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Abstract. The characterization of antenna radiation patterns
by transformed near-field measurements requires accurate
amplitude and phase data. This represents a problem since
expensive measurement equipment is required, especially
at millimeter and submillimeter wavelengths (Isernia et al.,
1996). Amplitude-only antenna field measurements are the-
oretically sufficient for the unique determination of antenna
far-fields. Therefore, phaseless techniques are of special in-
terest. However, the required field transformations are ex-
tremely challenging, since they are nonlinear and strongly
ill-posed.

In this work, the amplitude-only or phaseless near-field
far-field transformation problem is formulated as a nonlinear
optimization problem. The linear radiation operator within
the nonlinear formulation is evaluated using the fast irregular
antenna field transformation algorithm (FIAFTA). A hybrid
solution procedure is described which combines a genetic
algorithm with an iterative conjugate gradient (CG) search
method. Numerical results prove the efficiency and flexibility
of the formulation and it is shown that the algorithm remains
stable when the noise level in the measurements is moderate.
Nevertheless, regularization techniques might be beneficial
to further improve the robustness of the algorithm.

1 Introduction

Near-field far-field transformations of antenna measure-
ments with amplitude and phase data are well established
(Yaghjian, 1986). The well-known methods for planar, cylin-
drical and spherical measurements are widely employed in
practical applications. These canonical transformation algo-
rithms correspond to solving a linear equation system effi-
ciently by applying the fast Fourier transform (FFT).

Many efforts have been spent to implement phaseless tech-
niques, where only amplitude data is available. Formulating
the problem in a general way leads to a nonlinear optimiza-
tion problem in contrast to the linear one in case of available
phase information. Initially, the cost functions were directly
based on the amplitude errors in each measurement point.
However, using the power mismatch by squaring the ampli-
tudes results in a more favorable nonlinearity (Pierri et al.,
1999).

Iterative algorithms with two different techniques have
emerged to solve the optimization problem. The first scheme
is based on two separate measurement planes, where the
fields are alternately propagated from one measurement
plane to another one while certain corrections are applied un-
til the fields become stationary. This is referred to as plane-
to-plane algorithm (Yaccarino and Rahmat-Samii, 1999).
The second scheme is based on an iterative optimization ap-
proach such as the Gauss-Newton or the conjugate gradi-
ent (CG) method (Habashy and Abubakar, 2004; Capozzoli
et al., 2009).

Since the solution space of phaseless transformation prob-
lems is often populated with local optima (Isernia et al.,
1996), the main challenge is to obtain the globally optimal
solution. Much research has been performed on this topic
and under certain conditions it is possible to guarantee con-
vergence (Pierri et al., 1999). Global optimization strate-
gies such as genetic algorithms have been applied to find
the correct solution (Regue et al., 2001). Almost all results
have been reported for the fast canonical transformation al-
gorithms which usually limit the applicability to measure-
ments on regular grids.

In this paper, the fast irregular antenna field transforma-
tion algorithm (FIAFTA) (Qureshi et al., 2013) is utilized
and adapted for the processing of phaseless data. FIAFTA is
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based on multi-level fast multipole method (MLFMM) prin-
ciples (Chew et al., 2001). It supports arbitrary measurement
positions and orientations with full consideration of arbitrary
probe characteristics. Since the antenna under test (AUT) can
be decomposed using an octree structure, arbitrary informa-
tion about the shape of the AUT can be included in the trans-
formation as a priori knowledge (Schmidt and Eibert, 2012).
Furthermore, it is possible to compute equivalent currents on
a surface enclosing the AUT (Eibert et al., 2010). Another
advantage is the inherent suppression of truncation errors
(Schmidt and Eibert, 2010). Echo suppression techniques are
also available to improve the performance in non-anechoic
environments (Yinusa and Eibert, 2013). The accuracy typ-
ically increases with the number of solver iterations, but in
case of measurement uncertainties or errors the opposite can
happen. Therefore, aborting the iterative solver after a few
iterations can improve the results due to the regularization
properties of the iterative procedure (Calvetti et al., 2002). In
summary, FIAFTA is more flexible than other methods avail-
able at present while its computational efficiency remains
high. The topic of this paper is to utilize these advantages
for improved transformations of phaseless near-field mea-
surement data by using a CG method in combination with
a genetic algorithm.

