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Abstract. In the context of transient processes in power sys-
tem measurements, a sampled signal is analyzed with respect
to electro-magnetic influences. These are most likely super-
posed sinusoids that can be found next to the fundamental
system sinusoid. However, such signal is not stationary, i.e.
has a varying model order which means that temporary and
exponentially damped sinusoids appear eventually. In our
previous work, the exponential damping was only considered
indirectly but not explicitly incorporated in the signal model
used. Regarding the amplitude estimation, this led to inaccu-
racies since the amplitude was incorrectly assumed constant
within a window of samples. In this paper, we use ESPRIT’s
ability to also estimate a parameter of exponential damping,
improve the corresponding signal model, advance the am-
plitude estimation algorithm and back projection algorithm.
Especially short-term signal components can be tracked far
more precise.

1 Introduction

Modern power system operation requires sophisticated mon-
itoring and analysis since the power distribution policy
changes from unidirectional central power generation to a
highly meshed grid of distributed and varying generation.
PMUs are widely recognized for their accurate synchro-
phasor measurement subject to dynamic conditions. How-
ever, only stationary signals and modulated signals with low
frequency components (i.e. mainly electro-mechanic tran-
sients) are considered, complying with the requirements of
the IEEE Standard for synchro-phasors C37.118-2011; re-
viewed in this context byGörner et al., 2013). Electro-

magnetic transients e.g. induced by switchings in the network
are not considered.

When estimating these electro-magnetic signal compo-
nents, it has to be considered that these components are not
part of the signal for all time. They are induced by events like
switchings or line faults and fade out exponentially. In terms
of a model, the net can be seen as a circuit of inductances,
capacitances and resistances forming meshes with individ-
ual resonance frequencies. Such mesh might be excited by
an event and (in consequence) may start to oscillate. This os-
cillation is typically exponentially damped. The mentioned
events become more frequent these days due to the evolution
towards more dynamic operation of the net.

Waveform analysis is a central part of this monitoring and
analysis process. Yet, waveform analysis can only be done
using sampling windows (Banerjee and Srivastava, 2012).
Focusing on the prior to this work not explicitly considered
exponential damping, it is worth mentioning that subspace
analysis and frequency estimation are not affected by the
damping influencing the current window. Furthermore, the
subspace-based frequency estimation algorithm ESPRIT can
also estimate the parameter of exponential damping. How-
ever, the fact that a sample at the beginning of a sampling
window is affected by exponential damping differently than
the on at the end of the window has drawbacks on the am-
plitude estimation, naturally. This can be circumvented by
incorporating the exponential fading parameter explicitly.

As a framework for this paper, the waveform analysis is
done by subspace extraction in order to enable the detec-
tion and estimation of electro-magnetic parameters aside the
system’s fundamental frequency. The subspace-based param-
eter estimation algorithm ESPRIT (Paulraj et al., 1986) is
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Fig. 1. PI-modeled transmission line between nodes i and j; using
symbol for generators.

2012). The extension back projection introduced in Lechten-
berg et al. (2013) will also be used to emphasize the benefit.

In the following subsection, the signal model with and
without exponential damping will be explained. The frame-
work including ESPRIT, PAST, DaPT, Back Projection and
LS-based amplitude estimation are reviewed in Sec. 2. The
paragraphs explaining LS-based amplitude estimation also
introduce signal reconstruction and RMSE calculation for
evaluation. A simulation demonstrates the application of
these methods in Sec. 3. This paper is completed by a sum-
mary of the work and the results in a final section, also pro-
viding a glance at future work.

1.1 Line Modeling and Signal Model

The transmission net can be modeled as a circuit of resis-
tances, inductances and capacitances with partly overlaid
meshes, see Fig. 1. Each mesh with inductances and ca-
pacitances taken from the circuit has its own resonance fre-
quency and can be excited by a switching event. In such case,
each participating mesh in a node provides its resonance fre-
quency as a superposed sinusoid in the voltage/current signal
of this node.

