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Abstract. This paper presents an improved finite-elementthe low-frequency (LF)Wardapetyan and Demkowic2003
formulation for axially uniform electromagnetic waveguides. or even the static caséde et al, 2003 Farle et al. 2004.

It allows for both dielectric and conduction losses and coversMoreover, they incorporate electric conductivitypy means
the entire range from optics down to the static limit. Prop- of an equivalent imaginary past of the electric permittivity
agation coefficients of small magnitude, particularly those(Lee 1994, which breaks down when the angular frequency
of transmission line modes in the low-frequency regime, w tends to zero, due to

are computed much more accurately than with previous ap-
proaches. g =—. Q)

All methods above lead to generalized algebraic eigenvalue
problems for the square of the propagation coefficient. As
1 Introduction will be detailed in Sect4.2, this strongly amplifies numeri-
cal round-off error in propagation coefficients of small mag-
Since electromagnetic waveguides constitute generalizeditude, e.g. waveguide modes close to cut-off and, more im-
transmission line systems, they are of fundamental imporportantly, transmission line (TEM or quasi-TEM) modes in
tance for the design of electromagnetic devices. Because dhe LF regime.
complex geometries and inhomogeneous materials, analyt- To overcome these limitations, we propose in S2c¢he
ical solutions for the modal field patterns and propagationprototype of a mixed-field formulation in terms of the elec-
coefficients are often difficult to obtain or even unavailable. tric field intensity E and the magnetic flux densitg. Its
Numerical field simulation methods provide a powerful rem- distinguishing feature is that the sought eigenvalue is the
edy. In particular the finite-element (FE) method stands outpropagation coefficient itself rather than its square. The sug-
for its high convergence rates and great flexibility in model- gested approach incorporates conduction losses quite natu-
ing geometry and materials. rally and minimizes round-off errors in propagation coeffi-
Early approaches suffered from the occurrence of spuricients of small magnitude. In Se8twe establish stability in
ous modes, but with the advent Bf(curl) conforming ba-  the LF regime, by imposing suitable constraints.
sis functions these problems were overcome. A great variety The ability of a single formulation to predict the propaga-
of FE formulations have been proposed: Some are in termsion characteristics of inhomogeneous transmission lines ac-
of the electric [ee et al, 1991) or magnetic field intensity  curately from statics up to microwave frequencies is of great
(Valor and Zapatal999, while others employ a magnetic practical importance for mixed-signal analysis, particularly
vector potential and a electric scalar potentighidi and  in the context of model-order reductioRdlstyanko et aJ.
Biro, 1991, Polstyanko and Led995. They all provide ac- 1997 Bertazzi et al.2002 Schultschik et aJ.2008.
curate results for high frequencies, but very few can handle
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2 Formulation HOM = {u e H(Q) | A x u=00n FE} , (15)

We consider an axially uniform waveguidepointing in the HdEi" = {u e HWV(Q) | i-u=00n FE} , (16)
z direction. Its boundary”, with unit outward normal vec-
tor i1, is assumed to consist of perfect electric walls and and denote the corresponding finite-element spac&%hy
perfect magnetic wallE . Let Q2 be connected andz non- L yeurl — ggourl ydiv — 4/div 0 0

X , , , andV” c H". The transver-
empty. We denote the wavenumber, speed of light, and char- £’ E e Ve CE .

toristic | d tvely. of f &b sal and axial fieldsE,, E,, B,, B, are discretized by ba-
acteristic iImpedance, respectively, ol lree space@yco, sis functions of lowest orderZu and Cangellarjs2006
andno. The relative magnetic permeability;,, the relative

X o ) C . 19), for their respective function spaces. denote
electric permittivitys,, and the electric conductivity are pp. 19) b P Bt

. . the number of free nodesd/z the number of free edges, and
assumed to be scalar-valued. Thanks to uniformity along thng the number of faces in the mesh. Then

waveguide axis, the modal fields are given by waves propa-
gating in+z direction. For the negative direction, we have

Ny
the decompositionRozar 2005 p. 93) E, = ZxEZ’k)‘k with A; € Vé, a7
k=1
E = (E,+ E.z)exp(yz), ) Ni
B = (B, + B.2)exp(y2), (3) E =) xgiwk with wy € V", (18)
k=1
where subscripts andz denote transversal and longitudinal Nr
components, respectively, andis the propagation coeffi- coB; = Zsz,ka with Wy € V°, (19)
cient. Thus the differential operatasgsandV simplify to k=1
NEg )
3=y, 4 coBi=) xpivi with v; € VIV, (20)
V=V, +3z2=V,+yz. (5) k=1