Section2 briefly describes the principles of the classical
FIAFTA. Section3 introduces the phaseless inverse problem
on top of this by formulating a nonlinear optimization prob-
lem together with a suitable solution procedure. Numerical
results are given in Sect.4. Finally, conclusions are drawn in
Sect.5.

2 Principles of the Fast Irregular Antenna Field Trans-
formation Algorithm (FIAFTA)

As mentioned in the introduction, FIAFTA can be applied to
all kinds of amplitude and phase data. The general method is
depicted in Fig.1. The AUT is represented withN equivalent
sources and then an inverse problem is formulated using the
measurement data. Mathematically speaking this leads to the
linear equation system

Ax = b, (1)

where b ∈ CM containsM complex-valued measurements
with phase and amplitude information,x ∈ CN is the vector
of coefficients which represents the equivalent sources and
the matrixA ∈ CM×N defines the linear relationship between
the unknowns and the right hand side. The unknownsx can
originate from an equivalent currents representation, a plane
wave expansion or a spherical harmonics expansion.

The linear equation system in Eq. (1) is solved by apply-
ing an iterative solver such as GMRES or CG to the normal
equation

AHAx = AHb. (2)

This yields the minimum least squares solution
min‖Ax − b‖

2
2. Typically, the residual attains very low

values after a few solver iterations and the solution time
is dominated by the matrix-vector products withA and
its adjoint AH. For this reason, it is important to evaluate
these products in a fast manner by employing the MLFMM
methodology. Also, for the phaseless transformation ap-
proach in the next section, it is assumed that the matrixA
can be only evaluated through the matrix-vector products
and the entries of the matrixA cannot be accessed directly.

3 Application of FIAFTA to phaseless near-field data

3.1 Problem formulation

In this section, the phaseless transformation problem will be
formulated as a nonlinear optimization problem. Squaring
the equation system in Eq. (1) on both sides yields

Ax ◦ (Ax)∗ = c, (3)

where∗ denotes the complex conjugate,◦ is the element-wise
product between two vectors also referred to as Hadamard
product andc = b ◦ b∗ is the vector containing the squared
measurement amplitudes. The nonlinear equation system in
Eq. (3) can be converted into the nonlinear optimization
problem

min
x

∥∥Ax ◦ (Ax)∗ − c
∥∥2

2 . (4)

The measurement data must contain enough information, so
that only a single solution will minimize the cost function. In
contrast to the linear problem discussed before, the sampling
density must be increased at least by a factor of 2 in every
spatial dimension to compensate for the missing phase in-
formation (Capozzoli et al., 2009). The final solution will be
scaled by an arbitrary constant phase factor in comparison to
the solution in Eq. (2), because the phaseless measurements
do not provide information about the absolute value of the
phase.

3.2 Solving the nonlinear optimization problem

To solve the nonlinear optimization problem defined in the
previous section, a combined solution approach is presented.
Nonlinear optimization problems are usually difficult to
solve, because they can have many local extrema. Most non-
linear solvers can be classified as one of the two following
approaches. On the one hand, iterative solvers are capable of
approaching a minimum with great accuracy, but it is very
unlikely that the result will correspond to the desired global
minimum. On the other hand, global optimization strategies
such as genetic algorithms, grid search and simulated anneal-
ing are likely to approach the globally optimal solution at
some point, but the final result may still not be very accu-
rate. Therefore, it is promising to combine both optimization
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Figure 1. An inverse problem is defined by replacing the AUT by equivalent currents.

approaches. The iterative optimization approach will be ex-
plained first. After that, a combined scheme based on a ge-
netic algorithm will be introduced.

Iterative solvers for nonlinear optimization problems are
presented inHabashy and Abubakar(2004). First, it is nec-
essary to approximate the function locally using a Taylor-
series expansion. Expanding a real cost function with respect
to complex arguments requires either a formulation with sep-
arated real and imaginary parts or with complex variables
and their complex conjugates (Sorber et al., 2012). The lat-
ter scheme is employed, because it is computationally more
efficient.

