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Abstract. This paper presents an improved finite-element
formulation for axially uniform electromagnetic waveguides.
It allows for both dielectric and conduction losses and covers
the entire range from optics down to the static limit. Prop-
agation coefficients of small magnitude, particularly those
of transmission line modes in the low-frequency regime,
are computed much more accurately than with previous ap-
proaches.

1 Introduction

Since electromagnetic waveguides constitute generalized
transmission line systems, they are of fundamental impor-
tance for the design of electromagnetic devices. Because of
complex geometries and inhomogeneous materials, analyt-
ical solutions for the modal field patterns and propagation
coefficients are often difficult to obtain or even unavailable.
Numerical field simulation methods provide a powerful rem-
edy. In particular the finite-element (FE) method stands out
for its high convergence rates and great flexibility in model-
ing geometry and materials.

Early approaches suffered from the occurrence of spuri-
ous modes, but with the advent ofH(curl) conforming ba-
sis functions these problems were overcome. A great variety
of FE formulations have been proposed: Some are in terms
of the electric (Lee et al., 1991) or magnetic field intensity
(Valor and Zapata, 1995), while others employ a magnetic
vector potential and a electric scalar potential (Bardi and
Biro, 1991; Polstyanko and Lee, 1995). They all provide ac-
curate results for high frequencies, but very few can handle

the low-frequency (LF) (Vardapetyan and Demkowicz, 2003)
or even the static case (Lee et al., 2003; Farle et al., 2004).
Moreover, they incorporate electric conductivityσ by means
of an equivalent imaginary partε′′ of the electric permittivity
(Lee, 1994), which breaks down when the angular frequency
ω tends to zero, due to

ε′′
=

σ

ω
. (1)

All methods above lead to generalized algebraic eigenvalue
problems for the square of the propagation coefficient. As
will be detailed in Sect.4.2, this strongly amplifies numeri-
cal round-off error in propagation coefficients of small mag-
nitude, e.g. waveguide modes close to cut-off and, more im-
portantly, transmission line (TEM or quasi-TEM) modes in
the LF regime.

To overcome these limitations, we propose in Sect.2 the
prototype of a mixed-field formulation in terms of the elec-
tric field intensityE and the magnetic flux densityB. Its
distinguishing feature is that the sought eigenvalue is the
propagation coefficient itself rather than its square. The sug-
gested approach incorporates conduction losses quite natu-
rally and minimizes round-off errors in propagation coeffi-
cients of small magnitude. In Sect.3 we establish stability in
the LF regime, by imposing suitable constraints.

The ability of a single formulation to predict the propaga-
tion characteristics of inhomogeneous transmission lines ac-
curately from statics up to microwave frequencies is of great
practical importance for mixed-signal analysis, particularly
in the context of model-order reduction (Polstyanko et al.,
1997; Bertazzi et al., 2002; Schultschik et al., 2008).
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2 Formulation

We consider an axially uniform waveguide� pointing in the
ẑ direction. Its boundary0, with unit outward normal vec-
tor n̂, is assumed to consist of perfect electric walls0E and
perfect magnetic walls0H . Let� be connected and0E non-
empty. We denote the wavenumber, speed of light, and char-
acteristic impedance, respectively, of free space byk0, c0,
andη0. The relative magnetic permeabilityµr , the relative
electric permittivityεr , and the electric conductivityσ are
assumed to be scalar-valued. Thanks to uniformity along the
waveguide axis, the modal fields are given by waves propa-
gating in±ẑ direction. For the negativêz direction, we have
the decomposition (Pozar, 2005, p. 93)

E =
(
Et + Ezẑ

)
exp(γ z), (2)

B =
(
B t + Bzẑ

)
exp(γ z), (3)

where subscriptst andz denote transversal and longitudinal
components, respectively, andγ is the propagation coeffi-
cient. Thus the differential operators∂z and∇ simplify to

∂z = γ, (4)

∇ = ∇t + ∂zẑ = ∇t + γ ẑ. (5)

By applying Eqs. (2)–(5) to Faraday’s law and Ampere’s law,

∇ ×E = −jk0c0B, (6)