Note that Egs.X9) and @0) have been scaled hy, for nu-
merical stability. The FE representations of the differential
V x E = —jkocoB, (6)  operators grad, curl, and div are given by the incidence matri-
cesG € RVNeXNy R e RVFXNE andD e RVFXNE, Also, in

By applying Egs.2)—(5) to Faraday's law and Ampere’s law,

-1 _
V x p,“coB = (koer +omo)E, (T) " two dimensions, we hav&hu and Cangellarj2006 pp. 26)
we arrive at a homogeneous boundary value problem, giverb _R 21)
by the set of partial differential equations T
5 x (yE, —V,E,) = —jkocoB, @) Since Egs. &) and Q) are in terms of fields represented on

R . 9 the primal mesh, they are discretized in strong form. In con-
2+ (Vi x E) = —JkocoB:. ©)  rast, Egs.10) and (L1) are based on the fieldd = 1B,
% % (yﬂ;lcogt _ VtuflCoBz) = (koer +0n0) B,  (10) D =¢E,andJ = o E. These reside on the dual complex and
A 1 _ are thus considered in weak form. The resulting generalized
Z- (Ve x pu, “coBy) = (jkoer +ono) E;,  (11)  algebraic eigenvalue problem reads

subject to the boundary conditions (A +jkoC)x = —yBx. (22)
- gz ig onT (12) At this point it can be seen that the eigenvalue is the propa-
" ~B[ _ 0 E: gation coefficienty itself rather than its square. The vector
B = and the matrices in Eq2R) are given by
wiB. =0
r < _
axu B, =0 ponTy. (13) X s 0 0 0 -G
n-¢,E, =0 o | X8 A— 0 0 -R 0
ini . “lxm |0 7| 0 —RTTp -T, O |
2.1 Finite-element representation | Xk, G Ty, 0 0 T,.
Let 2, Heu! 1AV andHO denote the Sobolev spaces with 0 01 0 0 0 0
respect to the operator in superscrigiofii et al, 2013 g_| 9 0 0 0~ 10 1 0 0
pp. 4). We define the subspaces —Tg 0 0 O 0 0 —Tg O 7
| O 0 0O 0 0 0 TE,
He = {AeHl(Q) | A:OonFE}, (14) (23)
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wherel denotes the identity matrix. The other submatrices

are defined as

div

Tpiij =/v,~ g tvde with v, v € VY, (24)
Q
Tp.ij = / Wi twide  with Wi, W, e )P, (25)
Q
Tgij = / w; - & w; dQ with w;, w; € Vgu”, (26)
Q
Tg,ij = /x,-e,x,- aQ with A;, 2 € Vi, (27)
Q
Torij = no/,\,-o,\j ds with 4, € Vi, (28)
Q
Tor)ij = 770/ wi-ow;dQ2  withw;, w; € Vgu”. (29)
Q

In absence of magnetic (dielectric) losses, we have R™
(e, € RT) everywhere, and the corresponding matri€gs
andT g, (T g, andT g;) are positive definite. In contrast,,
andT,, are positive semi-definite, because> 0 holds in
the conductive region only.

3 Low-frequency behavior
For kg = 0, the eigenvalue problem of EQ2) reduces to
Ax = —yBx. (30)

The matrixA + yB turns out to be singular, for any value

of y. We will analyze this effect and propose a suitable reg-

ularization.
3.1 Analysis of instability

We decompose the waveguide cross-secfianto the loss-
less region®2;;, with & =0, the lossy subdomaig®;, with

o > 0, and their common interfadéy:
Q= UQ;UTy. (32)

In view of Eq. 3), the eigenvalue problem for the static
case, Eqg.30), is equivalent to

yxe = Gxgg, (32)
—RxE[ == O, (33)
yTpixpr+ToiXE = —RTTBszz, (34)
G ' Tpxp 4+ To.xp. =0. (35)
Consider the vectors
wa _ G
=[] @
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0, ][R, -
xp,, vl
with x » € RVF arbitrary and any y € RV~ satisfying
if e QUIN
= 0 ' |. nodez. € Q;UTy, (38)
’ arbitrary if nodel € Q.

Plugging Egs. 6) and @7) into Egs. 82)—(35) shows that
these are satisfied for any arbitrary value/ofThe vectors

xBW
me,
wa
xEW

(39)

form the eigenspace correspondingytoTo regularize the
eigenvalue problem and eliminate the non-physical eigenvec-
tors, we first analyze the vectows . Let E,, andB,, denote

the fields represented by Eq86) and @7), respectively. In
view of Eq. @8), E,, is nonzero in the lossless region only
and, by Eq. 4), it is a gradient field. Similarly, it can be
shown that the magnetic field strenghh corresponding to

B, is a gradient, represented on the dual mesh. Plugging
andB, into Egs. 6) and (7) and taking the divergence yields

—jkocoV - B, =0,
jkocg'V - &, E, = 0.