By combining the independent variables and their complex
conjugates into the vector

z =

[
x

x∗

]
, (5)

the notation can be written more concisely. The cost function
in Eq. (4) is referred to by the symbols

C (z) =
1

2
‖e (z)‖2

2 , e (z) = Ax ◦ (Ax)∗ − c, (6)

wheree is the vector of squared measurement errors. Ex-
panding this expression by a Taylor series expansion of sec-
ond order yields

C(z) ≈ C(zk) + g(zk)
H1z +

1

2
1zHG(zk)1z, (7)

where1z = z− zk is the offset from the expansion pointzk,

g(zk) =
∂C (z)

∂z

∣∣∣∣
zk

= J(zk)
He (zk) (8)

is referred to as the gradient vector,J(zk) =
∂e(z)
∂z

∣∣∣
zk

is the

Jacobian andG(zk) =
∂2C(z)

∂z∂zH

∣∣∣
zk

is the Hessian. Straightfor-

ward matrix algebra yields

J(zk) =
[
(diag(Axk))

∗A diag(Axk)A∗
]

(9)

for the Jacobian and

G(zk) =
1

2
J(zk)

H J(zk)+

2

[
AH diag(e (zk))A 0

0 AT diag(e (zk))A∗

]
(10)

for the Hessian (Habashy and Abubakar, 2004), where
diag( ) with a vector as argument represents a diagonal ma-
trix. Further simplification is possible by inserting Eqs. (9)
and (10) into Eq. (7). Some minor calculations lead to the
more computationally efficient terms

g(zk)
H1z = 2e (zk)

T Re
(
(diag(Axk))

∗A1x
)

(11)

and

1zHG(zk)1z = 4
∥∥Re

(
(diag(Axk))

∗A1x
)∥∥2

2+

2 1xHAH diag(e (zk))A1x, (12)

where1x = x −xk is the offset without the complex conju-
gate.

In the following, the nonlinear CG approach with Polak-
Ribière search directions is employed. It is an iterative gra-
dient search method which requires an initial solution can-
didatez0. The solution candidate is then iteratively refined
by

zk+1 = zk + γksk, (13)

wherezk is the previous solution candidate in thek-th itera-
tion, sk is the search direction andγk is the step size scaling
factor. The search directions are computed bys0 = −g (z0)

and

sk = −g (zk) +
g (zk)

H (g (zk) − g (zk−1))

‖g (zk−1)‖
2

sk−1, (14)

where this definition corresponds to the Polak-Ribière
scheme. The expression

g (zk) =
(
AHdiag(Axk)

)∗
e (zk) (15)
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each individual by conjugate 
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Figure 2. Flow chart of the combined optimization procedure based on a genetic algorithm and a CG method.

(a) Random configuration of Hertzian dipoles.

(b) Radiation pattern in thek-space domain.

Figure 3.Source configuration used as synthetic AUT for the phase-
less near-field far-field transformation.

refers to the gradient vector in iterationk and

γk =
‖sk‖

2
2

sH
k G(zk)sk

(16)

determines the scaling of the search direction in Eq. (13).
An iterative optimization approach converges rapidly to an

extremal value of the cost function. However, the solution is
often not desired since it is not equal to the globally opti-

mal solution. If an initial solution candidate can be provided
which lies in the attraction region of the desired solution, the
iterative algorithm computes the correct result. For exam-
ple, consider a scenario where the measurement equipment
provides accurate amplitude information but the phase infor-
mation is erroneous due to small phase uncertainties. In this
case, an approximate solution can be computed by the linear
transformation using the inaccurate phase information and
subsequently could be used to initialize the nonlinear trans-
formation. The correct result will be obtained if the approx-
imate solution belongs to the attraction region of the desired
result which is the case if the phase errors are small enough.
In order to achieve convergence to the globally optimal solu-
tion, a global optimization scheme is required.

The iterative scheme is now combined with a genetic algo-
rithm. This type of method is inspired from the natural evolu-
tion and will be described briefly in the following. Please also
consider Fig.2 for a visualization of the whole optimization
scheme. The algorithm starts with an arbitrary set of solu-
tion candidates, for example, random solutions. This set is
referred to as the population. In the first step, each individual
in the population is stimulated by improving it with the iter-
ative optimizer introduced earlier until a certain termination
criteria is reached. After this step, all individuals are close
to a local optimum or cannot be improved further for some
other reason. Then, a selection is performed which identifies
the solution with the best fitness. The fitness of an individ-
ual is typically obtained by evaluating the cost function. Af-
ter the selection process, genetic operators such as mutation
and recombination are applied. This produces a new genera-
tion of individuals which replaces the old one. So the process
starts over with the new generation. The overall fitness of the
population will gradually improve during the optimization
procedure. After some time, the best individual will hope-
fully be very close to the globally optimal solution. For this
to happen, it is sufficient that at some point an individual is
created which lies in the attraction region of the globally op-
timal solution with respect to the given iterative solver. For
more information on genetic algorithms, please consider the
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Fig. 2: Flow chart of the combined optimization procedure based on a genetic algorithm and a CG method.
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Fig. 5: Phaseless transformation result after various iteration

numbers. Reference is given in Fig. 3b.

