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Abstract. In this contribution a coherent relation between the
algebraic and the transform-based reconstruction technique
for computed tomography is introduced using the mathemat-
ical means of two-dimensional signal processing. There are
two advantages arising from that approach. First, the alge-
braic reconstruction technique can now be used efficiently
regarding memory usage without considerations concerning
the handling of large sparse matrices. Second, the relation
grants a more intuitive understanding as to the convergence
characteristics of the iterative method. Besides the gain in
theoretical insight these advantages offer new possibilities
for application-specific fine tuning of reconstruction tech-
niques.

1 Introduction

Computed tomography is a well-established method in
medicine, material science and quality control. It is an imag-
ing technique used to create a cross-sectional image of the in-
terior of a body to be examined. In contrast to classical imag-
ing where the image corresponds directly to the measure-
ments, in computed tomography the image is generated in
an indirect manner. Therefore a series of transmission mea-
surements, e.g. utilising x-rays, is taken. The projection data
can be used to reconstruct an image of the inner structure of
an object.

Concerning algorithms, the key part of every tomographic
imaging system is the reconstruction technique. There are
two major reconstruction techniques that are considered in
this paper. The first, transform-based approach, was intro-
duced in 1917 by the Austrian mathematician Johann Radon
(Radon, 1917). The Radon transform and its inverse are ana-
lytical expressions of the projection process during the trans-
mission measurements and the reconstruction technique, re-
spectively. They are well understood from a signal process-

ing point of view. The second, algebraic reconstruction tech-
nique is attributed toBender et al.and, in principal, is an ac-
complishment of the Polish mathematician Stefan Kaczmarz
who proposed an iterative method to approximate solutions
of systems of linear equations (Kaczmarz, 1937). In terms of
linear algebra this technique is well known.

The main contribution of this paper is the reinterpretation
of the algebraic reconstruction technique by means of two-
dimensional signal processing. Starting with the analysis and
reinterpretation of the description of the measurement pro-
cess using a system of linear equations in Subsect.3.1 this
leads to a mathematical relation between the algebraic and
the transform-based reconstruction technique.

Knowledge about this relation has two advantages. First,
the algebraic reconstruction technique can now be imple-
mented efficiently as to the usage of memory avoiding the
necessity to handle large sparse matrices. Second, the closed
form of the iteration exactly describes the convergence char-
acteristics of the iterative method. In addition to the academ-
ical benefit these advantages could offer new possibilities for
application-specific fine tuning of reconstruction techniques.

The remainder of this publication is organized as follows.
A short introduction to the process of data acquisition in
computed tomography along with the mathematical descrip-
tion of the measured data, namely the Radon transform, is
given in Subsect.2.1. The essential facts about the inverse
Radon transform are revisited in Subsect.2.2 in a intuitive
manner based onMorneburg(1995) avoiding the indeed ex-
act but also cumbersome mathematical derivation. The prin-
cipal ideas of Kaczmarz’ method are summarised in Sub-
sect.2.3. The reinterpretation of the algebraic reconstruction
technique is presented in Sect.3. The proof of the relation
between the two methods is given in Subsect.3.2. The im-
plications of the introduced relation between algebraic and
transform-based reconstruction technique are discussed in
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Fig. 1. Measurement of the attenuation of x-rays on their paths
along parallels through the phantom repeatedly for different direc-
tions, here exemplary for two different angles.

plications of the introduced relation between algebraic and70

transform-based reconstruction technique are discussed in
Subsec. 3.3. A concluding summary of the basic ideas and
insights of this contribution is given in Sec. 4.

2 Preliminary Considerations

In this section a short recapitulation of the underlying ideas75

and the necessary preliminary considerations concerning
computed tomography, the transform-based and the algebraic
reconstruction technique are given.

