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Abstract. The scattering and diffraction of a complex-source
beam (CSB) by an acoustically soft or hard plane angular
sector is treated by a rigorous spherical-multipole analysis
in sphero-conal coordinates. By assigning a complex-valued
radial source coordinate to the corresponding Green’s func-
tion, the CSB is directed exactly towards the corner of the
sector. Since the CSB can be interpreted as a localized plane
wave, its interaction with the corner in the presence of the
semi-infinite structure can be analyzed in detail. In opposite
to the classical case of a non-localized incident plane wave,
the resulting multipole series is strongly convergent and no
summation techniques are necessary to obtain meaningful re-
sults. The numerical results include a convergence analysis,
total near fields as well as scattered far fields and prove the
applicability of this new approach.

1 Introduction

Among the canonical problems in electromagnetic scatter-
ing theory (seeBowman et al., 1987 for a comprehensive
overview) those ones with semi-infinite structures turn out to
be rather complicated to solve. Even though analytic results
for the diffracted (total) fields are given for a large variety
of such geometries (for example in the form of the related
Green’s functions), it can be a considerably pretentious task
to derive the scattered field, in particular if both the source
point and the observation point are far away from the defi-
nite end (e.g., the tip) of the semi-infinite structure. An ex-
ample for the successful treatment of such a problem is the
wedge and its special case, the half plane. The common way
to tackle this problem is to transform the modal (multipole)
expansion of the related Green’s function into a suitable con-
tour integral in the complex plane and to evaluate the integral

asymptotically by means of a steepest-descend or stationary-
phase method. This way, one can separate from the total field
the incident, reflected and transmitted Geometrical-Optics
(GO) terms and obtain a closed-form result for the field
caused by the edge. Since the latter part serves as an exten-
sion of the conventional GO field, this method is referred to
as the Geometrical Theory of Diffraction (GTD, seeKeller,
1959, 1962), while its generalization is the Uniform Theory
of Diffraction (UTD, seeKouyoumjian and Pathak, 1974). In
each case, the edge-related field part is described by the GTD
(UTD) diffraction coefficient.

The attempt to apply similar methods to obtain diffrac-
tion coefficients for the plane angular sector and especially
for the quarter plane was not successful, mainly because of
the more complicated structure of the eigenfunction expan-
sion of the related Green’s function. The interest in such ge-
ometries is -among others- motivated by the fact that they
possess a tip, and the related tip-diffraction coefficient could
be a further element to complete the GTD. Early work on
the diffraction of scalar (acoustic) waves by a plane angu-
lar sector goes back toKraus (1955) and Radlow (1961).
While Radlow attempted to tackle the problem by means of a
Wiener-Hopf type integral equation approach, Kraus started
from a modal expansion of the field in sphero-conal (conical)
coordinates in which the sector is described by a coordinate
surface. Moreover sphero-conal coordinates belong to those
coordinate systems where the Helmholtz equation is fully
separable (Eisenhart, 1934), (Moon and Spencer, 1971). The
corresponding electromagnetic diffraction problem has been
(probably) first treated bySatterwhite(1969). He derived the
eigenfunction expansion of the dyadic Green’s function of
the sector in terms of vector spherical-multipole functions in
sphero-conal coordinates.Jansen(1976) achieved a consid-
erable progress in the theory of Lamé functions which are
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Figure 1. Plane angular sector described byϑ = π andk2
= 0.5.

part of the elementary solutions of the Helmholtz equation
in sphero-conal coordinates. Using these new representations
Blume et al. investigated the diffraction by an elliptic cone
(including the sector) and found expressions for the related
nose-on radar cross sections (RCS) (Blume et al., 1993).

With the eigenfunction expansion it may be relatively easy
to rigorously evaluate the diffracted field if the source or the
observation point (or both) are located not too far away from
the sector’s tip, however the obtained series do not converge
if both are in the far field. In that case special sequence trans-
formations had to been used to come to the related limit-
ing values. Blume et al. applied such techniques to calculate
radar cross sections (RCS) and diffraction coefficients for the
elliptic cone and for the sector (Blume and Klinkenbusch,
1999). However, the convergence properties were rather poor
so that linear (Klinkenbusch, 2007) as well as non-linear
transformation methods had to be employed.