∇ ×µ−1
r c0B = (jk0εr + ση0)E, (7)

we arrive at a homogeneous boundary value problem, given
by the set of partial differential equations

ẑ × (γEt − ∇tEz) = −jk0c0B t , (8)

ẑ · (∇t × Et ) = −jk0c0Bz, (9)

ẑ ×

(
γµ−1

r c0B t − ∇tµ
−1
r c0Bz

)
= (jk0εr + ση0)Et , (10)

ẑ · (∇t × µ−1
r c0B t ) = (jk0εr + ση0)Ez, (11)

subject to the boundary conditions

Ez = 0
n̂ × Et = 0
n̂ · B t = 0

 on0E, (12)

µ−1
r Bz = 0

n̂ × µ−1
r B t = 0

n̂ · εrEt = 0

 on0H . (13)

2.1 Finite-element representation

LetH1,Hcurl,Hdiv, andH0 denote the Sobolev spaces with
respect to the operator in superscript (Boffi et al., 2013,
pp. 4). We define the subspaces

H1
E :=

{
λ ∈H1(�) | λ = 0 on0E

}
, (14)

Hcurl
E :=

{
u ∈Hcurl(�) | n̂ × u = 0 on0E

}
, (15)

Hdiv
E :=

{
u ∈Hdiv(�) | n̂ · u = 0 on0E

}
, (16)

and denote the corresponding finite-element spaces byV1
E ⊂

H1
E , Vcurl

E ⊂Hcurl
E , Vdiv

E ⊂Hdiv
E , andV0

⊂H0. The transver-
sal and axial fieldsEt ,Ez,B t ,Bz are discretized by ba-
sis functions of lowest order (Zhu and Cangellaris, 2006,
pp. 19), for their respective function spaces. LetNN denote
the number of free nodes,NE the number of free edges, and
NF the number of faces in the mesh. Then

Ez =

NN∑
k=1

xEz,kλk with λk ∈ V1
E, (17)

Et =

NE∑
k=1

xEt,kwk with wk ∈ Vcurl
E , (18)

c0Bz =

NF∑
k=1

xBz,kWk with Wk ∈ V0, (19)

c0B t =

NE∑
k=1

xBt,kvk with vk ∈ Vdiv
E . (20)

Note that Eqs. (19) and (20) have been scaled byc0, for nu-
merical stability. The FE representations of the differential
operators grad, curl, and div are given by the incidence matri-
cesG ∈ RNE×NN , R ∈ RNF ×NE , andD ∈ RNF ×NE . Also, in
two dimensions, we have (Zhu and Cangellaris, 2006, pp. 26)

D = R. (21)

Since Eqs. (8) and (9) are in terms of fields represented on
the primal mesh, they are discretized in strong form. In con-
trast, Eqs. (10) and (11) are based on the fieldsH = µ−1B,
D = εE, andJ = σE. These reside on the dual complex and
are thus considered in weak form. The resulting generalized
algebraic eigenvalue problem reads

(A + jk0C)x = −γ Bx. (22)

At this point it can be seen that the eigenvalue is the propa-
gation coefficientγ itself rather than its square. The vector
and the matrices in Eq. (22) are given by

x =


xBt

xBz

xEt

xEz

 , A =


0 0 0 −G
0 0 −R 0
0 −RT TBz −Tσt 0

GT TBt 0 0 Tσz

 ,

B =


0 0 I 0
0 0 0 0

−TBt 0 0 0
0 0 0 0

 , C =


I 0 0 0
0 I 0 0
0 0 −TEt 0
0 0 0 TEz

 ,

(23)
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whereI denotes the identity matrix. The other submatrices
are defined as

TBt,ij =

∫
�

vi · µ−1
r vj d� with vi,vj ∈ Vdiv

E , (24)

TBz,ij =

∫
�

Wiµ
−1
r Wj d� with Wi,Wj ∈ V0, (25)

TEt,ij =

∫
�

wi · εrwj d� with wi,wj ∈ Vcurl
E , (26)

TEz,ij =

∫
�

λiεrλj d� with λi,λj ∈ V1
E, (27)

Tσz,ij = η0

∫
�

λiσλj d� with λi,λj ∈ V1
E, (28)

Tσ t,ij = η0

∫
�

wi · σwj d� with wi,wj ∈ Vcurl
E . (29)

In absence of magnetic (dielectric) losses, we haveµr ∈ R+

(εr ∈ R+) everywhere, and the corresponding matricesTBt

andTBz (TEt andTEz) are positive definite. In contrast,Tσ t

andTσz are positive semi-definite, becauseσ > 0 holds in
the conductive region only.