2.1 Computed tomography

Computed tomography was first successfully conducted by80

SIR GODFREY NEWBOLD HOUNSFIELD in 1971 who in
1979 received the Nobel Price in Physiology or Medicine
for his efforts together with ALLAN MCLEOD CORMACK.
With his device he measured the accumulated attenuation of
x-rays on their paths along parallels through the phantom re-85

peatedly for different directions of equally distributed angles
between zero and 180 degrees. This is illustrated in Fig. 2.1.

Mathematically the measured attenuation can be expressed
as the Radon transform of the function describing the spacial
distribution of the attenuation coefficient. The local attenua-
tion coefficient in a plane (x,y)∈R2 is expressed as a con-
tinuous function g(x,y). The paths are expressed as straight
lines G(r,φ) : {(x,y)|0 = r−xcos(φ)−ysin(φ)} where r is
the perpendicular distance of G to the origin and φ is the
angle between G and the y-axis. The ensemble of integrals
over g(x,y) along the paths defined by G(r,φ) is the Radon
transform

p(r,φ) =R{g(x,y)}=

∫
G(r,φ)

g(x,y)dxdy (1)

and corresponds to the measured data. The main goal in com-
puted tomography is to reconstruct the function describing

Fig. 2. Illustration of the backprojection operation.

Fig. 3. Comparison of original and result of plain backprojection

the original spacial distribution of the attenuation coefficient90

g(x,y) from the integral values measured along parallel paths
from different directions as represented by the Radon trans-
form p(r,φ). The practical means to solve this problem is
given by so-called reconstruction techniques.

For further details on the Radon transform as well as its95

inverse which is subject to subsection 2.2 please cf. CHO et
al. (1993); MORNEBURG (1995); POULARIKAS (1996).

2.2 Transform-based reconstruction technique

Having the Radon transform in mind, the first idea to solve
the reconstruction problem is quite manifest, namely inver-
sion of the measurement process by backprojecting the inte-
gral values onto their respective paths and accumulating the
portions from each direction. Mathematically, this backpro-
jection can be written as the integral of p(r,φ) over φ.

B{p(r,φ)}=

π∫
0

p(r,φ)dφ (2)

The backprojection operation is illustrated in Fig. 2.2. Fig.
2.2 shows the original image as well as the result of the con-100

secutive Radon transform and backprojection. Obviously, the
reconstruction resulting from the plain backprojection differs
significantly from the original image by a certain blurring ef-
fect.
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2.2 Transform-based reconstruction technique

Having the Radon transform in mind, the first idea to solve
the reconstruction problem is quite manifest, namely inver-
sion of the measurement process by backprojecting the inte-
gral values onto their respective paths and accumulating the
portions from each direction. Mathematically, this backpro-
jection can be written as the integral ofp(r,φ) overφ.

B{p(r,φ)} =

π∫
0

p(r,φ)dφ (2)

The backprojection operation is illustrated in Fig.2. Figure3
shows the original image as well as the result of the consecu-
tive Radon transform and backprojection. Obviously, the re-
construction resulting from the plain backprojection differs
significantly from the original image by a certain blurring ef-
fect.
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Fig. 4. 2D transmission system consisting of Radon transform,
backprojection and compensating filter.

The next step towards the solution of the reconstruction105

problem is to treat the concatenation of Radon transform and
backprojection as a two-dimensional linear transmission sys-
tem. Thereby it is possible to identify the transmission be-
haviour of the system and compensate for it by adding a filter
with the inverse behaviour to the signal processing chain.110

According to DEANS (1983), the impulse response as well
as the transfer function of the linear transmission system con-
sisting of the concatenation of Radon transform and back-
projection decay according to the reciprocal radial distance
from the origin, i. e. hRB = 1

r and HRB = 1
fr

in the original115

and the Fourier domain, respectively. The functional identity
of the impulse response hRB and the transfer function HRB
is called a fix point of the Hankel transform of order zero
which for rotationally symmetric functions is identical to the
Fourier transform in two dimensions. The transfer function120

of the composite system HRB = 1
fr

will play a key role in
the derivation of the relation between the transform-based
and the algebraic reconstruction technique.