Among the approximate methods,Hansen(1991) de-
duced corner diffraction coefficients from numerically com-
puted surface currents on a quarter plane,Hill (1990) calcu-
lated UTD diffraction coefficients by an asymptotically valid
evaluation of the Kirchhoff integral from edge-corrected
Physical-Optics currents on a sector, and Maci et al. derived
corresponding results by applying the Incremental Theory of
Diffraction – ITD (Maci et al., 1994, 1998).

The present approach extends the multipole-based method
which allows to derive an expression for the exact scattered
far-field of the plane angular sector. The basic new idea is
to illuminate just the corner of the sector by means of a
complex-source beam (CSB). Such a CSB can be interpreted
as a localized plane wave, and thus its interaction with the
corner in the presence of the semi-infinite structure can be
analyzed in detail. Particularly, the scattered field obtained
for such an incident CSB is caused by the area around the

Figure 2. Eigenvalue curvesλ(ν) for all possible solutions of the
differential Eq. (9) and discrete Dirichlet eigenvalues (×) satisfying
the condition (11) at ϑ0= 180◦ for k2

= 0.5 (quarterplane); func-
tion type 1, see Eqs. (14) and (18).

corner only and thus perfectly suited for extending asymp-
totic methods like the GTD or UTD. Finally, in advantage
to the classical case of a full incident plane wave the illu-
mination by a CSB yields a strongly convergent solution, so
that the application of series transformation methods as men-
tioned above is not necessary.

In Sect.2 and3 we briefly describe the system of sphero-
conal coordinates and the solution of the Helmholtz equation
in the presence of a plane angular sector, respectively. Sec-
tion 4 deals with the diffraction of a complex-source beam
by the sector, and in Sect.5 the convergence properties of
the method are described. Finally, Sect.6 numerical results
for the diffracted and scattered fields are presented.

2 Sphero-conal coordinates

Sphero-conal coordinatesr,ϑ,ϕ are related to Cartesian co-
ordinates by

x = r sinϑ cosϕ

y = r
√

1− k2cos2ϑ sinϕ

z= r cosϑ
√

1− k′2sin2ϕ (1)

where 0≤ r, 0≤ ϑ ≤ π , 0≤ ϕ ≤ 2π . The so-called geomet-
ric parametersk and k′ are nonnegative real numbers and
satisfyk2

+ k′2= 1. Fork = 1 (k′ = 0) sphero-conal coordi-
nates turn into normal spherical coordinates with thez axis
as the polar-axis. The normalized metric scaling coefficients
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of the sphero-conal coordinates are given by

sϑ =
1

r

∣∣∣∣ ∂r

∂ϑ

∣∣∣∣=
√

k2sin2ϑ + k′2cos2ϕ

1− k2cos2ϑ
(2)

sϕ =
1

r

∣∣∣∣ ∂r

∂ϕ

∣∣∣∣=
√

k2sin2ϑ + k′2cos2ϕ

1− k′2sin2ϕ
. (3)

The coordinate surfaceϑ = ϑ0 represents a semi-infinite el-
liptic cone around thez axis (Blume and Klinkenbusch,
1999) which turns into a circular cone fork = 1. Forϑ0= π

the elliptic cone becomes a plane angular sector lying in the
yz plane around the negativez axis, see Fig.1. The half outer
opening angles of that sector are specified by

ϑx = π (4)

ϑy = π −arccos(k) . (5)

3 Solution of the Helmholtz equation in the presence of
an acoustically soft or hard plane angular sector

Sphero-conal coordinates count to those eleven coordinates
systems described byEisenhart(1934) where for the three-
dimensional Helmholtz equation

19(r,ϑ,ϕ)+ κ29(r,ϑ,ϕ)= 0 (6)

the method of separation is completely successful. In Eq. (6),
the wave numberκ is related to the wavelength3 by κ =

2π/3. The resulting elementary solution can be written as

9ν(r,ϑ,ϕ)= zν(κr)2ν(ϑ)8ν(ϕ) (7)

with spherical Bessel functions being related by

zν(κr)=

√
π

2κr
Zν+1/2(κr) (8)

to ordinary Bessel functionsZ of orderν+1/2. The periodic
Lamé functions8ν(ϕ) and the non-periodic Lamé functions
2ν(ϑ) satisfy the differential equations√

