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Abstract. Nonlinearly loaded lossless transmission lines in-
side a rectangular cavity are studied using the left- and right-
hand Green’s functions of the problem in time domain. These
Green’s functions are developed for a transmission line with
quasi-matched loads. This ensures Green’s functions of a
short duration. Therefore, the amount of frequency data nec-
essary to obtain time-domain Green’s functions is quite lim-
ited. The time-domain Green’s functions are finally con-
volved with the left- and right-hand line voltages. With this
technique it is possible to treat arbitrarily loaded transmission
lines in resonators. An example is presented to demonstrate
the applicability of this technique to a transmission line with
a simple diode as nonlinear load.

1 Introduction

Interconnecting cables play a major role in Electromagnetic
Compatibility (EMC). These cables do not only transport in-
formation signals and energy in electronic systems, but they
also act as effective collectors for unintended electromag-
netic energy. Electronic components usually possess basic
EMC hardness but often they are integrated in metallic hous-
ings and interconnected with other components. Therefore,
the resulting configuration may differ significantly from the
EMC test configuration of the single electronic component.
Resonance effects of the housing, cable coupling in cable
harnesses or nonlinear effects (e.g. demodulation) may ef-
fect electromagnetic compatibility issues and therefore the
reliable operation of the electronic system.

Shielded rooms are designed to provide the electronic
devices as a whole a sufficient electromagnetic protection.
Since the shielding factor decreases for non-ideal screens

with increasing frequencies, an intentional electromagnetic
disturbance of a globally protected system will be expected
more at the higher frequencies. If nonlinearities are ex-
cited by higher frequencies, then they also generate lower-
frequency components in the noise spectrum by demodula-
tion effects which may cause a number of problems for the
electronic system, like, e.g., distortion of useful electronic
signals, shift of operating points of transistor cascades of
electronic circuits, or generation of dynamic instabilities in
complex electronic systems.

Every electromagnetic field excitation of a shielded room,
like a rectangular resonator, may generate resonance fre-
quencies which are closely adjacent, in particular in the high
frequency spectrum. Therefore, two-tone signals can be pro-
duced (Krauthäuser et al., 2002) that lead by field to cable
coupling to demodulation effects in the current spectra in
non-linear terminations. Other mechanisms which may also
cause a two-tone high-frequency field inside the resonator is
an exterior field excitation which enters the resonator through
an aperture or is generated by an interior small antenna inside
the resonator (Rambousky et al., 2013).

In this work the influence of nonlinear loads on cables
(transmission lines) concerning transmitted current spectra
is investigated. Transmission lines with nonlinear loads over
PEC ground in free space show the expected demodulation
and intermodulation effects. In resonators additionally there
is a strong coupling of the transmission line with the reso-
nance structure of the resonator and therefore the resulting
spectra are much more comprehensive. In particular the re-
sulting electromagnetic fields in the resonator increase sig-
nificantly when the excitation frequency coincide with the
resonance frequencies of the resonator.
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Figure 1. Geometry of the conductor above conducting ground.

Consider a classical transmission line which is
fed/terminated at both ends by two active/passive sources
u0(t) andur(t), respectively. If one further assumes that the
two corresponding left- and right-hand Green’s functions
gl(t) andgr(t) in time-domain are known then the current
iL(t) in time-domain at the end of the transmission line at
z = L can be expressed as a sum of convolution integrals of
these Green’s functions and the two (voltage) sources:

iL(t) =

t∫
−∞

gl (L, t − τ)u0(τ )dτ

+

t∫
−∞

gr (L, t − τ)ur(τ )dτ (1)

Thus, with the knowledge of these two Green’s functions one
can calculate the currentiL(t), for linear as well as for non-
linear terminations of the transmission line. In this paper, the
emphasis is laid on estimating these Green’s functions.

2 Nonlinearly loaded transmission lines in free space
above conducting ground

Consider first a linearly terminated transmission line above
a perfectly conducting ground in the Agrawal form in free
space (for the geometry see Fig.1). The solution for this
problem is known (Liu and Tesche, 1976) for the current at
the end of the line (z = L) and can be represented as

I (L,ω) = U0(ω)Yl(L,ω) + Ur(ω)Yr(L,ω). (2)

HereU0(ω) andUr(ω) are the left- and right-hand sources
of the conductor, respectively. The functionsYl(L,ω) and
Yr(L,ω) are the corresponding complex admittance func-
tions at the end (z = L) of the line. They are given in fre-
quency domain by the expressions

Yl(L,ω) =
2

ZC

∞∑
m=0

exp(− (2m + 1)kL) (3)

and

Yr(L,ω) =
1

ZC

[
1+ 2

∞∑
m=1

exp(−2mkL)

]
, (4)

respectively. The quantityZC denotes the characteristic
impedance of the line,k = ω/c0 is the wave number and
 ≡

√
−1 the imaginary unit.