(40)
(41)

It can be seen that, fakg =0, these fields are no longer
forced to be source-free.

3.2 Stabilization
To stabilize the method, we impose the conditions

V-B=0
V. (g0, E)=0

in 2,
inQy,

(42)
(43)
similarly to (Polstyanko et a].1997 Hiptmair et al, 2008,
by introducing Lagrange multiplierp and p,. The dis-
crete representations of Eqd42f and @3) read

(44)
(45)

Dxp: +yxp; =Rxp, +yxp, =0,

TNGTTE,xE, — 7/|~NTszEz =0,

where the matriX y selects the nodes belonging to the loss-
less regions;.

Care must be taken if the structure is bounded by electric
walls only "y = ¢). In this case, the transpose of the curl
matrix R”, i.e. the gradient operator on the dual mesh, has a
nontrivial nullspace of dimension one. It consists of constant
fields and is represented by a coefficient veatowith

xc,i = sign(det(J;)), (46)
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Figure 1. Lossless rectangular waveguide: propagation coefficientsFigure 2. Lossy RWG witho = 5 S/m: propagation coefficients of

of TE1g and TBg modes versus frequency.

whereJ; is the Jacobian matrix of fageln view of Eq. £3),
the corresponding kernel vector dfreads

-1
u. = TBéxC

0

It is easy to verify that the fields of,. satisfy Eqs. 82)—(35)
and @5). Moreover, Eq.44) implies

y(@ue) =0. (48)

(47)

TE10 and Tk modes versus frequency.

I 0 0 0 0 0 O] xB
o1 o0 0 00 O XB:
00 -Tzz, 0 00O XEr
C=|0 0 0 Tz O 0 O, £=|xg
00 O 0 000 Py
00 O 0 00 O Pr
00 O 0 0 0O0] | pe |

(51)

All eigenvectors of Eq.50) that exhibit non-vanishing La-
grange multipliers, i.e. non-zemy, pr or p., are known to

Thus there exists a zero eigenvalue corresponding to a corspan a subspace without physical meaning. This means the

stant magnetic field streng#th pointing inz direction. To ex-

clude the eigenpaity = 0,x = u.), we impose the orthogo-

nality constraint
xIxp, =0, (49)

by introducing a Lagrange multipligr.. Thus, the stabilized
eigenvalue problem for the caFg; = ¢} becomes

(A +jkoC)% = —yBZ, (50)
with

A
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0 0 0 -G 0 RT 07
0 0 -R 0 0 0 xc
0 —RITg, -T, 0 TgGIL 0 O

G Ts 0 0 Ty- 0 0 0
0 0 INGTTg O 0 0 0
R 0 0 0 0 0 0

. 0 xT 0 0 0 0 0
T 0 0 | 0 0 0 0]

0 00 0 0 I 0

—Tg 0 0O 0 0 00
B=| 0 00 0 -Tglh 0 of,

0 0 0 —INTg 0 0 0

0 10 0 0 00

. 0 00 0 0 00,

relevant subvectors do not solve the original eigenvalue prob-
lem EqQ. @2). Rather than to purge such unwanted eigenvec-
tors from the results, the authors prefer to shift the associated
eigenvalues to infinity, so that they do not pollute the spec-
trum. This is easily accomplished, by setting the columns of
B that belong to Lagrange multipliers to zero. The modified
matrix B reads

0 0 | 0 0 0 O]

0 00 0 0 00

~Tg 0 O 0 0 00
B=| 0 00 0 0 0 0, (52)

0O 0 0 —IyTg. 0 0 O

0 10 0 0 00

0 00 0 0 00|

»and the final form of the eigenvalue problem is given by

(A +jkoC)x = —yBz%. (53)

4 Numerical examples
4.1 Rectangular waveguide

We consider a rectangular waveguide (RWG) of dimensions
22.86 mmx 11.43 mm with perfectly conducting walls and
homogenous material properties € 4, i, = 1) in both the

www.adv-radio-sci.net/12/13/2014/
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Figure 4. Shielded microstrip line: LF behavior of propagation co-
efficient of quasi-TEM mode. Inset shows cross-section of structure.

