reconstruction technique by means of two-
grants a more intuitive understanding as to the convergencdimensional signal processing. Starting with the analysis and
characteristics of the iterative method. Besides the gain irreinterpretation of the description of the measurement pro-
theoretical insight these advantages offer new possibilitiesess using a system of linear equations in Sub&etthis

for application-specific fine tuning of reconstruction tech- leads to a mathematical relation between the algebraic and
niques. the transform-based reconstruction technique.

Knowledge about this relation has two advantages. First,
the algebraic reconstruction technique can now be imple-
mented efficiently as to the usage of memory avoiding the
necessity to handle large sparse matrices. Second, the closed
, ) . form of the iteration exactly describes the convergence char-
Computed tomography is a well-established method Nacteristics of the iterative method. In addition to the academ-

medicine, material science and quality control. Itis an IMag-ical benefit these advantages could offer new possibilities for

Ing technique used to creatle a cross-sectional image of.the Irprlication-specific fine tuning of reconstruction techniques.
terior of a body to be examined. In contrast to classical imag- The remainder of this publication is organized as follows.

ing where the image corresponds directly to the MEASUTeA short introduction to the process of data acquisition in

ments, in computed tomography the image is generated ir%Omputed tomography along with the mathematical descrip-

an indirect manner. Therefore a series of transmission Me&55 of the measured data namely the Radon transform, is

surements, e.g. utilising x-rays_, is taken. Thg projection dat iven in Subsect2.1 The essential facts about the inverse
can be used to reconstruct an image of the inner structure

) adon transform are revisited in Subsex® in a intuitive
an object.

C . lqorith he k ¢ hi manner based oMorneburg(1995 avoiding the indeed ex-
oncerning algorithms, the key part of every tomographic ;. 1 ¢ 4150 cumbersome mathematical derivation. The prin-

imaging system is the_ reconstr_uction technique. T_here alipal ideas of Kaczmarz’ method are summarised in Sub-
tvvp major recon;trucnon techniques that are con5|dergd Nect.2.3 The reinterpretation of the algebraic reconstruction
this paper. The first, transform-based approach, was Irmc’fechnique is presented in Se8t.The proof of the relation
duced in 1917 by the Austrian mathematician Johann Radorﬂ)etween the two methods is given in Subs& The im-
(Radon 1917. The Radon transform and its inverse are ana'plications of the introduced relation between algebraic and

Iyt.'cal expressions of the projection process_durmg th_e”ans'transform-based reconstruction technique are discussed in
mission measurements and the reconstruction technique, re-

spectively. They are well understood from a signal process-

1 Introduction
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Fig. 1. Measurement of the attenuation of x-rays on their pathsgig 2. |ljustration of the backprojection operation.
along parallels through the phantom repeatedly for different direc-
tions, here exemplary for two different angles.

Subsect3.4. A concluding summary of the basic ideas and
insights of this contribution is given in Sedt.

2 Preliminary Considerations

In this section a short recapitulation of the underlying ideas
and the necessary preliminary considerations concerning
computed tomography, the transform-based and the algebraic
reconstruction technique are given.

Fig. 3. Comparison of original and result of plain backprojection.
2.1 Computed tomography

Computed tomography was first successfully conducted bypaths from different directions as represented by the Radon

Sir Godfrey Newbold Hounsfield in 1971 who in 1979 re- transformp(r, ). The practical means to solve this problem

ceived theNobel Price in Physiology or Medicirfer his ef- is given by so-called reconstruction techniques.

forts together with Allan McLeod Cormack. With his device  For further details on the Radon transform as well as its

he measured the accumulated attenuation of x-rays on theihverse which is subject to Subse2t2 please cfCho et al.

paths along parallels through the phantom repeatedly for dif{1993; Morneburg(1995; Poularikag1996.

ferent directions of equally distributed angles between zero

and 180 degrees. This is illustrated in Flg. 2.2 Transform-based reconstruction technigue
Mathematically the measured attenuation can be expressed

as the Radon transform of the function describing the spacialiaving the Radon transform in mind, the first idea to solve

distribution of the attenuation coefficient. The local attenua-the reconstruction problem is quite manifest, namely inver-

tion coefficient in a planéx, y) € R? is expressed as a con- Sion of the measurement process by backprojecting the inte-

tinuous functiong (x, ). The paths are expressed as straightgra| values onto their respective paths and accumulating the

linesG(r, ¢) : {(x, y)|0 = r —x cog¢) — ysin(¢)} wherer is portions from each direction. Mathematically, this backpro-

the perpendicular distance 6 to the origin andg is the  jection can be written as the integral pfr, ¢) overé.