3 Low-frequency behavior

Fork0 = 0, the eigenvalue problem of Eq. (22) reduces to

Ax = −γ Bx. (30)

The matrixA + γ B turns out to be singular, for any value
of γ . We will analyze this effect and propose a suitable reg-
ularization.

3.1 Analysis of instability

We decompose the waveguide cross-section� into the loss-
less region�ll , with σ = 0, the lossy subdomain�l , with
σ > 0, and their common interface00:

� = �l ∪ �ll ∪ 00. (31)

In view of Eq. (23), the eigenvalue problem for the static
case, Eq. (30), is equivalent to

γxEt = GxEz, (32)

−RxEt = 0, (33)

γ TBtxBt + Tσ txEt = −RT TBzxBz, (34)

GT TBtxBt + TσzxEz = 0. (35)

Consider the vectors[
xEt,γ

xEz,γ

]
=

[
G
γ I

]
xN , (36)

[
xBt,γ

xBz,γ

]
=

[
−T−1

Bt RT TBz

γ I

]
xF , (37)

with xF ∈ RNF arbitrary and anyxN ∈ RNN satisfying

xN,i =

{
0 if nodei ∈ �l ∪ 00,

arbitrary if nodei ∈ �ll .
(38)

Plugging Eqs. (36) and (37) into Eqs. (32)–(35) shows that
these are satisfied for any arbitrary value ofγ . The vectors

uγ =


xBt,γ

xBz,γ

xEt,γ

xEz,γ

 (39)

form the eigenspace corresponding toγ . To regularize the
eigenvalue problem and eliminate the non-physical eigenvec-
tors, we first analyze the vectorsuγ . Let Eγ andBγ denote
the fields represented by Eqs. (36) and (37), respectively. In
view of Eq. (38), Eγ is nonzero in the lossless region only
and, by Eq. (4), it is a gradient field. Similarly, it can be
shown that the magnetic field strengthH corresponding to
Bγ is a gradient, represented on the dual mesh. PluggingEγ

andBγ into Eqs. (6) and (7) and taking the divergence yields

−jk0c0∇ ·Bγ = 0, (40)

jk0c
−1
0 ∇ · εrEγ = 0. (41)

It can be seen that, fork0 = 0, these fields are no longer
forced to be source-free.

3.2 Stabilization

To stabilize the method, we impose the conditions

∇ ·B = 0 in �, (42)

∇ · (ε0εrE) = 0 in �ll, (43)

similarly to (Polstyanko et al., 1997; Hiptmair et al., 2008),
by introducing Lagrange multiplierspF and pN . The dis-
crete representations of Eqs. (42) and (43) read

DxBt + γxBz = RxBt + γxBz = 0, (44)

ĨNGT TEtxEt − γ ĨNTEzxEz = 0, (45)

where the matrix̃IN selects the nodes belonging to the loss-
less regions�ll .

Care must be taken if the structure is bounded by electric
walls only (0H = ∅). In this case, the transpose of the curl
matrix RT , i.e. the gradient operator on the dual mesh, has a
nontrivial nullspace of dimension one. It consists of constant
fields and is represented by a coefficient vectorxc with

xc,i = sign(det(Ji)) , (46)
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stant magnetic field strengthH pointing in ẑ direction. To220

exclude the eigenpair(γ = 0,x= uc), we impose the orthog-
onality constraint

xT
c xBz = 0, (49)

by introducing a Lagrange multiplierpc. Thus, the stabilized
eigenvalue problem for the caseΓH = ∅ becomes225