An inverse Fourier transformation of Eqs. (3) and (4) into
time-domain yields

yl(L, t) =
2

ZC

∞∑
m=0

δ

(
t − (2m + 1)

L

c0

)
(5)

and

yr(L, t) =
1

ZC

[
δ(t) + 2

∞∑
m=1

δ

(
t − 2m

L

c0

)]
. (6)

The dirac delta function is denoted byδ(t) andc0 is the speed
of light in vacuum. The convolution integral of Eq. (1) can
simply be calculated and results in:

i(L, t) =
2

ZC

∞∑
m=0

u0

(
t − (2m + 1)

L

c0

)

+
1

ZC

[
ur(t) + 2

∞∑
m=1

ur

(
t − 2m

L

c0

)]
(7)

This is the general solution in time-domain. Here the restric-
tion to linear loads can be abandoned, and Eq. (7) now is
valid for both, linear as well as nonlinear terminations. As-
suming for the source at the right side of the conductor the
relation

−
ur(t)

ZC

=
i(L, t)Z (i(L, t))

ZC

=: ĩ(t) (8)

one obtains from Eq. (7)

i(L, t) + ĩ(t) =
2

ZC

∞∑
m=0

u0

(
t − (2m + 1)

L

c0

)

−2
∞∑

m=1

ĩ

(
t − 2m

L

c0

)
. (9)

If the voltage-current characteristic of the nonlinear load and
the driving sourceu0(t) for t ≥ 0 are known, Eq. (9) can be
solved, in most cases numerically. Noting that the right-hand
side of Eq. (9) depends only on past values oft , this equation
may be solved for the unknown currenti(L, t) for later times
using a standard root-finding algorithm.

3 Transmission line with nonlinear load inside a rectan-
gular cavity

In this case the transmission line is positioned symmetri-
cally inside the cavity (see Fig.2). Before the actual problem
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Figure 2. Schematic representation of the TL inside the cavity.

is treated, some important preliminary remarks are made.
First, concerning the notations and results of a TL inside a
rectangular resonator, reference is made to the publications
(Tkachenko et al., 2011, 2013). The second observation re-
lates to a numerical problem. Since a lossless transmission
line is considered inside a cavity with a very high Q-value
it is expected that the response of a once excited transmis-
sion line will exceed many transit times in duration. If, in
addition, very high frequencies are required, one may end
up not only in a computer-storage problem, but also needs
very long computation time. Therefore, it would be desir-
able to reduce the duration of the Green’s functions (here
represented by the admittance functions) to only a few tran-
sit times. This, however, is possible to achieve, if the TL
is matched. Following this idea, it is aimed to have a well
matched line when computing the Green’s functions (admit-
tance functions). This goal is achieved in the following novel
analysis.

For the moment the calculations take place in the fre-
quency domain. During this time the terminations of the line
are assumed to be linear. The explicit dependency of the fre-
quencies, however, is suppressed in the quantities. In the rect-
angular resonator the admittance functions are given by:

Yl(z) :=
k

η0L

∞∑
n3=0

εn3,0cos
(n3πz

L

)
(
k2
νz − k2

)
S

(10)

and

Yr(z) :=
k

η0L

∞∑
n3=0

εn3,0(−1)n3 cos
(n3πz

L

)
(
k2
νz − k2

)
S

(11)

Then the current along the line is expressed through

I (z) = U0Yl(z) + UrYr(z) = U0Yl(z) − ZI (L)Yr(z) (12)

Figure 3. Matched TL inside the resonator with left-hand source.

and thus at the end of the line (z = L) one has

I (L) =
U0Yl(L)

1+ ZYr(L)
(13)

The impedanceZ is now decomposed into two partial
impedances, of which one

(
Z(m)

)
corresponds to the char-

acteristic impedance (Djordjevic et al., 1986):

Z = Z(m)
+ Z(nl) with Z(m)

≡ ZC (14)

Thereafter, an auxiliary circuit withZ(m) as terminating
impedance as shown in Fig.3 is examined. For this circuit
one has:

I (z) = U0Yl(z) − Z(m)I (L)Yr(z) (15)

or solved for the current at the end of the line

I (L) =
U0Yl(L)