1− k′2sin2ϕ
d

dϕ

(√
1− k′2sin2ϕ

d8ν

dϕ

)
+

[
λ− ν(ν+1)k′2sin2ϕ

]
8ν = 0

(9)

√
1− k2cos2ϑ

d

dϑ

(√
1− k2cos2ϑ

d2ν

dϑ

)
+

[
ν(ν+1) (1− k2cos2ϑ)− λ

]
2ν = 0. (10)

Equations (9) and (10) are coupled by the two separation
constantsν andλ which also can be interpreted as eigenval-
ues of a two-parametric eigenvalue problem. For the problem
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Figure 3. Radiation patterns of an acoustically soft sector (k2
=

0.6) in thexz plane (ϕ = 0◦ andϕ = 180◦) for different maximum
numbers of eigenfunctions. The point source is located at the com-
plex coordinatesrc = (0.001+10j)3, ϑc = 90◦, ϕc = 90◦, that is
rc = (0.001+10j)3ŷ in Cartesian coordinates.

under consideration the periodic Lamé functions have to be
2π periodic, and for any such solution the eigenvalues in the
(ν,λ)-plane lie on so-called eigenvalue curves, the courses of
which depend only onk2 (Blume and Klinkenbusch, 1999),
see Fig.2. To satisfy the boundary-value problem posed by
the acoustically soft or hard plane-angular sector, the non-
periodic Lamé functions have to satisfy either the Dirich-
let (acoustically soft, indexs) or the Neumann (acoustically
hard, indexh) boundary condition on the sector’s surface at
ϑ = π :

2νs (π)= 0 (11)

d2νh

dϑ

∣∣∣∣
ϑ=π

= 0. (12)

The corresponding(ντ ,λ); τ ∈ {s,h} eigenvalue pairs are
then discrete Dirichlet and Neumann eigenvalues on the
eigenvalue curves as shown in Fig.2. As in ordinary spherical
coordinates, for solutions in the free space all eigenvaluesν

are all non-negative integers (ν = n= 0,1,2,3, ...) on these
eigenvalue curves.

The products of non-periodic and periodic Lamé functions
are referred to as the Lamé products. They can be represented
by a linear combination of four appropriately defined func-
tion types

Y (l)
ν (ϑ,ϕ)=2(l)

ν (ϑ)8(l)
ν (ϕ) (l = 1;2;3;4). (13)
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Figure 4. Real part of the total field in thexz plane near the edge (r < 103) for an acoustically soft (left-hand side) and acoustically hard
(right-hand side) sector. The point source has the complex locationrc = (0.001+10j)3, ϑc = 90◦, ϕc = 0◦, that isrc = (0.001+10j)3x̂

in Cartesian coordinates.

The four types of periodic Lamé functions are described
by each two alternatively valid Fourier series (Jansen, 1976)

8(1)
ν (ϕ)=


∞∑
i=0

A2i cos2iϕ√
1− k′2sin2ϕ

∞∑
i=0

C2i cos2iϕ
(14)

8(2)
ν (ϕ)=


∞∑
i=0

A2i+1cos(2i+1)ϕ√
1− k′2sin2ϕ

∞∑
i=0

C2i+1cos(2i+1)ϕ

(15)

8(3)
ν (ϕ)=


∞∑
i=0

B2i+2sin(2i+2)ϕ√
1− k′2sin2ϕ

∞∑
i=0

D2i+2sin(2i+2)ϕ

(16)

8(4)
ν (ϕ)=


∞∑
i=0

B2i+1sin(2i+1)ϕ√
1− k′2sin2ϕ

∞∑
i=0

D2i+1sin(2i+1)ϕ.