(Â+ jk0Ĉ)x̂=−γBx̂, (50)

with

Â=




















0 0 0 −G 0 RT 0

0 0 −R 0 0 0 xc

0 −RTTBz −Tσt
0 TEtGĨTN 0 0

GTTBt 0 0 Tσz 0 0 0

0 0 ĨNGTTEt 0 0 0 0

R 0 0 0 0 0 0

0 xT
c 0 0 0 0 0





















,

B=





















0 0 I 0 0 0 0

0 0 0 0 0 I 0

−TBt 0 0 0 0 0 0

0 0 0 0 −TEz Ĩ
T
N 0 0

0 0 0 −ĨNTEz 0 0 0

0 I 0 0 0 0 0

0 0 0 0 0 0 0





















,230

Ĉ=





















I 0 0 0 0 0 0

0 I 0 0 0 0 0

0 0 −TEt 0 0 0 0

0 0 0 TEz 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





















, x̂=

















xBt

xBz

xEt

pN

pF

pc

















. (51)

All eigenvectors of (50) that exhibit non-vanishing La-
grange multipliers, i.e. non-zeropN , pF or pc, are known
to span a subspace without physical meaning. This means235

the relevant subvectors do not solve the original eigenvalue
problem (22). Rather than to purge such unwanted eigenvec-
tors from the results, the authors prefer to shift the associated
eigenvalues to infinity, so that they do not pollute the spec-
trum. This is easily accomplished, by setting the columns of240

B that belong to Lagrange multipliers to zero. The modified
matrix B̂ reads

B̂=





















0 0 I 0 0 0 0

0 0 0 0 0 0 0

−TBt 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −ĨNTEz 0 0 0

0 I 0 0 0 0 0

0 0 0 0 0 0 0





















, (52)

and the final form of the eigenvalue problem is given by

(Â+ jk0Ĉ)x̂=−γB̂x̂. (53)245
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Fig. 1: Lossless rectangular waveguide: propagation coeffi-
cients of TE10 and TE20 modes versus frequency.
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Fig. 2: Lossy RWG withσ = 5S/m: propagation coefficients
of TE10 and TE20 modes versus frequency.

4 Numerical Examples

4.1 Rectangular Waveguide

We consider a rectangular waveguide (RWG) of dimensions
22.86 mm×11.43 mm with perfectly conducting walls and
homogenous material properties (ǫr = 4,µr = 1) in both the250

lossless case (σ = 0) and in presence of Ohmic losses (σ =
5 S/m). Our main goal is to demonstrate the correct function
of the present approach and compare it to theA-V potential
formulation of (Farle et al., 2004), a state-of-the-art method
that solves forγ2 and models conductivity via complex per-255

mittivity (1). According to (Pozar, 2005, p. 108), the analyt-
ical solution for the propagation coefficientγmn is given by

γmn =

√

(mπ

a

)2

+
(nπ

b

)2

− εrµrk20 + jµrσk0η0, (54)

wherea and b denote the width and height of the wave-260

guide, respectively. Figs. 1 and 2 present the dispersion
curves of the TE10 and TE20 modes in the frequency range

Figure 1. Lossless rectangular waveguide: propagation coefficients
of TE10 and TE20 modes versus frequency.

whereJi is the Jacobian matrix of facei. In view of Eq. (23),
the corresponding kernel vector ofA reads

uc =


0

T−1
Bzxc

0
0

 . (47)

It is easy to verify that the fields ofuc satisfy Eqs. (32)–(35)
and (45). Moreover, Eq. (44) implies

γ (uc) = 0. (48)

Thus there exists a zero eigenvalue corresponding to a con-
stant magnetic field strengthH pointing inẑ direction. To ex-
clude the eigenpair(γ = 0,x = uc), we impose the orthogo-
nality constraint

xT
c xBz = 0, (49)

by introducing a Lagrange multiplierpc. Thus, the stabilized
eigenvalue problem for the case0H = ∅ becomes