angle betweer; and the y-axis. The ensemble of integrals

T
overg(x,y) along the paths defined lay(r, ¢) is the Radon
transform Bip(r,¢)} = / p(r,¢)d¢ 2)
0
r, = R X, = / X, dxd 1
ped (e ) gLy @ The backprojection operation is illustrated in R2gFigure3

Gr.e) shows the original image as well as the result of the consecu-
and corresponds to the measured data. The main goal itive Radon transform and backprojection. Obviously, the re-
computed tomography is to reconstruct the function describ-construction resulting from the plain backprojection differs
ing the original spacial distribution of the attenuation coeffi- significantly from the original image by a certain blurring ef-
cientg(x, y) from the integral values measured along parallel fect.
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Fig. 4. 2-D transmission system consisting of Radon transform,
backprojection and compensating filter.
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The next step towards the solution of the reconstruction
problem is to treat the concatenation of Radon transform and
backprojection as a two-dimensional linear transmission sys-
tem. Thereby it is possible to identify the transmission be-
haviour of the system and compensate for it by adding a filter
with the inverse behaviour to the signal processing chain.

According toDeans(1983, the impulse response as well
as the transfer function of the linear transmission system con-
sisting of the concatenation of Radon transform and back- ) _ - _
projection decay according to the reciprocal radial distance’'9- 5- Setting up the equation system by defining one linear equa-
from the origin, i.esigp = L and Hrp = Tlr in the original ~ 1On Perray.
and the Fourier domain, respectively. The functional identity
of the impulse responsr 5 and the transfer functiofiz 5 different approach. The reconstruction problem is stated di-

is called a fix point of the Hankel transform of order zero ..y in 4 discretised form rather than continuously as for the

wh|ch for rota’uona!ly symrr'letrlcf.unctlons is identical to the transform-based reconstruction technique. FigisBows a
Fourier transform in two dimensions. The transfer function, by four pixel area to be reconstructed which is over-

of the composite systerfizg = fi will play a key role in

xZ xT xT x
1 9 10 11 12

o < - layed with six corridors corresponding to the parallel paths
the derivation of the relation between the transform—baseq=Or one exemplary direction. The commonly used approach

and the algebraic reconstruction technique. (see, e.g.Kak et al, 200]) is to set up one linear equation
The impulse response of the compensating filter foIIows]cor each path considering all directions

from inverting the transfer functiotlrz and then taking

its two-dir_nen_sional inverse Fourier transf(_)rm. Mathe_zmati-xlal’j +X2a2,j + ...+ xXnan,j = pj (4)
cally, the filtering corresponds to a convolution which, incor-

porated into Eqg.2), leads to the so-called filtered backpro- and to combine them to a system of linear equations written

jection. here using a vector matrix formalism.
big Ax=p )
B*{p(r, = / @) * Fortl £.1d 3
@) PO @) Fopfride ®) The individual coefficients; ; may for example be chosen to

0 account for the intersectional area of the pixedith corridor

The filtered backprojection is one representation of the in-/- AlSO common practice is to use a hit-or-miss approach in
verse Radon transform and an analytical solution to theorder to reduce the computational effort. If a pixel intersects
reconstruction problem. Discretization and implementationWith the corridor at hand the respective coefficient is set to
leads to the transform-based reconstruction technique. Figon®, otherwise to zero.

ure 4 illustrates the described construction of the filtered N the linear equation systens)(vector p corresponds
backprojection. The inverse Radon transform can also be del® the measured data, matex accounts for the geometry
rived in a strictly mathematical manner as, e.g., shown inOf the tomographic system and vectocorresponds to the