(17)

The non-periodic Lamé functions are expanded in terms of
associated Legendre functions of the first kind (Jansen, 1976)

2(1)
ν (ϑ)=

∞∑
i=0

A2iT (2i)P 2i
ν (cosϑ) (18)

2(2)
ν (ϑ)=

∞∑
i=0

A2i+1T (2i+1)P 2i+1
ν (cosϑ) (19)

2(3)
ν (ϑ)=

√
1− k2cos2ϑ

sinϑ
∞∑
i=0

B2i+2(2i+2)T (2i+2)P 2i+2
ν (cosϑ) (20)

2(4)
ν (ϑ)=

√
1− k2cos2ϑ

sinϑ
∞∑
i=0

B2i+1(2i+1)T (2i+1)P 2i+1
ν (cosϑ) (21)

where the algebraic factorsT (i) are recursively defined as

T (i)=−(ν−1)(ν+ i+1)T (i+2)

T (0)= T (1)= 1. (22)

For the method of finding the coefficients we refer toBlume
and Klinkenbusch(1999).

For integer eigenvaluesν = n= 1,2,3, ... (free-space so-
lutions) it has been shown (Jansen, 1976) that for eachn
always one expansion per function type in Eqs. (14)–(17)
becomes finite while the expansions (18)–(21) all are finite.
Moreover, for each integral eigenvaluen there exist 2n+1
eigenfunctions in total, distributed among the function types.
In that case Lamé functions turn into Lamé polynomials de-
noted by8(l)

n,m and2
(l)
n,m, wherem stands for one of the 2n+1

linearly independent eigenfunctions pern.
Finally, the summation of all suitable elementary solutions

(7) leads to the complete field representation in the domain
outside of the acoustically soft or hard plane angular sector.
Similar to the method described byBowman et al.(1987), at
a time factorejωt for a unit point source located atr ′ the
solution can be written as a symmetric bilinear expansion
according to

9τ (r)= jκ
∑
ν

jντ (κr<)h(2)
ντ

(κr>)Yντ (ϑ,ϕ)Yντ (ϑ
′,ϕ′) (23)

where r< = r,r> = r ′ if |r|< |r ′|, and r< = r ′, r> = r if
|r|> |r ′| ; τ ∈ {s,h}.
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Figure 5. Real part of the total field in theyz plane near the edge (r < 103) for an acoustically soft (left-hand side) and acoustically hard
(right-hand side) sector. The point source has the complex locationrc = (0.001+10j)3, ϑc = 90◦, ϕc = 90◦, that isrc = (0.001+10j)3ŷ

in Cartesian coordinates.

4 Complex-source beam incident on an acoustically soft
or hard plane angular sector

A complex-source beam (CSB) is a powerful tool to de-
scribe focused beams analytically. As shown by (Katsav et
al., 2012) and (Brüns and Klinkenbusch, 2013), the Green’s
function of a point source at a complex-valued location can
be used to approximately describe a Gaussian beam with an
arbitrary beam direction. However, in contrast to a Gaussian
beam, the CSB exactly satisfies the Helmholtz equation.

Let the complex valued locationrc of such a point source
be defined by

rc = rr − jb . (24)

Then the vectorrr represents the location of the beam’s waist
while b/|b| specifies the direction of propagation.|b| corre-
sponds to the Rayleigh length of the beam, that is, to the dis-
tance between the waist and the area where the cross-section
has doubled (Brüns and Klinkenbusch, 2013). Consequently,
by choosing smallrr and largeb we obtain a nearly plane
wave front at the origin (e.g., at the corner of the plane an-
gular sector). In addition, that field has a transverse Gaussian
profile thus the CSB represents a localized plane wave.

As shown byKatsav et al.(2012) a CSB pointing directly
to the origin is defined by simply assigning a complex radial
coordinaterc = rr + jb to the source. By means of a quite
similar procedure we can easily prove that for sphero-conal
coordinates as well: Consider that the waist of the CSB is
located atrr , and that a vector pointing fromrr to the origin
is given byb = (b,π −ϑr ,π +ϑr). According to Eq. (24)
and by using Eq. (1) we write in Cartesian coordinates:

rc = rr − jb

=

 rr sinϑr cosϕr

rr
√

1− k2cos2(ϑr)sinϕr

rr cosϑr

√
1− k′2sin2ϕr



− j

 bsin(π −ϑr)cos(π +ϕr)

b
√

1− k2cos2(π −ϑr)sin(π +ϕr)

bcos(π −ϑr)

√
1− k′2sin2(π +ϕr)


=

 (rr + jb)sinϑr cosϕr

(rr + jb)
√

1− k2cos2ϑr sinϕr

(rr + jb)cosϑr

√
1− k′2sin2ϕr

 (25)

Consequently, by just assigning a complex valued source
point in sphero-conal coordinatesrc = rr+jb,ϑc = ϑr ,ϕc =

ϕr we obtain a CSB with a waist atrr and Rayleigh length
b directed exactly towards the corner of the plane angular
sector.