does not correspond to the globally optimal solution any-350

more. This is expected, where it should be kept in mind that

20dB noise level is of course a rather bad value. Neverthe-

Figure 4. Comparison of reference far-field and transformed near-
field data in various far-field cuts to check accuracy of classical
FIAFTA including phase information.

extensive literature which is available on this topic (Regue
et al., 2001).

4 Numerical results

4.1 Random configuration of Hertzian dipoles

In this section, the combined optimization procedure using
a genetic algorithm and the CG method will be applied to
a synthetic example. A small scenario with random mea-
surements is considered. The width of the AUT is set to
λ/3 which is 1 cm at 10 GHz. The random dipole distribu-
tion depicted in Fig.3a is used to synthesize the AUT. Fig-
ure3b illustrates the resulting far-field pattern in thek-space
domain. FIAFTA uses 180 spherically sampled plane wave
coefficients to represent the unknown radiation characteris-
tics in the transformation. To illustrate the capabilities of
FIAFTA and its phaseless extension, 2014 measurements are
simulated with a Hertzian dipole probe, where the individ-
ual measurements are randomly distributed and oriented be-
tween the two spheres with radius 6.5 cm and 13.5 cm. First,
the FIAFTA algorithm is applied to solve the linear problem
by exploiting the phase information of the measurements.
The transformation result is compared to the reference pat-
tern in Fig.4 for the three different cutsθ = 90◦, φ = 0◦ and
φ = 90◦ and for both polarizations. It can be observed that
the linear transformation result precisely matches the refer-
ence solution.

In the second approach, the phase of the measurements is
discarded. The genetic algorithm is initialized with 6 random
solutions. These random solutions are then optimized with
the CG method. The solution with the best fitness is depicted
in Fig.5a. After this step, a selection process is applied where
only the three best solutions are kept and seven new individ-
uals are created. Now the CG method is applied to all indi-
viduals and the process starts from the beginning. The best
individual after a few selected iterations is shown in Fig.5.
In iteration 15, no visual difference to the reference pattern

(a) Iteration 1 (b) Iteration 2 (c) Iteration 4

(d) Iteration 9 (e) Iteration 13 (f) Iteration 15

Figure 5. Phaseless transformation result after various iteration
numbers. Reference is given in Fig.3b.

(a) Convergence of genetic (b) Impact of noise level on
algorithm corresponding to the convergence of the phaseless
the plots in Fig.5. transformation algorithm.

Figure 6.Development of the fitness of the population in the genetic
algorithm over the complete runtime.

in Fig.3b is notable. The gradual improvement of the best in-
dividual over all iterations is visualized in Fig.6a. The blue
solid line represents the individual with the best fitness while
the dashed line corresponds to the mean fitness of the respec-
tive generation. In this example, the described optimization
procedure takes about one minute.

In order to test the robustness of the algorithm, white
Gaussian noise with different signal-to-noise ratio (SNR)
levels was added to the measurement data. In a first exper-
iment, a solution was obtained with the GMRES solver from
both the magnitude and phase of the noisy measurements.
The solution shows visual distortions using noisy data with
an SNR of 20 dB but starts to visually match the reference
pattern from about 30 dB. In this case, the good regulariza-
tion properties of the GMRES algorithm help to improve the
robustness in the linear transformation (Calvetti et al., 2002).