(Â + jk0Ĉ)x̂ = −γ Bx̂, (50)

with

Â =

0 0 0 −G 0 RT 0
0 0 −R 0 0 0 xc

0 −RT TBz −Tσt 0 TEtGĨT
N 0 0

GT TBt 0 0 Tσz 0 0 0
0 0 ĨNGT TEt 0 0 0 0
R 0 0 0 0 0 0
0 xT

c 0 0 0 0 0


,

B =



0 0 I 0 0 0 0
0 0 0 0 0 I 0

−TBt 0 0 0 0 0 0
0 0 0 0 −TEz ĨT

N 0 0
0 0 0 −ĨNTEz 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 0


,
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cients of TE10 and TE20 modes versus frequency.
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Fig. 2: Lossy RWG withσ = 5S/m: propagation coefficients
of TE10 and TE20 modes versus frequency.

4 Numerical Examples

4.1 Rectangular Waveguide

We consider a rectangular waveguide (RWG) of dimensions
22.86 mm×11.43 mm with perfectly conducting walls and
homogenous material properties (ǫr = 4,µr = 1) in both the250

lossless case (σ = 0) and in presence of Ohmic losses (σ =
5 S/m). Our main goal is to demonstrate the correct function
of the present approach and compare it to theA-V potential
formulation of (Farle et al., 2004), a state-of-the-art method
that solves forγ2 and models conductivity via complex per-255

mittivity (1). According to (Pozar, 2005, p. 108), the analyt-
ical solution for the propagation coefficientγmn is given by

γmn =

√

(mπ

a

)2

+
(nπ

b

)2

− εrµrk20 + jµrσk0η0, (54)

wherea and b denote the width and height of the wave-260

guide, respectively. Figs. 1 and 2 present the dispersion
curves of the TE10 and TE20 modes in the frequency range

Figure 2. Lossy RWG withσ = 5 S/m: propagation coefficients of
TE10 and TE20 modes versus frequency.

Ĉ =



I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 −TEt 0 0 0 0
0 0 0 TEz 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, x̂ =



xBt

xBz

xEt

xEz

pN

pF

pc


.

(51)

All eigenvectors of Eq. (50) that exhibit non-vanishing La-
grange multipliers, i.e. non-zeropN , pF or pc, are known to
span a subspace without physical meaning. This means the
relevant subvectors do not solve the original eigenvalue prob-
lem Eq. (22). Rather than to purge such unwanted eigenvec-
tors from the results, the authors prefer to shift the associated
eigenvalues to infinity, so that they do not pollute the spec-
trum. This is easily accomplished, by setting the columns of
B that belong to Lagrange multipliers to zero. The modified
matrix B̂ reads

B̂ =



0 0 I 0 0 0 0
0 0 0 0 0 0 0

−TBt 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −ĨNTEz 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 0


, (52)

and the final form of the eigenvalue problem is given by

(Â + jk0Ĉ)x̂ = −γ B̂x̂. (53)

4 Numerical examples

4.1 Rectangular waveguide

We consider a rectangular waveguide (RWG) of dimensions
22.86 mm×11.43 mm with perfectly conducting walls and
homogenous material properties (εr = 4, µr = 1) in both the
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Fig. 3: Convergence analysis for the TE10 mode.

[10−10,1010] Hz, and Fig. 3b gives the error in propagation
coefficient as a function of the number of unknowns.

In the lossless case, the solutions of both theE-B andA-265

V methods are in very good agreement with the theory, over
the whole frequency range; see Fig. 1. Fig. 3a demonstrates
that the convergence rates of both formulations are the same,
for f = 0 Hz andf = 5 GHz, respectively.

In the lossy case (σ=5 S/m), it can be seen from Fig. 2270

that theEB approach works over the entire frequency range
whereas theA-V scheme fails to converge below10−8 Hz,
due to breakdown of (1). Above this threshold, the results
of both methods agree very well with analytical results. The
numerical noise visible in Fig. 2b for phase coefficients of275

very small magnitude,Imγ < 10−12 rad/m, is insignificant
because, as seen in Fig. 2a, the corresponding attenuation
coefficients are more than 14 orders of magnitude larger,
Reγ > 120. Fig. 3b indicates that, within their respective
range of validity, both numerical methods exhibit the same280

rate of convergence, independently of frequency. In case of
theE-B scheme, this also holds in the static case,f = 0 Hz.