These sinusoids appear during a transient process when
the transmission net merges from one steady-state condition
into another. A resulting signal model for one segment of
constant model order might be written as follows:

x(n) =

p∑
i=1

ci(n)ejnωif
−1
s +wawgn(n) (1)

However, this signal model does not consider exponential
damping. In consequence, such effect would indirectly be
part of the complex amplitude ci(n); this indicates that the
model is not sufficient. The following equation adds the
missing exponential factor:

x(n) =

p∑
i=1

ci(n)e−γnf
−1
s ejnωif

−1
s +wawgn(n) (2)

The input samples x(n) may also be used in the form of a
vector x(n) describing a set of subsequent samples. The

number of sinusoids (rank) is p. The complex amplitude
ci(n) = ai(n)exp(jϕi) is built of the (initial) amplitude
ai(n) and the phase ϕi (at time instant n= 0). ωi = 2πfi de-
scribes the angular frequency. The parameter γ is the expo-
nential fading factor; since the argument is negative, a posi-
tive γ indicates damping. The component {c1,ω1} represents
the fundamental frequency. The resonance frequency of an
excited LC-oscillation mesh is embodied in ωi|i>1. Note that
to increase comprehensibility, the signal model is reduced
to an only-exponential model although real-valued measure-
ments would require a description with sines or cosines (or
— via Euler’s identity — doubled exponentials).

2 Process Chain

2.1 Subspace Estimation

The concept of the presented parameter estimation was al-
ready discussed before (e.g. Lechtenberg and Götze, 2011).
The samples from the measurement are prepared with a slid-
ing window before the respective data is fed to the subspace
estimator.

The samples’ space can be described by a set of vec-
tors forming a basis. The obvious way to do this is to
use windowed sample data to estimate the auto-correlation
matrix (e.g. via exponentially weighted averaging) and to
perform an eigenvalue/-vector decomposition of this matrix.
These eigenvectors form one possible basis of the samples’
space. Knowing the rank p, the signal’s subspace can be ex-
tracted by selecting the vectors corresponding to the p great-
est eigenvalues. Consequently, the other vectors span the
noise subspace.

A less computational complex method to find a basis for
the signal’s subspace is depicted by the so-called subspace
trackers. They do not produce eigenvectors; they provide
vectors forming a basis describing the same space as a basis
defined by eigenvectors does. Next to algorithms like PRO-
TEUS (Champagne and Liu, 1998) or YAST (Badeau et al.,
2008) the class of PAST-based algorithms (Yang, 1995b) is
common in such context. In this work, the OPAST algo-
rithm (Abed-Meraim et al., 2000) was identified to be a good
choice.

PAST-based algorithms are based on the nearly uncon-
strained minimization of the cost function

J
(
Ŵ
)

=E‖x−ŴŴ
H

x‖2 (3)

where Ŵ is not constrained to hold eigenvectors. The min-
imization is based on the idea of gradient-descent meth-
ods and incorporates exponential weighting for updating Ŵ
which increasingly better approximates the basis vectors W
(Yang, 1995b). In exponential weighting b(n) =βb(n−1)+

(1−β)b̂, the factor β is also called forgetting factor. The
pseudo window length wPAST = 1

1−β gives an impression on
the rage of samples affecting the current average.

Figure 1. PI-modeled transmission line between nodesi andj .

supported by a subspace tracker of the PAST-family (Yang,
1995a). Further (complex) amplitude estimation is done with
the help of a Least-Squares (Sorenson, 1970) approach. The
extracted parameters are gathered and rated by the DaPT
algorithm (Lechtenberg and Götze, 2010; Lechtenberg et al.,
2012). The extension back projection introduced inLechten-
berg et al.(2013) will also be used to emphasize the benefit.

In the following subsection, the signal model with and
without exponential damping will be explained. The frame-
work including ESPRIT, PAST, DaPT, Back Projection and
LS-based amplitude estimation are reviewed in Sect.2. The
paragraphs explaining LS-based amplitude estimation also
introduce signal reconstruction and RMSE calculation for
evaluation. A simulation demonstrates the application of
these methods in Sect.3. This paper is completed by a sum-
mary of the work and the results in a final section, also pro-
viding a glance at future work.

1.1 Line modeling and signal model

The transmission net can be modeled as a circuit of resis-
tances, inductances and capacitances with partly overlaid
meshes, see Fig.1. Each mesh with inductances and ca-
pacitances taken from the circuit has its own resonance fre-
quency and can be excited by a switching event. In such case,
each participating mesh in a node provides its resonance fre-
quency as a superposed sinusoid in the voltage/current signal
of this node.