Poularikas(1996. The strictly mathematical derivation al- wanted spacial distribution of the attenuation coefficient. On
lows to identify the transfer function of the compensating fil- first sight the solution of the reconstruction problem is ob-
ter £, as the determinant of the Jacobian matrix altered dud@ined by solving the system of linear equationsxoHow-

inherent to the geometry of the measurement process. ~ Straight forward solution of Eq5f.
First, matrixA does not necessarily need to be square or,
2.3 Algebraic reconstruction technique second, invertible at all for that matter. Everiifis a square

matrix possible measurement noise might disrupt an exact
In comparison to transform-based methods, the derivation oolution. Third, the mere size of the equation system for any
the algebraic reconstruction technique follows a somewhateal tomographic system makes a solution, for example using
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in (5) assuming; is the wanted spacial distribution of the
attenuation coefficient. According t¢aczmarz(1937; Tan-
abe(1971), if for every value of: one full projection cycle is
conducted it follows that in the limit to infinity X,, approx-
imates the solution with arbitrary accuracy.

lim X, =x @)
n— o0

Note that if there is no unique solution, the estimate oscillates
within the neighbourhood of the intersections.

3 Relation of methods

The first step to derive a relation between the inverse Radon
transform and Kaczmarz’ method is to reexamine the initial
model on which the setup of the system of linear equations is
based. This leads to a reinterpretation of Kaczmarz’ method
Fig. 6. Move arbitrary poinko towards the intersectional point of &S iterative backprojection. Thereafter the transmission be-
hyperplanes through successive orthogonal projections to find a sdiaviour of the iterative backprojection will be closely exam-
lution of system of linear equations. Exemplary for first 13 itera- ined by presenting a closed form representation which also
tions. exactly describes the convergence characteristics of the iter-
ative method.

the Moore-Penrose pseudoinverse to approximate a solutiory 1 Reinterpretation of linear mapping as discretised
computationally extremely expensive. Radon transform

Therefore it is advisable to utilize an iterative method to
directly determine (in general) an approximatioto a solu-  The representations of the distribution function and the paths
tion x of the system of linear equations. In computed tomo-in terms of pixels and corridors, respectively, correspond to
graphy there are several methods used such aalgleeraic  the usage of a Haar basis; in terms of sampling and interpo-
reconstruction techniquas suggested bender et al.the  |ation theory it corresponds to interpolation with B-splines
simultaneous iterative reconstruction techniquehesimul- of order zero or, colloquial, to aearest neighbouinterpo-
taneous algebraic reconstruction technigf{eé. e.g.Kak et lation (cf., e.g.Unser 2000. By disregarding the particular
al,, 2001). All of them are in principle based on a method method of interpolation the setup of the linear equation sys-
proposed byKaczmarz 1937). tem can be done assuming the elements of vegtansip be-

His idea was to interpret as a point in am-dimensional  ing the weights of a Dirac basis representations, i.e. the sam-
space. Therewith every line of the linear equation system caples of the continuous function describing the spacial distri-
be used to define a hyperplane in that space. The intersegution of the attenuation coefficients and their directed sums
tion of all hyperplanes, provided it exists, corresponds to theas discretisation of the path integrals, respectively. This is il-
solution of the system of linear equations. So, to solve thelustrated in Fig7. The particular method of interpolation is
system of linear equations means to find the intersectionahccounted for by the values of the coefficient ma#ix
point of all hyperplanes. Kaczmarz suggested to do so by From that point of view it becomes comprehensible that
choosing an arbitrary poirit in the n-dimensional space depending on the kind of interpolation the system of linear
and moving the initially guessed point towards the real so-Eq. () is essentially a discretisation of the Radon transform.
lution through an iterative process of successive orthogonaBy applying this idea on Eq6j Kaczmarz’ method can be
projections on the hyperplanes . This process is illustrated founderstood as iterative backprojection of the difference be-

a two-dimensional solution-space in F&y. tween virtual projection datg, computed using the esti-
Mathematically, Kaczmarz’ method can be written as fol- mated distribution functio,_1 and the actually measured
lows. For a detailed derivation cf., e.¢(ak et al.(2001). datap.