The impulse response of the compensating filter follows
from inverting the transfer function HRB and then taking
its two-dimensional inverse Fourier transform. Mathemati-
cally, the filtering corresponds to a convolution which, incor-
porated into Eq. (2), leads to the so-called filtered backpro-
jection.

B∗{p(r,φ)}=

π∫
0

p(r,φ)∗F−1
2D{fr}dφ (3)

The filtered backprojection is one representation of the in-
verse Radon transform and an analytical solution to the re-125

construction problem. Discretization and implementation
leads to the transform-based reconstruction technique. Fig-
ure 2.2 illustrates the described construction of the filtered
backprojection. The inverse Radon transform can also be de-
rived in a strictly mathematical manner as, e. g., shown in130

POULARIKAS (1996). The strictly mathematical derivation
allows to identify the transfer function of the compensating
filter fr as the determinant of the Jacobian matrix altered due
to the transform from Cartesian to polar coordinates which is
inherent to the geometry of the measurement process.135

2.3 Algebraic reconstruction technique

In comparison to transform-based methods, the derivation of
the algebraic reconstruction technique follows a somewhat

Fig. 5. Setting up the equation system by defining one linear equa-
tion per ray.

different approach. The reconstruction problem is stated di-
rectly in a discretised form rather than continuously as for the
transform-based reconstruction technique. Figure 2.3 shows
a four by four pixel area to be reconstructed which is over-
layed with six corridors corresponding to the parallel paths
for one exemplary direction. The commonly used approach
(see, e. g., KAK et al. (2001)) is to set up one linear equation
for each path considering all directions

x1a1,j+x2a2,j+ ...+xNaN,j = pj (4)

and to combine them to a system of linear equations written
here using a vector matrix formalism.

Ax=p (5)

The individual coefficients ai,j may for example be chosen to
account for the intersectional area of the pixel i with corridor
j. Also common practice is to use a hit-or-miss approach in
order to reduce the computational effort. If a pixel intersects140

with the corridor at hand the respective coefficient is set to
one, otherwise to zero.

In the linear equation system (5) vector p corresponds
to the measured data, matrix A accounts for the geometry
of the tomographic system and vector x corresponds to the145

wanted spacial distribution of the attenuation coefficient. On
first sight the solution of the reconstruction problem is ob-
tained by solving the system of linear equations for x. How-
ever, there are certain difficulties that in general prohibit the
straight forward solution of Eq. (5).150

First, matrix A does not necessarily need to be square or,
second, invertible at all for that matter. Even if A is a square
matrix possible measurement noise might disrupt an exact
solution. Third, the mere size of the equation system for any
real tomographic system makes a solution, for example using155
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Fig. 6. Move arbitrary point x̃0 towards the intersectional point
of hyperplanes through successive orthogonal projections to find a
solution of system of linear equations. Exemplary for first 13 itera-
tions

the Moore-Penrose pseudoinverse to approximate a solution,
computationally extremely expensive.

Therefore it is advisable to utilize an iterative method to
directly determine (in general) an approximation x̃ to a solu-
tion x of the system of linear equations. In computed tomo-160

graphy there are several methods used such as the algebraic
reconstruction technique as suggested by BENDER et al. , the
simultaneous iterative reconstruction technique or the simul-
taneous algebraic reconstruction technique (cf. e. g. KAK et
al. (2001)). All of them are in principle based on a method165

proposed by KACZMARZ (1937).
His idea was to interpret x as a point in an n-dimensional

space. Therewith every line of the linear equation system can
be used to define a hyperplane in that space. The intersec-
tion of all hyperplanes, provided it exists, corresponds to the170

solution of the system of linear equations. So, to solve the
system of linear equations means to find the intersectional
point of all hyperplanes. KACZMARZ suggested to do so by
choosing an arbitrary point x̃0 in the n-dimensional space
and moving the initially guessed point towards the real so-175

lution through an iterative process of successive orthogonal
projections on the hyperplanes . This process is illustrated
for a two-dimensional solution-space in Fig. 2.3.