1+ Z(m)Yr(L)
(16)

Inserting Eq. (16) into Eq. (15) leads to

I (z) = U0Ỹ

(
Z(m)

)
l (z) (17)

with the new admittance function

Ỹ

(
Z(m)

)
l (z) := Yl(z) −

Z(m)Yl(L)Yr(z)

1+ Z(m)Yr(L)
(18)

In the next step, consider the same line from which the
sourceU0(ω) was removed. A source (active or passive) was
instead inserted on the right side. The impedance at the end
of the line is againZ(m) (see Fig.4). Then, the following
applies:

I (z) = UrYr(z) − Z(m)I (L)Yr(z) (19)

or at the pointz = L

I (L) =
UrYr(L)

1+ Z(m)Yr(L)
(20)

Substituting Eq. (20) into Eq. (19) yields the current for the
right-hand source

I (z) = Ur Ỹ

(
Z(m)

)
r (z) (21)
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Figure 4. Matched TL inside the resonator with right-hand source.

with

Ỹ

(
Z(m)

)
r (z) := Yr(z) −

Z(m)Yr(L)Yr(z)

1+ Z(m)Yr(L)
(22)

With these new admittance functions (18) and (22) the
above calculation is repeated for the following configuration
depicted in Fig.5. Now one obtains:

I (z) = U0Ỹ

(
Z(m)

)
l (z) − Z(nl)I (L)Ỹ

(
Z(m)

)
r (z) (23)

In Eq. (23) Ur is assumed to be a passive source. Thus, the
current at the end of the line results in:

I (L) =
U0Ỹ

(
Z(m)

)
l (L)

1+ Z(nl)Ỹ
(Z(m))
r (L)

(24)

Using the renormalized admittance functions (18) and (22)
in Eq. (24) it follows the expected result

I (L) =
U0Yl(L)

1+
(
Z(m) + Z(nl)

)
Yr(L)

(25)

But this is exactly the Eq. (13), taking into account the de-
composition (14). This demonstrates that a given impedance
can be decomposed into two parts whereZ(m) can be suitably
selected. In general, this will be the characteristic impedance
of the line.

Now, by an inverse Fourier transform (23) is transformed
into time-domain (z = L).

iL(t) = u0(t) ∗ ỹ

(
Z(m)

)
l (L, t) + ur(t) ∗ ỹ

(
Z(m)

)
r (L, t) (26)

The convolution integrals in Eq. (26) are indicated by ‘∗’. In
explicit form this reads:

iL(t) =

t∫
−∞

ỹ

(
Z(m)

)
l (L, t − τ)u0(τ )dτ

+

t∫
−∞

ỹ

(
Z(m)

)
r (L, t − τ)ur(τ )dτ (27)

Figure 5. TL is fed byU0 and terminated byZ(nl); current is esti-
mated with the aid of renormalized admittance functions.

Here one clearly recognizes that theỹ-functions are the
time-domain Green’s functions, i.e., the responses of the
terminated line in the resonator due to impulse excita-
tions. Remember, thesẽy-functions have been determined
in frequency-domain for the linear part of the TL only (see
Figs. 3 and4). Equation (27) now is valid in time-domain.
Therefore, also nonlinear loads can be chosen and there is no
need to recompute frequency-domain data again if the exci-
tation wave form or the (nonlinear) loads are changed.

Since causal functions are assumed (u0(t) ≡ 0 for t ≤ 0),
and in the time domain the constraint to linear termination
impedances now is abandoned, one arrives at thetemporary
result:

iL(t) =

t∫
0

ỹ

(
Z(m)

)
l (L, t − τ)u0(τ )dτ

−

t∫
0

ỹ

(
Z(m)

)
r (L, t − τ)Z(nl) (iL(τ )) iL(τ )dτ (28)

In general, this equation has to be solved numerically. For
this purpose it is advisable to rewrite Eq. (28) a little bit to

iL(t) = i0L(t)

−

t−1∫
0

ỹ

(
Z(m)

)
r (L, t − τ)Z(nl) (iL(τ )) iL(τ )dτ

−

t∫
t−1

ỹ

(
Z(m)

)
r (L, t − τ)Z(nl) (iL(τ )) iL(τ )dτ (29)

with the abbreviation

i0L(t) :=

t∫
0

ỹ

(
Z(m)

)
l (L, t − τ)u0(τ )dτ. (30)

After a change of variables in the second integral of
Eq. (29) one arrives at a useful starting formula for numerical
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integration.