Based on the above considerations Bjjc@n be rewritten

T
a. . . .
X =% 1+ J (pj _ ﬁj) where jj=a;-%;_1 (6) using the Radon transform and backprojection operators on

|a;| the continuously defined distribution function.
HereX; is the approximation to the solution of the system &n+1= & +B(p—Rg,)  where p=TRg
of linear equations aftef orthogonal projectionsy; is the =3, +B(MRg—Rgn)
j-th line of the coefficient matrid, andp; is the j-th mea- — 3.+ BRg —BRa, ®)

sured value ang; is the result of the linear mapping defined
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chosen according t6 = 0.
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° ° The term in brackets can be identified as part of an alternat-
° ing binomial series for which the following relationship is
° known.
n
Fig. 7. Dirac representation of model on which the set up of the M\ n—kpk _ n
system of linear equations is based. 1;) k @b =(a+b) (10)

This leads to the assertion that ffr> 1 andgp = 0 the fol-

At this point it is obvious that both reconstruction tech- lowing relation holds, where = 1 andb = —+ have been
niques are not completely independent of each other agssed in Eqg.10).
e.g., asserted iKak et al.(200J). Using the means of two- "
dimensional signal processing, in particular sampling and in—én _ (1_ (1_ i) ) G
terpolation theory Kaczmarz’ method has indeed been shown
to be a kind of iterative backprojection using the Radon trans-_ . L .
form to determine the estimation error. In the following Sub- This can be shown by mathematical induction.
sect.3.2 the iterative backprojecting will be shown, for all 321 B _

) e 2. ase case(=0)

practical means, to actually have the same transmission be-
haviour as the inverse Radon transform. This will also yield 1\0
an explicit description of the convergence characteristics ofGy = (1_ (1_ _> ) G=0 (11)

r

r

the iterative method.

3.2 Transmission behaviour of iterative backprojection 3.3 Inductive step

In order to understand the transmission behaviour of the iter-(n — n+1)using (1)in (9)
ative backprojection it is self-evident to take a closer look - 1\" 1 1 1\"

at the Fourier space representation of E). From Sub- = (1_ <l_ Z) )G * fG o (1_ <l_ Z) )G
sect.2.2it is known that a linear two-dimensional transmis- 1\" 1 1\"

sion system consisting of consecutive Radon transform and= <1— <1— —) + < - Z) )G

(unfiltered) backprojection can be described by an impulse Ir

fr

response as well as a transfer function followﬁlgaearing — (1_ (1_ i) (1_ i) > G
that in mind the Fourier transform of EdB)(can be written fr Ir
as follows. 1\"+L
=(1- (1— ?) G Q.E.D. (12)
~ ~ 1 1. g
Gnt1=G,+—G——G, 9) ) ) ) .
fr Ir (Note that the above identity can also be derived making use

of the fact that Eq.9) is a linear inhomgenous recursion for-
Here f, is the spacial frequency in radial direction a6d  mula of first order for which there is a general closed form
andG are the spectra of the actual and estimated distributiorcorrespondence.)
functions, respectively. Taking the limit of Eq. 12) for n to infinity clarifies the
The idea for deriving a closed form representation of thetransmission behaviour of the iterative backprojection. By
iterative method arises from taking a look at the first four rewriting the term in brackets it becomes obvious that ifs
iteration steps in Fourier space. The initial guess has beegreater than one the bracketed term vanishes in the limit and
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the spectrum of the estimated solutiép approximates the 4 Summary

spectrumG of the actual solution with arbitrary accuracy.
In this contribution the derivation of a relation between the

L . —-1\" i . ; ;
im G, = lm (1- Ir G=G (13) falgebram and the transform bas<_ad recons_tructlon technique
n—>00 n—00 in computed tomography was discussed in a very general

- _ _ way. Therefore, based on preliminary considerations, the
In the Ol’lglnal Space it then follows for the estimated and model for Setting up the System Of |inear equations was rein_

Jr

actual solutions that terpreted using the means of sampling and interpolation the-
im ory which lead to understand Kaczmarz’ method as iterative
n|—>moogn =& (14) backprojection. The transmission behaviour of the iterative

. ) ) o backprojection was examined and characterised offering a
Hence, for frequencies. > 1 the iterative backprojection  ¢josed form representation of the iteration. Finally the impli-
converges to the solution as the term in brackets vanishes ipations and advantages of the new relation besides the aca-
Eq. 19). demical benefit where discussed. The insights offered in this
contribution give the means for further application-specific

3.4 Implications refinement and tuning of reconstruction techniques.

The first implication regards the stability of the numerical
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