Mathematically, KACZMARZ’ method can be written as
follows. For a detailed derivation cf., e. g., KAK et al.
(2001).

x̃j = x̃j−1 +
aᵀ
j

|aj |
(pj− p̃j) where p̃j =aj · x̃j−1 (6)

Here x̃j is the approximation to the solution of the system
of linear equations after j orthogonal projections, aj is the
j-th line of the coefficient matrix A, and pj is the j-th mea-

sured value and p̃j is the result of the linear mapping defined
in (5) assuming x̃j is the wanted spacial distribution of the
attenuation coefficient. According to KACZMARZ (1937);
TANABE (1971), if for every value of n one full projection
cycle is conducted it follows that in the limit n to infinity x̃n
approximates the solution with arbitrary accuracy.

lim
n→∞

x̃n =x (7)

Note that if there is no unique solution, the estimate oscillates
within the neighbourhood of the intersections.180

3 Relation of methods

The first step to derive a relation between the inverse Radon
transform and KACZMARZ’ method is to reexamine the ini-
tial model on which the setup of the system of linear equa-
tions is based. This leads to a reinterpretation of KACZ-185

MARZ’ method as iterative backprojection. Thereafter the
transmission behaviour of the iterative backprojection will be
closely examined by presenting a closed form representation
which also exactly describes the convergence characteristics
of the iterative method.190

3.1 Reinterpretation of linear mapping as discretised
Radon transform

The representations of the distribution function and the paths
in terms of pixels and corridors, respectively, correspond to
the usage of a Haar basis; in terms of sampling and interpo-195

lation theory it corresponds to interpolation with B-splines
of order zero or, colloquial, to a nearest neighbour interpo-
lation (cf., e.g., UNSER (2000)). By disregarding the par-
ticular method of interpolation the setup of the linear equa-
tion system can be done assuming the elements of vectors x200

and p being the weights of a Dirac basis representations, i. e.
the samples of the continuous function describing the spacial
distribution of the attenuation coefficients and their directed
sums as discretisation of the path integrals, respectively. This
is illustrated in Fig. 3.1. The particular method of interpola-205

tion is accounted for by the values of the coefficient matrix
A.

From that point of view it becomes comprehensible that
depending on the kind of interpolation the system of lin-
ear equations (5) is essentially a discretisation of the Radon210

transform. By applying this idea on Eq. (6) KACZMARZ’
method can be understood as iterative backprojection of the
difference between virtual projection data p̃n computed us-
ing the estimated distribution function x̃n−1 and the actually
measured data p.215

Based on the above considerations Eq. (6) can be rewritten
using the Radon transform and backprojection operators on

Fig. 6. Move arbitrary point̃x0 towards the intersectional point of
hyperplanes through successive orthogonal projections to find a so-
lution of system of linear equations. Exemplary for first 13 itera-
tions.

the Moore-Penrose pseudoinverse to approximate a solution,
computationally extremely expensive.

Therefore it is advisable to utilize an iterative method to
directly determine (in general) an approximationx̃ to a solu-
tion x of the system of linear equations. In computed tomo-
graphy there are several methods used such as thealgebraic
reconstruction techniqueas suggested byBender et al., the
simultaneous iterative reconstruction techniqueor thesimul-
taneous algebraic reconstruction technique(cf. e.g.Kak et
al., 2001). All of them are in principle based on a method
proposed by (Kaczmarz, 1937).