4.2 Shielded Microstrip Line

The purpose of this example is to demonstrate the advantage
of formulating the eigenvalue problem in terms ofγ rather285

thanγ2, with respect to round-off error in propagation coef-
ficients of small magnitude. Again, we compare theE-B and
A-V methods, by means of the lossless shielded microstrip
line shown on the inset of Fig. 4. In contrast to the RWG
of Section 4.1, the present structure supports a quasi-TEM290

mode, the phase coefficient of which is known to depend lin-
early on frequency in the LF regime. Fig. 4 gives results for
both numerical methods. While theE-B data exhibit the ex-
pected behavior, the phase coefficients produced by theA-
V method stagnate for frequencies below104 Hz. This may295

come as a surprise, because the latter formulation was de-
signed to be low-frequency stable (Farle et al., 2004).

To clarify the situation, we present in Table 1 a compari-
son for not only the quasi-TEM wave but also the first two
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Table 1: Comparison of first three modes of microstrip line

Mode Method 0 Hz 10 kHz 100 kHz

quasi- E-B 1.6653e-16 3.7160e-04j 3.7162e-03j
TEM A-V 4.7821e-04j 8.6431e-04 3.7630e-03j

Box 1
E-B 1.5699e+02 1.5699e+02 1.5699e+02
A-V 1.5699e+02 1.5699e+02 1.5699e+02

Box 2
E-B 2.6987e+02 2.6987e+02 2.6987e+02
A-V 2.6987e+02 2.6987e+02 2.6987e+02

box modes. It can be seen that only the quasi-TEM mode is300

affected; the results for box modes are correct, even at 0 Hz.
This behavior results from the fact that the static limit of|γ| is
zero for the quasi-TEM mode but non-zero for all others. At
sufficiently low frequency values,|γqTEM| becomes so much
smaller than all other|γ| values that the eigenvalue solver is305

unable to resolveγqTEM to sufficient accuracy, due to numer-
ical noise. Note that the gap in eigenvalue|λ1/λ2| is
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because theE-B formulation solves forγ and theA-V310

scheme forγ2. Fig. 5 presents the eigenvalue ratio as a
function of frequency. For both formulations, the eigenvalue
solver produces significant round-off error for|λ1/λ2|<
10−12 . . .10−9. However, the frequency which this happens
at is104 Hz for theA-V method, whereas the proposedE-B315

scheme produces accurate results down to10−3 Hz, thanks
to improved eigenvalue ratio in (55).
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lossless case (σ = 0) and in presence of Ohmic losses (σ =
5 S/m). Our main goal is to demonstrate the correct function
of the present approach and compare it to theA−V potential
formulation of (Farle et al., 2004), a state-of-the-art method
that solves forγ 2 and models conductivity via complex per-
mittivity, Eq. (1). According to (Pozar, 2005, p. 108), the an-
alytical solution for the propagation coefficientγmn is given
by

γmn =
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+

(nπ
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)2
− εrµrk

2
0 + jµrσk0η0, (54)

wherea and b denote the width and height of the wave-
guide, respectively. Figures1 and 2 present the dispersion
curves of the TE10 and TE20 modes in the frequency range
[10−10,1010

] Hz, and Fig.3b gives the error in propagation
coefficient as a function of the number of unknowns.

In the lossless case, the solutions of both theE − B and
A − V methods are in very good agreement with the theory,
over the whole frequency range; see Fig.1. Figure3a demon-
strates that the convergence rates of both formulations are the
same, forf = 0 Hz andf = 5 GHz, respectively.

In the lossy case (σ=5 S/m), it can be seen from Fig.2 that
the E − B approach works over the entire frequency range
whereas theA−V scheme fails to converge below 10−8 Hz,
due to breakdown of Eq. (1). Above this threshold, the re-
sults of both methods agree very well with analytical results.
The numerical noise visible in Fig.2b for phase coefficients
of very small magnitude, Imγ < 10−12 rad/m, is insignifi-
cant because, as seen in Fig.2a, the corresponding attenua-
tion coefficients are more than 14 orders of magnitude larger,
Reγ > 120. Figure3b indicates that, within their respective
range of validity, both numerical methods exhibit the same
rate of convergence, independently of frequency. In case of
theE−B scheme, this also holds in the static case,f = 0 Hz.