The phaseless transformation was applied to noisy data
with an SNR of 20 dB, 40 dB, 60 dB and 80 dB. The devel-
opment of the best fitness over the runtime of the genetic
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(a) 60 dB SNR (b) 40 dB SNR (c) 20 dB SNR

Figure 7. Impact of noise level on the final solution of the phaseless
transformation algorithm.

algorithm is depicted in Fig.6 for each data set. For 60 dB
and 80 dB SNR, the algorithm can find the correct solution.
However, the noise increases the number of iterations re-
quired to find the global optimum and the final value of the
cost function increases, too. The final solution for 60 dB SNR
is shown in Fig.7a and no error is visible. When the level
of noise is increased to 40 dB, the solution starts to deviate
from the reference pattern as depicted in Fig.7b. Figure6
shows that also a larger number of iterations is required. Fur-
ther increasing the noise level to 20 dB produces the pattern
in Fig. 7c. In contrast to the other results, this solution is
obtained very rapidly and the the cost function has an ex-
tremely low value. This can only be explained by the fact
that the cost function promotes undesirable solutions. Noisy
measurement data influences the cost function in a way that
the desired solution does not correspond to the globally op-
timal solution anymore. This is expected, where it should be
kept in mind that 20 dB noise level is of course a rather bad
value. Nevertheless, the application of regularization princi-
ples in the cost function might be desirable in the future in or-
der to further improve the robustness. For example, it would
be possible to penalize the amplitude of the solution vector
or an error weighting matrix in the cost function might im-
prove the situation. Moreover, it is always recommended to
include as much information as possible about the AUT into
the formulation.

In summary, it was shown that it is possible to retrieve
an unknown far-field pattern from arbitrarily oriented and
located near-field measurements without additional a priori
knowledge by applying a nonlinear optimization approach
on top of FIAFTA. By further refinement, the methodology
will be applicable to larger problems.

4.2 Robustness analysis involving a single dipole source

The preceding example has revealed that the robustness of
phaseless transformation approaches is an important issue. In
the following, this insight should be underpinned by quanti-
tative conclusions.

Since a quantitative analysis typically requires many sim-
ulation runs, it is reasonable to choose a simple scenario for
this purpose. The selected source configuration and its radia-
tion characteristic is shown in Fig.8. A single dipole situated
at the origin is radiating in free space. Measurement data is

(a) Source surrounded by 1000 randomly located spherical
measurements points.

(b) Radiation pattern in thek-space domain.

Figure 8.Source configuration consisting of anx̂-oriented Hertzian
dipole.

generated by randomly distributing 1000 field observations
over a sphere with the radius 1.6λ.

In order to compare the performance of the phaseless
transformation with the conventional approach incorporat-
ing phase information, several transformation runs have been
performend for different levels of measurement noise while
varying the number of available measurements from 3 to
1000. The noise level ranging from−20 dB to 80 dB SNR
is defined with respect to the mean energy of these measure-
ments.

By using vector spherical harmonics of the first order as
equivalent currents, the transformation problem is well de-
fined. Figure9 summarizes the final results obtained with the
nonlinear (phaseless) and the linear (amplitude and phase)
approach. Each transformation result is assigned to one of
three error levels by rating the visual appearance of the
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Figure 9. Comparison of phaseless transformation approach and
conventional method incorporating phase information with respect
to robustness issues regarding measurement noise and measurement
redundancy.

reconstructed patterns. The categories ‘large’, ‘medium’ and
‘small’ represent the amount of visible distortion in compar-
ison with the reference pattern in Fig.8b. By comparing the
statistics from the linear and nonlinear transformation ap-
proach, the following conclusions are derived: To achieve
comparable accuracy, the phaseless transformation approach
requires five times more measurements, or alternatively, mea-
surements which are 20 dB better with respect to the SNR. Be
aware that these conclusions are not valid for larger scenar-
ios, because the situation is expected to become worse due
to local minimum problems. It will remain a topic of further
research to find out how exactly the robustness is affected by
the electrical size of the problem.

5 Conclusions

Conventional field transformation approaches are not able
to process irregularly sampled measurement data without
phase information. In order to overcome this limitation, a
nonlinear optimization procedure is combined with the fast
irregular antenna field transformation algorithm (FIAFTA).
The resulting formulation is outstandingly efficient and
flexible. However, the nonlinear optimization problem turns
out to be very challenging. Good results were achieved using
a hybrid solution procedure. It combines a genetic algorithm
with an iterative conjugate gradient (CG) search method.
Numerical results showed that the algorithm remains stable
when the noise level is moderate. Nevertheless, regulariza-
tion techniques might be beneficial to further improve the
robustness of the algorithm.
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