Now we assign such a complex valued location in sphero-
conal coordinatesr ′ = rc = rr + jri,ϑc = ϑr ,ϕc = ϕr to the
point source in Eq. (23), and obtain the total field of an acous-
tically soft or hard sector illuminated by a complex-source
beam directed exactly towards its tip.

Finally it is noted that the incident CSB field (the field of
the same CSB point source atrc as in Eq. (23) but in the
absence of the sector) is expanded in terms of Lamé polyno-
mials according to

9inc(r)= jκ
∑
n,m

jn(κr<)h(2)
n (κr>)Yn,m(ϑ,ϕ)Yn,m(ϑ ′,ϕ′).

(26)

The scattered field is then obtained by

9sc
τ (r)=9τ (r)−9inc(r) (τ ∈ {s,h}). (27)
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Figure 6. Radiation pattern of the scattered far field for an acousti-
cally soft sector. The source has the complex locationrc = (0.001+
10j)3, ϑc = 90◦, ϕc = 0◦, that isrc = (0.001+10j)3x̂ in Carte-
sian coordinates.
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Figure 7. Radiation pattern of the scattered far field for an acousti-
cally soft sector. The source has the complex locationrc = (0.001+
10j)3, ϑc = 90◦, ϕc = 45◦, that isrc = (0.001+10j)3( 1√

2
x̂+

1√
2
ŷ) in Cartesian coordinates.

5 Convergence analysis

Basically, the convergence of the expansion (23) is deter-
mined by the behaviour of the spherical Bessel functions
for a fixed argument and large values of the orderν (see
Abramowitz and Stegun, 1972, Eq. (9.3.1.) using the defi-
nition (8). Note that in Eq. (23) the argument of the spher-
ical Bessel function of the first kind is always smaller than
the argument of the spherical Hankel function of the second
kind, and hence for any limited and fixed arguments the prod-
uct of both functions becomes arbitrarily small for any order
larger than a certain fixed limit. Consequently, to achieve a
given accuracy of the expansion (23) it is sufficient to con-
sider all eigenvalue pairs(ν;λ) up to a certainν ≤ νmax. Ta-
ble 1 shows the maximum valueνmax needed for achieving
a relative error of the field expansion (23) for different val-
ues of the angular position of the CSB waist (ϕr ) and of the
Rayleigh length (b). As expected the Rayleigh length influ-
ences the maximum eigenvalueνmax needed to obtain a cer-

x

y

z

0

|9max|

Figure 8. Radiation pattern of the scattered far field for an acous-
tically soft sector. The source has the complex locationrc =

(0.001+10j)3, ϑc = 90◦, ϕc = 90◦, that isrc = (0.001+10j)3ŷ

in Cartesian coordinates.
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Figure 9. Radiation pattern of the scattered far field for an acous-
tically hard sector. The source has the complex locationrc =

(0.001+10j)3, ϑc = 90◦, ϕc = 0◦, that isrc = (0.001+10j)3x̂

in Cartesian coordinates.

tain accuracy of Eq. (23) while the angle of incidenceϕr does
not essentially affect the convergence properties.

To check the convergence of the spherical-multipole ex-
pansion (23) with regard to the following numerical evalu-
ation, Fig.3 shows the radiation pattern of the scattered far
field in thexz plane with a source located atrc = (0.001+
10j)3, ϑc = 90◦, ϕc = 90◦. The outer half opening angle
of the sector isϑy = 140.77◦. The expansion of the field is
obtained for different maximum numbers of eigenfunctions,
i.e., νmax = 30, 40 and 50. The results are normalized with
respect to the maximum of9sc

τ at νmax= 50. As can be ob-
served, for a maximum number ofνmax= 40 the multipole
expansion is convergent for this example. Thus for the pa-
rameters chosen in this investigation it is sufficient to carry
out the expansion to a maximum number ofνmax= 40.
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Figure 10.Radiation pattern of the scattered far field for an acous-
tically soft sector in thexz and yz plane. The source has the
complex locationrc = (0.001+10j)3, ϑc = 90◦, ϕc = 0◦, that is
rc = (0.001+10j)3x̂ in Cartesian coordinates.