These sinusoids appear during a transient process when the
transmission net merges from one steady-state condition into
another. A resulting signal model for one segment of constant
model order might be written as follows:

x(n) =

p∑
i=1

ci(n)ejnωif
−1
s + wawgn(n) (1)

However, this signal model does not consider exponential
damping. In consequence, such effect would indirectly be
part of the complex amplitudeci(n); this indicates that the
model is not sufficient. The following equation adds the
missing exponential factor:

x(n) =

p∑
i=1

ci(n)e−γ nf −1
s ejnωif

−1
s + wawgn(n) (2)

The input samplesx(n) may also be used in the form of
a vectorx(n) describing a set of subsequent samples. The
number of sinusoids (rank) isp. The complex amplitude
ci(n) = ai(n)exp(jϕi) is built of the (initial) amplitudeai(n)

and the phaseϕi (at time instantn = 0).ωi = 2πfi describes
the angular frequency. The parameterγ is the exponential
fading factor; since the argument is negative, a positiveγ in-
dicates damping. The component{c1,ω1} represents the fun-
damental frequency. The resonance frequency of an excited
LC-oscillation mesh is embodied inωi |i>1. Note that to in-
crease comprehensibility, the signal model is reduced to an
only-exponential model although real-valued measurements
would require a description with sines or cosines (or – via
Euler’s identity – doubled exponentials).

2 Process chain

2.1 Subspace estimation

The concept of the presented parameter estimation was al-
ready discussed before (e.g.Lechtenberg and Götze, 2011).
The samples from the measurement are prepared with a slid-
ing window before the respective data is fed to the subspace
estimator.

The samples’ space can be described by a set of vectors
forming a basis. The obvious way to do this is to use win-
dowed sample data to estimate the auto-correlation matrix
(e.g. via exponentially weighted averaging) and to perform
an eigenvalue/-vector decomposition of this matrix. These
eigenvectors form one possible basis of the samples’ space.
Knowing the rankp, the signal’s subspace can be extracted
by selecting the vectors corresponding to thep greatest
eigenvalues. Consequently, the other vectors span the noise
subspace.

A less computational complex method to find a basis for
the signal’s subspace is depicted by the so-called subspace
trackers. They do not produce eigenvectors; they provide
vectors forming a basis describing the same space as a basis
defined by eigenvectors does. Next to algorithms like PRO-
TEUS (Champagne and Liu, 1998) or YAST (Badeau et al.,
2008) the class of PAST-based algorithms (Yang, 1995b) is
common in such context. In this work, the OPAST algo-
rithm (Abed-Meraim et al., 2000) was identified to be a good
choice.

PAST-based algorithms are based on the nearly uncon-
strained minimization of the cost function

J
(
Ŵ

)
= E‖x − ŴŴ

H
x‖

2 (3)

whereŴ is not constrained to hold eigenvectors. The min-
imization is based on the idea of gradient-descent meth-
ods and incorporates exponential weighting for updatingŴ
which increasingly better approximates the basis vectorsW
(Yang, 1995b). In exponential weightingb(n) = βb(n−1)+
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(1− β)b̂, the factorβ is also called forgetting factor. The
pseudo window lengthwPAST =

1
1−β

gives an impression on
the rage of samples affecting the current average.

Assuming valid results of OPAST, the following equa-
tions provide noise samplesw and an estimation of the noise
powerσ 2:

w(n) = x(n) − Wy (4)

σ̂ 2
awgn= ‖w(n)‖2

2 (5)

with an internal PAST variabley only weakly related to
eigenvalues.