4.2 Shielded microstrip line

The purpose of this example is to demonstrate the advan-
tage of formulating the eigenvalue problem in terms ofγ
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[10−10,1010] Hz, and Fig. 3b gives the error in propagation
coefficient as a function of the number of unknowns.

In the lossless case, the solutions of both theE-B andA-265

V methods are in very good agreement with the theory, over
the whole frequency range; see Fig. 1. Fig. 3a demonstrates
that the convergence rates of both formulations are the same,
for f = 0 Hz andf = 5 GHz, respectively.

In the lossy case (σ=5 S/m), it can be seen from Fig. 2270

that theEB approach works over the entire frequency range
whereas theA-V scheme fails to converge below10−8 Hz,
due to breakdown of (1). Above this threshold, the results
of both methods agree very well with analytical results. The
numerical noise visible in Fig. 2b for phase coefficients of275

very small magnitude,Imγ < 10−12 rad/m, is insignificant
because, as seen in Fig. 2a, the corresponding attenuation
coefficients are more than 14 orders of magnitude larger,
Reγ > 120. Fig. 3b indicates that, within their respective
range of validity, both numerical methods exhibit the same280

rate of convergence, independently of frequency. In case of
theE-B scheme, this also holds in the static case,f = 0 Hz.

4.2 Shielded Microstrip Line

The purpose of this example is to demonstrate the advantage
of formulating the eigenvalue problem in terms ofγ rather285

thanγ2, with respect to round-off error in propagation coef-
ficients of small magnitude. Again, we compare theE-B and
A-V methods, by means of the lossless shielded microstrip
line shown on the inset of Fig. 4. In contrast to the RWG
of Section 4.1, the present structure supports a quasi-TEM290

mode, the phase coefficient of which is known to depend lin-
early on frequency in the LF regime. Fig. 4 gives results for
both numerical methods. While theE-B data exhibit the ex-
pected behavior, the phase coefficients produced by theA-
V method stagnate for frequencies below104 Hz. This may295

come as a surprise, because the latter formulation was de-
signed to be low-frequency stable (Farle et al., 2004).

To clarify the situation, we present in Table 1 a compari-
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Table 1: Comparison of first three modes of microstrip line

Mode Method 0 Hz 10 kHz 100 kHz

quasi- E-B 1.6653e-16 3.7160e-04j 3.7162e-03j
TEM A-V 4.7821e-04j 8.6431e-04 3.7630e-03j

Box 1
E-B 1.5699e+02 1.5699e+02 1.5699e+02
A-V 1.5699e+02 1.5699e+02 1.5699e+02

Box 2
E-B 2.6987e+02 2.6987e+02 2.6987e+02
A-V 2.6987e+02 2.6987e+02 2.6987e+02

box modes. It can be seen that only the quasi-TEM mode is300

affected; the results for box modes are correct, even at 0 Hz.
This behavior results from the fact that the static limit of|γ| is
zero for the quasi-TEM mode but non-zero for all others. At
sufficiently low frequency values,|γqTEM| becomes so much
smaller than all other|γ| values that the eigenvalue solver is305

unable to resolveγqTEM to sufficient accuracy, due to numer-
ical noise. Note that the gap in eigenvalue|λ1/λ2| is
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solver produces significant round-off error for|λ1/λ2|<
10−12 . . .10−9. However, the frequency which this happens
at is104 Hz for theA-V method, whereas the proposedE-B315

scheme produces accurate results down to10−3 Hz, thanks
to improved eigenvalue ratio in (55).