Table 1. Maximum eigenvalueνmax necessary to achieve a relative
error< 10−6 in (23) for different Rayleigh lengthsri and angles of
incidenceϕ′.

b/3= 5 b/3= 10 b/3= 15

ϕr = 0◦ 32.00 45.00 55.00
ϕr = 45◦ 32.01 45.05 55.09
ϕr = 90◦ 32.01 45.05 55.09

6 Numerical evaluation

For the following results we setk2
= 0.6. According to

Eq. (5) this yields a plane angular sector with a half outer
opening angle ofϑy = 140.77◦. Moreover, the complex lo-
cation of the source is lying in thexy plane (ϑc = 90◦) at
rc = (0.001+10j)3. The real partrr is relatively small to
take advantage of the beam’s property of a nearly plane wave
front nearby the waist.

6.1 Total fields

The results in Figs.4and5show the total field9τ in the near-
field ranger < 103 in the xz plane (Fig.4) and in theyz

plane (Fig.5). For each of the figures the results on the left-
hand side are for an acoustically soft sector while the results
on the right-hand side are for an acoustically hard sector.

In Fig. 4 the source has the complex-valued locationrc =

(0.001+10j)3, ϑc = 90◦, ϕc = 0◦, that is, the beam is prop-
agating towards the corner in a plane of incidence perpendic-
ular to the sector. In both cases (soft and hard) we observe in-
terferences of reflected and incident fields on the right-hand
side of the sector.

In Fig. 5 the source is located at the complex coordinates
rc = (0.001+10j)3,ϑc = 90◦,ϕ′ = 90◦, that is, the beam
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Figure 11.Radiation pattern of the scattered far field for an acous-
tically soft sector in thexz andyz plane. The source has the com-
plex location rc = (0.001+10j)3, ϑc = 90◦, ϕc = 90◦, that is
rc = (0.001+10j)3x̂ in Cartesian coordinates.

propagates towards the corner in a plane of incidence parallel
to the sector. For the acoustically soft sector (left-hand side)
the beam is partly is reflected inz direction. However, for the
acoustically hard sector (right-hand side) the beam passes the
sector completely unaffected.

6.2 Scattered far fields

The results for the scattered far fields (radiation patterns) are
obtained by means of the large-argument approximation of
the spherical Hankel functions of the second kind and by sub-
tracting the incident field from the total field, see Eq. (27).
Figures6–8 show the radiation patterns of an acoustically
soft sector for different angles of incidenceϕc.

For ϕc = 0◦ (Fig. 6) maxima of the scattered field can be
observed in the direction of propagation as well as in the
opposite direction which is due to reflection. The pattern is
nearly symmetric to theyz as well as to thexz plane.

Forϕc = 45◦ (Fig. 7) we also see these two maxima men-
tioned before with the reflected part being slightly larger.

For ϕc = 90◦ (Fig. 8) there appears a broad maximum in
y direction.

Figure 9 shows a pattern for an acoustically hard sector
for a point source located atϕc = 0◦. In contrast to the result
obtained for the acoustically soft sector (Fig.6) the pattern is
not symmetric to theyz plane.

Finally, Figs.10 and11 represent radiation patterns of the
scattered far fields of an acoustically soft sector in thexz and
yz plane for different locations of the incident CSB waist.

7 Conclusions

It has been shown that a combined complex-source beam
and spherical-multipole expansion allows to investigate the
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scattering and diffraction of a localized plane wave by the
corner of an acoustically soft or hard plane angular sector by
means of a convergent and numerically stable analysis.

Future work will include solutions for the corresponding
electromagnetic problems, the investigation of the CSB scat-
tering and diffraction by more general elliptic cones, and the
investigation and development of techniques to integrate the
findings into asymptotic methods.
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