His idea was to interpretx as a point in ann-dimensional
space. Therewith every line of the linear equation system can
be used to define a hyperplane in that space. The intersec-
tion of all hyperplanes, provided it exists, corresponds to the
solution of the system of linear equations. So, to solve the
system of linear equations means to find the intersectional
point of all hyperplanes. Kaczmarz suggested to do so by
choosing an arbitrary point̃x0 in the n-dimensional space
and moving the initially guessed point towards the real so-
lution through an iterative process of successive orthogonal
projections on the hyperplanes . This process is illustrated for
a two-dimensional solution-space in Fig.6.

Mathematically, Kaczmarz’ method can be written as fol-
lows. For a detailed derivation cf., e.g.,Kak et al.(2001).

x̃j = x̃j−1 +
aᵀ
j

|aj |

(
pj − p̃j

)
where p̃j = aj · x̃j−1 (6)

Here x̃j is the approximation to the solution of the system
of linear equations afterj orthogonal projections,aj is the
j -th line of the coefficient matrixA, andpj is thej -th mea-
sured value and̃pj is the result of the linear mapping defined

in (5) assuming̃xj is the wanted spacial distribution of the
attenuation coefficient. According toKaczmarz(1937); Tan-
abe(1971), if for every value ofn one full projection cycle is
conducted it follows that in the limitn to infinity x̃n approx-
imates the solution with arbitrary accuracy.

lim
n→∞

x̃n = x (7)

Note that if there is no unique solution, the estimate oscillates
within the neighbourhood of the intersections.

3 Relation of methods

The first step to derive a relation between the inverse Radon
transform and Kaczmarz’ method is to reexamine the initial
model on which the setup of the system of linear equations is
based. This leads to a reinterpretation of Kaczmarz’ method
as iterative backprojection. Thereafter the transmission be-
haviour of the iterative backprojection will be closely exam-
ined by presenting a closed form representation which also
exactly describes the convergence characteristics of the iter-
ative method.

3.1 Reinterpretation of linear mapping as discretised
Radon transform

The representations of the distribution function and the paths
in terms of pixels and corridors, respectively, correspond to
the usage of a Haar basis; in terms of sampling and interpo-
lation theory it corresponds to interpolation with B-splines
of order zero or, colloquial, to anearest neighbourinterpo-
lation (cf., e.g.,Unser, 2000). By disregarding the particular
method of interpolation the setup of the linear equation sys-
tem can be done assuming the elements of vectorsx andp be-
ing the weights of a Dirac basis representations, i.e. the sam-
ples of the continuous function describing the spacial distri-
bution of the attenuation coefficients and their directed sums
as discretisation of the path integrals, respectively. This is il-
lustrated in Fig.7. The particular method of interpolation is
accounted for by the values of the coefficient matrixA.

From that point of view it becomes comprehensible that
depending on the kind of interpolation the system of linear
Eq. (5) is essentially a discretisation of the Radon transform.
By applying this idea on Eq. (6) Kaczmarz’ method can be
understood as iterative backprojection of the difference be-
tween virtual projection datãpn computed using the esti-
mated distribution functioñxn−1 and the actually measured
datap.

Based on the above considerations Eq. (6) can be rewritten
using the Radon transform and backprojection operators on
the continuously defined distribution function.

g̃n+1 = g̃n +B(p −Rg̃n) where p =Rg

= g̃n +B(Rg −Rg̃n)

= g̃n +BRg −BRg̃n (8)
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Fig. 7. Dirac representation of model on which the set up of the
system of linear equations is based.

the continuously defined distribution function.

g̃n+1 = g̃n+B(p−Rg̃n) where p=Rg
= g̃n+B(Rg−Rg̃n)220

= g̃n+BRg−BRg̃n (8)

At this point it is obvious that both reconstruction tech-
niques are not completely independent of each other as, e. g.,
asserted in KAK et al. (2001). Using the means of two-
dimensional signal processing, in particular sampling and225

interpolation theory KACZMARZ’ method has indeed been
shown to be a kind of iterative backprojection using the
Radon transform to determine the estimation error. In the
following subsection 3.2 the iterative backprojecting will be
shown, for all practical means, to actually have the same230

transmission behaviour as the inverse Radon transform. This
will also yield an explicit description of the convergence
characteristics of the iterative method.