2.2 Parameter estimation

The a priori selected basis vectors describing the desired sig-
nal are fed to the subspace-based parameter estimator ES-
PRIT (Paulraj et al., 1986). It is based on the analysis of the
rotational invariance of two subsequent basis vectors. Due to
the principle of rotational invariance, these vectors should
only differ in a constant rotation exp(j · n · �i)

∣∣
n=1 (with

�i = 2π
fi

fs
) depending on the eigenfrequencyfi , which is

the desired parameter.
Remembering the signal model in Eq. (2), the signal can

also be described by subspaces like in the equation

E
[
xxH

]
= S(n) + σ 2

awgnI (6)

with x = A(n,ω)c(n) + wawgn(n). (7)

The matrix A contains the exponential functions

exp
(
jωi

n
fs

)
(and exp

(
−

γi

fs

)
) to form the superposi-

tion in the horizontal dimension and the burst description in
the vertical dimension.S(n) describes the signal subspace,
which can be written as a product of the eigenvectorsW(n)

and the eigenvalues (on a diagonal matrix)D(n):

S(n) = W(n)D(n)W(n)H . (8)

One time-step can be described by a multiplication with a di-

agonal matrix8 having diagonal entries exp
(
2πj ·

fi

fs
−

γi

fs

)
:

W(n + 1) = W(n)8. (9)

The key idea of ESPRIT is to estimate the rotation8.
Thinking of the burst dimension ofA, this rotation is also
the factor between the upperN −1 lines ofW and the lower.
Due to noise,̂8 will have off-diagonal elements. So an EVD
is performed on8̂. The frequencies can be extracted from
these eigenvalues by calculating their angle. These frequen-
cies are the input of DaPT.

Recapitulating the idea of ESPRIT, the to be estimated
factor is an exponential function with a complex argument.
However, this algorithm also works for factors like

φi,i = e

(
j ·

ωi
fs

−
γi
fs

)
. (10)
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Fig. 2. Quasi-stationary segments of measurement samples, uncer-
tainty regions, sample window and back projection concept.

wait a short while until the parameters can be expected to be
valid/certain again (see Fig. 2). With the help of these valid
parameters, the estimation for the time between the event and
the time-out can be redone time-reversed. Of course, this re-
quires the input samples to be memorized back to the time
instant of segmentation.

Although this enables the reparation of the corrupted esti-
mates, the delay resulting from the sliding window principle
cannot be compensated, obviously. In consequence, the re-
sulting parameter estimation provides clean estimates both
prior to (causality principle) and after (back projection) the
event.

2.5 Estimation of Complex Amplitude

Phase and amplitude estimation can be obtained by a simple
LS approach referring to the signal model in Eq. (6). Since
time index, frequency and exponential factor are known, the
matrix A can be built. Together with the samples, the com-
plex amplitude can be estimated. Using the same method, the
synchrophasor can be determined by referencing a constant
frequency — i.e. the system’s fundamental frequency — and
calibrating an offset-phase to adapt to the UTC-time (Martin
et al., 2006). However, a real-time system like FPGA is rec-
ommended for meeting the temporal requirements of PMU
measurements.

Since the construction of the matrix A is not constrained to
a fixed window length and window time offset but only needs
to fulfill the LS requirement, i.e. an overdetermined system
of equations, the application of back projection (Sec. 2.4) is
straight forward.

The signal model and the matrix A, resp., can easily be
used to reconstruct the input signal. This enables the calcu-
lation of the (R)MSE ((rooted) mean squared error) between
this reconstruction and the original input samples:

RMSE(n) =

√√√√ 1

N

n∑
i=n−N+1

[x(i)−A(i,ω)c(i)]
2. (11)

3 Simulation

The signal processing is done with The Mathworks
MATLAB®. The sampling frequency is fs = 5kHz; the win-
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Fig. 3. Input signal with an event shortly after 2s producing decay-
ing DC offset and additional sinusoids
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Fig. 4. Estimation of frequency parameter without back projection

dow length is wl = 100 and the PAST forgetting factor is
β= 0.8. The simulation is based on an electric power signal
of 50Hz powered to 380kV that is constantly present. At the
time of 2s, two other signal components are added: another
sinusoid of ≈290Hz at ≈15kV with an exponential damping
factor of 3 and a direct component of ≈75kV with an expo-
nential factor of 6. The signal has additive white Gaussian
noise resulting in an SNR of 80dB. The following demon-
stration is based on one run of this simulation producing a
signal like in Fig. 3.

When parameter estimation is done without respecting the
constraint of stationarity, the results will be corrupted right
after the model order changes. The less samples prior the
model order change affect the estimation (due to exponen-
tial averaging) the less corrupted the estimates are. This is
illustrated by Fig. 4 for frequency estimation and Fig. 5 for
subsequent amplitude estimation.