iL(t) +

1∫
0

ỹ

(
Z(m)

)
r (L,τ)Z(nl) (iL(t − τ)) iL(t − τ)dτ

= i0L(t) −

t−1∫
0

ỹ

(
Z(m)

)
r (L, t − τ)Z(nl) (iL(τ )) iL(τ )dτ (31)

The integral on the left-hand side of Eq. (31) contains

ỹ

(
Z(m)

)
r (L,τ) – the right-hand admittance function – which

is considered only over a short time-span 0≤ τ ≤ 1. During
this short time1, the line still does not interact with the res-
onator. It behaves like a line in free space (see Eq.6). There-

fore, in this small period of time aroundt = 0, ỹ
(
Z(m)

)
r (L,τ)

is represented as aδ-function, or more precisely:

ỹ

(
Z(m)

)
r (L,τ) =

1

2ZC

δ(τ ) for − 1 ≤ τ ≤ 1 (32)

The δ-function here can be represented as a Gaussian-
function:

δ(τ ) ≈
1

√
πτ0

exp

(
−

τ2

τ2
0

)
(33)

using τ0 = 0.1ns,1 = 4τ0,1t =
τ0

40
Now one can perform the integration on the left-hand side of
Eq. (31) and obtains

iL(t)

1+
1

2ZC

Z(nl) (iL(t))

∫ 1

−1
exp

(
−

τ2

τ2
0

)
dτ

√
πτ0


= i0L(t) −

t−1∫
0

ỹ

(
Z(m)

)
r (L, t − τ)Z(nl) (iL(τ )) iL(τ )dτ (34)

For the numerical integration the integral in Eq. (34) can be
rewritten as a sum:

iL(tm)

1+
1

2ZC

Z(nl) (iL(tm))

∫ 1

−1
exp

(
−

τ2

τ2
0

)
dτ

√
πτ0


= i0L(tm)

−

m−1∑
k=0

ỹ

(
Z(m)

)
r (L, tm − k1t)Z(nl) (iL(k1t)) iL(k1t)1t (35)

Here the sum is calculated at temporal sample pointstm =

m1t , wherem = 0,1, ...,mmax. Similar to the situation of

Figure 6. Parameters of the rectangular resonator:a = 30 cm,b =

53 cm,L = 79 cm; parameters of the TL:x0 = a/2, y0 = b/2, r0 =

1 mm.

Eq. (9), also the right-hand side of Eq. (35) contains expres-
sions of known functions or those that have already been cal-
culated from previous times. Thus, Eq. (35) can be solved for
each discrete timetm using a root-finding algorithm.

4 Generation and discussion of numerical results

In this section, a Schottky diode is chosen as a nonlinear load
and selected results are presented and discussed. The dimen-
sions of the used rectangular resonator and the position of
the transmission line in the resonator parallel to thez axis is
shown in Fig.6. In the resonator the TL has a characteris-
tic impedance ofZC = 333�. For the following calculations
Z(m)

= ZC was used. The step size for numerical integration
was set to1t = τ0/40. A diode with the following character-
istics

I (U) = IS (exp(U/Ut )) or U(I) = Ut ln(1+I/IS) (36)

was regarded and the typical valuesUt = 25 mV andIS =

1µA were used. A bi-linear approximation of the diode char-
acteristic was choosen and is shown in Fig.7. The bi-linear
approximation of the diode characteristic was generated with
the following formula and parameters:

U(I) = Z(I) · I (37)

Z(I) =

{
Z1 , I > 0

Z2 , I < 0
(38)

with Z1 = 2k�,Z2 = 0.1M�

In Figs.8 and9 the admittance functions̃y(ZC )
l (L, t) and

ỹ
(ZC )
r (L, t) are shown in different time scales, respectively.
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Figure 7. Characteristic of a generic diode and bi-linear approxi-
mation.

Figure 8. Left admittance functioñy(ZC )
l

(L, t).

One can recognize the first three peaks resulting from the ex-
citing δ-pulse along the TL. For̃y(ZC )

l (L, t) the peaks are the

first multiples ofL/c0. As expected, for̃y(ZC )
r (L, t) the first

peak is att = 0 and afterwards at time steps of 2L/c0. The
excitation of the TL gets phased out for increasing time steps
as can be seen in Fig.9. Because the left- and right-hand
Green’s functions (admittance functions) are known, the cur-
rent at the end of the TL can be calculated provided that the
excitationu0(t) is known. The followingtwo toneexcitation
is used:

u0(t) = U0
[
sin(2πf1t) − sin(2πf2t)

]
h(t)h(t0 − t) (39)

In Eq. (39) the Heaviside function is depicted byh(t) and
the following parameters are used:U0 = 1 V, f1 = 300 MHz,
f2 = 310 MHz− 400 MHz,t0 = 200 ns.