3.2 Transmission behaviour of iterative backprojection

In order to understand the transmission behaviour of the it-
erative backprojection it is self-evident to take a closer look
at the Fourier space representation of Eq. (8). From subsec-
tion 2.2 it is known that a linear two-dimensional transmis-
sion system consisting of consecutive Radon transform and
(unfiltered) backprojection can be described by an impulse
response as well as a transfer function following 1

x . Bearing
that in mind the Fourier transform of Eq. (8) can be written
as follows.

G̃n+1 = G̃n+
1

fr
G− 1

fr
G̃n (9)

Here fr is the spacial frequency in radial direction and G235

and G̃ are the spectra of the actual and estimated distribution
functions, respectively.

The idea for deriving a closed form representation of the
iterative method arises from taking a look at the first four
iteration steps in Fourier space. The initial guess has been240

chosen according to G̃0 = 0.

G̃0 = 0

G̃1 =
1

fr
G

G̃2 =

(
2

fr
− 1

f2
r

)
G

G̃3 =

(
3

fr
− 3

f2
r

+
1

f3
r

)
G245

G̃4 =

(
4

fr
− 6

f2
r

+
4

f3
r

− 1

f4
r

)
G

The term in brackets can be identified as part of an alternat-
ing binomial series for which the following relationship is
known.

n∑
k=0

(
n

k

)
an−kbk = (a+b)n (10)

This leads to the assertion that for fr ≥ 1 and g̃0 = 0 the fol-
lowing relation holds, where a= 1 and b=− 1

fr
have been

used in Eq. (10).

G̃n =

(
1−
(

1− 1

fr

)n)
G

This can be shown by mathematical induction.
Base case (n= 0)

G̃0 =

(
1−
(

1− 1

fr

)0
)
G= 0 (11)

Inductive step (n→n+1) using (11) in (9)

G̃n+1 =

(
1−
(

1− 1

fr

)n)
G+

1

fr
G− 1

fr

(
1−
(

1− 1

fr

)n)
G

=

(
1−
(

1− 1

fr

)n
+

1

fr

(
1− 1

fr

)n)
G250

=

(
1−
(

1− 1

fr

)(
1− 1

fr

)n)
G

=

(
1−
(

1− 1

fr

)n+1
)
G Q.E.D. (12)

(Note that the above identity can also be derived making use
of the fact that Eq. (9) is a linear inhomgenous recursion
formula of first order for which there is a general closed form255

correspondence.)
Taking the limit of Eq. (12) for n to infinity clarifies the

transmission behaviour of the iterative backprojection. By
rewriting the term in brackets it becomes obvious that if fr is
greater than one the bracketed term vanishes in the limit and

Fig. 7. Dirac representation of model on which the set up of the
system of linear equations is based.

At this point it is obvious that both reconstruction tech-
niques are not completely independent of each other as,
e.g., asserted inKak et al.(2001). Using the means of two-
dimensional signal processing, in particular sampling and in-
terpolation theory Kaczmarz’ method has indeed been shown
to be a kind of iterative backprojection using the Radon trans-
form to determine the estimation error. In the following Sub-
sect.3.2 the iterative backprojecting will be shown, for all
practical means, to actually have the same transmission be-
haviour as the inverse Radon transform. This will also yield
an explicit description of the convergence characteristics of
the iterative method.

3.2 Transmission behaviour of iterative backprojection

In order to understand the transmission behaviour of the iter-
ative backprojection it is self-evident to take a closer look
at the Fourier space representation of Eq. (8). From Sub-
sect.2.2 it is known that a linear two-dimensional transmis-
sion system consisting of consecutive Radon transform and
(unfiltered) backprojection can be described by an impulse
response as well as a transfer function following1

x
. Bearing

that in mind the Fourier transform of Eq. (8) can be written
as follows.