Figure 4. Shielded microstrip line: LF behavior of propagation co-
efficient of quasi-TEM mode. Inset shows cross-section of structure.
Dimensions are in mm.

rather thanγ 2, with respect to round-off error in propaga-
tion coefficients of small magnitude. Again, we compare the
E−B andA−V methods, by means of the lossless shielded
microstrip line shown on the inset of Fig.4. In contrast to
the RWG of Sect.4.1, the present structure supports a quasi-
TEM mode, the phase coefficient of which is known to de-
pend linearly on frequency in the LF regime. Figure4 gives
results for both numerical methods. While theE−B data ex-
hibit the expected behavior, the phase coefficients produced
by theA−V method stagnate for frequencies below 104 Hz.
This may come as a surprise, because the latter formulation
was designed to be low-frequency stable (Farle et al., 2004).

To clarify the situation, we present in Table1 a compari-
son for not only the quasi-TEM wave but also the first two
box modes. It can be seen that only the quasi-TEM mode is
affected; the results for box modes are correct, even at 0 Hz.
This behavior results from the fact that the static limit of|γ |

is zero for the quasi-TEM mode but non-zero for all oth-
ers. At sufficiently low frequency values,|γqTEM| becomes
so much smaller than all other|γ | values that the eigenvalue
solver is unable to resolveγqTEM to sufficient accuracy, due
to numerical noise. Note that the gap in eigenvalue|λ1/λ2| is

∣∣∣∣λ1

λ2

∣∣∣∣ =


∣∣∣ γqTEM
γBox 1

∣∣∣ for E − B method,∣∣∣ γqTEM
γBox 1

∣∣∣2 for A − V method,
(55)

because theE − B formulation solves forγ and theA − V

scheme forγ 2. Figure5 presents the eigenvalue ratio as a
function of frequency. For both formulations, the eigenvalue
solver produces significant round-off error for|λ1/λ2| <

10−12. . .10−9. However, the frequency which this happens
at is 104 Hz for the A − V method, whereas the proposed
E − B scheme produces accurate results down to 10−3 Hz,
thanks to improved eigenvalue ratio in Eq. (55).
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Table 1.Comparison of first three modes of microstrip line.

Mode Method 0 Hz 10 kHz 100 kHz

quasi- E − B 1.6653e − 16 3.7160e − 04j 3.7162e − 03j
TEM A − V 4.7821e − 04j 8.6431e − 04 3.7630e − 03j

Box 1
E − B 1.5699e + 02 1.5699e + 02 1.5699e + 02
A − V 1.5699e + 02 1.5699e + 02 1.5699e + 02

Box 2
E − B 2.6987e + 02 2.6987e + 02 2.6987e + 02
A − V 2.6987e + 02 2.6987e + 02 2.6987e + 02
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5 Critical discussion and conclusions

We have presented a mixed finite-element formulation for
electromagnetic waveguides. Stability in the LF regime is
achieved by imposing source-free conditions for the electric
and magnetic flux densities, with the help of Lagrange mul-
tipliers.

Since the sought eigenvalue is the propagation coefficient
itself rather than its square, round-off errors in propagation
coefficients of small magnitude are significantly reduced.
This is of great practical importance for the mixed-signal
analysis of transversally inhomogeneous transmission line
structures, such as microstrips or coplanar waveguides: For
the example of Sect.4.2, the LF range is extended by 7 orders
of magnitude, compared toγ 2 approaches. Another feature
of the proposed method is that Ohmic losses enter the formu-
lation directly rather than in the form of equivalent complex
permittivity.

The advantages of the new method do not come for free,
though. Table2 shows that the number of variables is three
times as large as in theA − V case. Nevertheless, the non-
zeros inÂ + Ĉ just increase by 50 %, and those inB̂ actually
decrease. Iteration counts of theeigs solver of MATLAB-
R2013a are 50 % higher for theE −B approach. As a result,
solution times for the lossy RWG are six times as long. For
the microstrip, that ratio is twelve because, in the lossless

Table 2.Computational data.

Example Lossy RWG Microstrip
Method E − B A − V E − B A − V

Unknowns 11074 3969 13377 4416
Non-zerosÂ + Ĉ 73707 60167 107496 70602

Non-zerosB̂ 19844 34375 29328 39386
Runtime in sec 1.52 0.27 2.96 0.24

Iterations 85 59 82 55

case, the system matrices of theA−V method become real-
valued, whereas those of theE−B scheme remain complex.
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