Figure10 shows the current at the end of the TL for the
linear case with matched load. The frequency spectrum of
the current is depicted in Fig.11 where the two peaks atf1
andf2 can be clearly seen.

Figure 9. Right admittance functioñy(ZC )
r (L, t).

Figure 10. Current at the end of the TL in time domain (TL with
linear and matched load in the rectangular resonator).

In Fig.12the current at the end of the TL in time domain is
shown for the nonlinear load defined in Eq. (38). The second
frequencyf2 of the two tone excitation was increased from
310 MHz to 400 MHz in steps of 10 MHz. The expected re-
sult can be seen in the frequency domain representation of
the current at the end of the TL in the resonator. Figure13
shows the result for the lowest frequencyf2 = 310 MHz and
therefore for the lowest frequency difference1f = f2−f1 =

10 MHz. Figures14 and15 show the currents in frequency
domain forf2 = 350 MHz andf2 = 400 MHz, respectively.
The expected results are clearly observable: At the differ-

ence of the two tone frequencies, peaks occur which are not
present in the linear case. Additionally, in contrast to the lin-
ear load, now there are peaks at multiples of the two basic fre-
quenciesf1 andf2. Around these multiples there are smaller
peaks representing multiples of1f = f2 − f1. A moderate
increase in peak heights with increasing1f is observable.
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Figure 11. Current at the end of the TL in frequency domain (TL
with linear and matched load in the rectangular resonator).

Figure 12. Current at the end of the TL in time domain (TL with
nonlinear load in the rectangular resonator).

However, it must be stated that the known phenomena (by
measurement) of significant increase in current amplitude for
excitation frequencies corresponding to one or more eigen-
frequencies of the resonator are not seen in the presented
simulations. Also the used1f values do not correspond to
the eigenfrequencies of the resonator. The reasons are: (a)
The used resonator is quite flat and still behaves a bit like a
waveguide. Additionally the TL has a high symmetry in the
resonator. (b) Surely, the main reason is that the exciting fre-
quencies were chosen too low. This had to be done because of
performance limitations of the used standard computer. Go-
ing to higher excitation frequencies, the time steps have to
be made smaller in time domain and theδ-function has to be
defined narrower. In almost the same manner, the frequency
steps have to be made smoother in frequency domain calcu-
lations. A loophole would be the use of high-performance
computers or a modified solution using methods of perturba-
tion theory.

Figure 13. Current at the end of the TL in frequency domain (TL
with nonlinear load in the rectangular resonator,f2 = 310 MHz,
1f = 10 MHz).

Figure 14. Current at the end of the TL in frequency domain (TL
with nonlinear load in the rectangular resonator,f2 = 350 MHz,
1f = 50 MHz).

So far there is no comparison of the presented analyti-
cal results with those obtained by other methods. However,
for the simple example of linearly loaded transmission lines
in free space a lot of comparisons with other methods (e.g.
Method of Tesche, Reflexion Method) have been done and
an excellent agreement was observed (Tesche et al., 1997).

5 Conclusion

In this work nonlinearly loaded lossless transmission lines
inside a rectangular resonator were studied. Using the left-
and right-hand Green’s functions of the problem in time
domain an analytic solution could be presented. The Green’s
functions were developed for linear matched loads ensuring
short duration of a pulse-shaped excitation in time domain
and therefore acceptable calculation time. An example was
presented using a simplified diode as nonlinear load and

www.adv-radio-sci.net/12/135/2014/ Adv. Radio Sci., 12, 135–142, 2014
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Figure 15. Current at the end of the TL in frequency domain (TL
with nonlinear load in the rectangular resonator,f2 = 400 MHz,
1f = 100 MHz).

two tone excitations. The demodulation and intermodulation
effects could be clearly demonstrated. At multiples of the
excitation frequencies and their sums and differences distinct
resonances appeared. It is worth mentioning that the method
presented above can be extended to non-uniform multicon-
ductor transmission lines with weak losses. This extension
may be performed on the basis of the two publications
(Rambousky et al., 2014) and (Tkachenko et al., 2014) and
references given therein.

Edited by: F. Sabath
Reviewed by: H. Garbe and two anonymous referees
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