G̃n+1 = G̃n +
1
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G −
1
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G̃n (9)

Here fr is the spacial frequency in radial direction andG

andG̃ are the spectra of the actual and estimated distribution
functions, respectively.

The idea for deriving a closed form representation of the
iterative method arises from taking a look at the first four
iteration steps in Fourier space. The initial guess has been
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The term in brackets can be identified as part of an alternat-
ing binomial series for which the following relationship is
known.

n∑
k=0

(
n

k

)
an−kbk

= (a + b)n (10)

This leads to the assertion that forfr ≥ 1 andg̃0 = 0 the fol-
lowing relation holds, wherea = 1 andb = −

1
fr

have been
used in Eq. (10).

G̃n =

(
1−

(
1−

1
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)n)
G

This can be shown by mathematical induction.

3.2.1 Base case (n = 0)

G̃0 =

(
1−

(
1−

1

fr

)0
)

G = 0 (11)

3.3 Inductive step

(n → n + 1) using (11) in (9)

G̃n+1 =
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1
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G +

1
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G −
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(Note that the above identity can also be derived making use
of the fact that Eq. (9) is a linear inhomgenous recursion for-
mula of first order for which there is a general closed form
correspondence.)

Taking the limit of Eq. (12) for n to infinity clarifies the
transmission behaviour of the iterative backprojection. By
rewriting the term in brackets it becomes obvious that iffr is
greater than one the bracketed term vanishes in the limit and
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the spectrum of the estimated solutionG̃n approximates the
spectrumG of the actual solution with arbitrary accuracy.

lim
n→∞

G̃n = lim
n→∞

(
1−

(
fr − 1

fr

)n)
G = G (13)

In the original space it then follows for the estimated and
actual solutions that

lim
n→∞

g̃n = g. (14)

Hence, for frequenciesfr > 1 the iterative backprojection
converges to the solution as the term in brackets vanishes in
Eq. (13).

3.4 Implications

The first implication regards the stability of the numerical
implementation of the algebraic reconstruction technique.
For the numerical computation the constrainfr > 1 means
that in terms of linear algebra the biggest eigenvalue of the
concatenated projection and backprojection has to be lower
or equal to one to guarantee convergence. In terms of the
Radon and backprojection operators the operator-norm of the
concatenation has to be lower or equal to one. Practically, the
square sum of the pixel values , i.e. the energy of the recon-
struction may not increase from one iteration step to the next.
This can, e.g., be ensured by weighting the whole reconstruc-
tion with a constant factor. The closer the implementation is
to the stability bound the faster the convergence.

The second implication regards the runtime of the recon-
struction techniques. As for every cycle of the iterative back-
projection a Radon transform and a backprojection has to be
performed it is obvious that the transform-based reconstruc-
tion technique delivers its result in a fraction of the time that
is needed for the algebraic reconstruction technique. Albeit,
the exact time needed for the algebraic reconstruction tech-
nique depends on the required accuracy of the reconstruction
which can be utilized as a criterion to abort the iteration pro-
cess.

Last, the introduced relation allows to implement the alge-
braic reconstruction technique independently of the vector-
matrix formalism avoiding the necessity to deal with han-
dling large sparse matrices.

4 Summary

In this contribution the derivation of a relation between the
algebraic and the transform-based reconstruction technique
in computed tomography was discussed in a very general
way. Therefore, based on preliminary considerations, the
model for setting up the system of linear equations was rein-
terpreted using the means of sampling and interpolation the-
ory which lead to understand Kaczmarz’ method as iterative
backprojection. The transmission behaviour of the iterative
backprojection was examined and characterised offering a
closed form representation of the iteration. Finally the impli-
cations and advantages of the new relation besides the aca-
demical benefit where discussed. The insights offered in this
contribution give the means for further application-specific
refinement and tuning of reconstruction techniques.
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