5S/m). Our main goal is to demonstrate the correct functionpimensions are in mm.

of the present approach and compare it toAdheV potential
formulation of Farle et al. 2004, a state-of-the-art method
that solves fory2 and models conductivity via complex per-
mittivity, Eq. (1). According to Pozar 2005 p. 108), the an-
alytical solution for the propagation coefficieny,, is given
by

mim

e

2 ni\2 .
) +< b ) _gr,urkg'i_J,uerO’?Ov

(54)

wherea and b denote the width and height of the wave-
guide, respectively. Figurels and 2 present the dispersion
curves of the Ty and TE modes in the frequency range
[10-10, 1019 Hz, and Fig.3b gives the error in propagation
coefficient as a function of the number of unknowns.

In the lossless case, the solutions of both Fhe B and
A — V methods are in very good agreement with the theory,
over the whole frequency range; see Higrigure3a demon-
strates that the convergence rates of both formulations are t
same, forf = 0Hz andf =5 GHz, respectively.

In the lossy cases(=5 S/m), it can be seen from Figthat
the E — B approach works over the entire frequency range
whereas thet — V scheme fails to converge below 10Hz,
due to breakdown of Eql). Above this threshold, the re-
sults of both methods agree very well with analytical results.
The numerical noise visible in Fi@b for phase coefficients
of very small magnitude, Im < 10~12rad/m, is insignifi-
cant because, as seen in R2g, the corresponding attenua-

tion coefficients are more than 14 orders of magnitude larger,

Rey > 120. Figure3b indicates that, within their respective
range of validity, both numerical methods exhibit the same

rate of convergence, independently of frequency. In case ofC

the E — B scheme, this also holds in the static cgée,0 Hz.

4.2 Shielded microstrip line

rather thany?2, with respect to round-off error in propaga-
tion coefficients of small magnitude. Again, we compare the
E — B andA — V methods, by means of the lossless shielded
microstrip line shown on the inset of Fig. In contrast to
the RWG of Sect4.1, the present structure supports a quasi-
TEM mode, the phase coefficient of which is known to de-
pend linearly on frequency in the LF regime. Figdrgives
results for both numerical methods. While the- B data ex-
hibit the expected behavior, the phase coefficients produced
by theA — V method stagnate for frequencies below Ha.
This may come as a surprise, because the latter formulation
was designed to be low-frequency stalitar(e et al. 2004).

To clarify the situation, we present in Talllea compari-
son for not only the quasi-TEM wave but also the first two
box modes. It can be seen that only the quasi-TEM mode is
affected; the results for box modes are correct, even at O Hz.

hFhis behavior results from the fact that the static limityof

is zero for the quasi-TEM mode but non-zero for all oth-
ers. At sufficiently low frequency valuegyqtem| becomes
so much smaller than all othgr| values that the eigenvalue
solver is unable to resolvgytem to sufficient accuracy, due
to numerical noise. Note that the gap in eigenvaluéi| is

YqTEM _
ﬂ _ | moat . for E — B method (55)
A2 V‘*ﬂ‘ for A — V method

VBox 1

because th& — B formulation solves foy and thed — V
heme fory2. Figure5 presents the eigenvalue ratio as a
function of frequency. For both formulations, the eigenvalue
solver produces significant round-off error foxy/1z| <
10-12...107°. However, the frequency which this happens
at is 10 Hz for the A — V method, whereas the proposed

The purpose of this example is to demonstrate the advanE — B scheme produces accurate results down to® Hy,

tage of formulating the eigenvalue problem in termsyof

www.adv-radio-sci.net/12/13/2014/

thanks to improved eigenvalue ratio in E§5).
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Table 1. Comparison of first three modes of microstrip line. Table 2. Computational data.
Mode Method OHz 10kHz 100 kHz Example Lossy RWG Microstrip
- Method E-B A-— E—-B A-—
quasi- E—B 1665%—16 37160—04j 3.716% — 03] etho v v
TEM A-V 47821 —04; 8643k —-04 3763 —03j Unknowns 11074 3969 13377 4416
Box 1 E_B 1569%+02 1569%+02 1569% 02 Non-zerosA + C 73707 60167 107496 70602
A—V 15699 +02 1569%+02 1569% + 02 Non-zeros8 19844 34375 29328 39386
Runtime in sec B2 027 296 024
Box 2 E—B 26987%+02 26987%+02 26987 + 02 Iterations 85 59 82 55
A—-V  26987%+02 26987%+02 26987 + 02
10 ‘ case, the system matrices of the- V method become real-
XEM valued, whereas those of tilie— B scheme remain complex.
AV
10" fl'="=A-V theory
“““ E-B theory
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