In Lechtenberg et al. (2013), the concept of (segmentation
and) back projection is introduced. Using back projection
circumvents the corruption by recalculating the threatened
region of samples. Fig. 6 demonstrates this for the frequency
estimation. However, in contrast to the frequency being cor-
rectly modeled as constant, the amplitude is also modeled
as constant; this is not correct due to the not considered ex-
ponential damping, see Eq. (1). In Fig. 7, the estimates are
clearly off the true values.

Using the signal model in Eq. (2) for the amplitude estima-
tion requires more information; it utilizes a set of input sam-

Figure 2. Quasi-stationary segments of measurement samples, un-
certainty regions, sample window and back projection concept.

As can be seen, the idea of ESPRIT is not restricted to ro-
tational poles but allows poles aside the unit circle (Badeau
et al., 2003). The exponential factor can be retrieved by cal-
culating the logarithm of the absolute value of aφi,i .

2.3 Database-assisted Parameter estimation – DaPT

Assuming the feed of ESPRIT to contain a few more ba-
sis vectors than the rank of the signal, these additional vec-
tors belong to the noise subspace and are named auxiliaries
(Yang, 1995b). In contrast to the signal’s vectors, theses will
not result in constant parameter estimations within the ES-
PRIT algorithm. The idea of DaPT (Database-assisted Pa-
rameter estimation,Lechtenberg and Götze, 2011) is to rate
the temporal presence of each frequency.

Entries with high rating can be hypothesized as part of the
desired signal and entries with a low rating are assumedly
noise and to be forgotten. By this, the algorithm recognizes a
change in rank by simply counting entries with high ratings.
This rank is advanced by a small number (the auxiliaries) and
looped back to the block that selects the vectors to be fed to
ESPRIT.

In every recursion, the incoming frequency estimation is
mapped to the most suitable database entry. Ideally, both val-
ues match neglecting the measurement noise. For entries that
have been successfully mapped, the quality is increased (up
to a maximum value); for others, it is decreased (down to
zero). A zero-quality-entry will be deleted. The frequency
entry is corrected according to the drift measures’ severity
indexes exceeding a threshold. The measures’ values are ex-
ponentially weighted over time (double-exponential smooth-
ing) and its severity index is updated sign-depended.

This database has entries for each signal component con-
taining frequencyfi , fading parameterγi and (complex) am-
plitude ci . The complex amplitude is to be estimated sepa-
rately (see Sect.2.5). Amongst other fields, DaPT also has
a field valuing the quality of an entry, which is the actual
rating. It rates how often a frequency has been part of the
last estimation recursions. Based on that, components can be
marked reliable (i.e. present), and therefore are accounted for
rank estimation and output.
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tainty regions, sample window and back projection concept.

wait a short while until the parameters can be expected to be
valid/certain again (see Fig. 2). With the help of these valid
parameters, the estimation for the time between the event and
the time-out can be redone time-reversed. Of course, this re-
quires the input samples to be memorized back to the time
instant of segmentation.

Although this enables the reparation of the corrupted esti-
mates, the delay resulting from the sliding window principle
cannot be compensated, obviously. In consequence, the re-
sulting parameter estimation provides clean estimates both
prior to (causality principle) and after (back projection) the
event.

2.5 Estimation of Complex Amplitude

Phase and amplitude estimation can be obtained by a simple
LS approach referring to the signal model in Eq. (6). Since
time index, frequency and exponential factor are known, the
matrix A can be built. Together with the samples, the com-
plex amplitude can be estimated. Using the same method, the
synchrophasor can be determined by referencing a constant
frequency — i.e. the system’s fundamental frequency — and
calibrating an offset-phase to adapt to the UTC-time (Martin
et al., 2006). However, a real-time system like FPGA is rec-
ommended for meeting the temporal requirements of PMU
measurements.

Since the construction of the matrix A is not constrained to
a fixed window length and window time offset but only needs
to fulfill the LS requirement, i.e. an overdetermined system
of equations, the application of back projection (Sec. 2.4) is
straight forward.

The signal model and the matrix A, resp., can easily be
used to reconstruct the input signal. This enables the calcu-
lation of the (R)MSE ((rooted) mean squared error) between
this reconstruction and the original input samples:

RMSE(n) =
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n∑
i=n−N+1

[x(i)−A(i,ω)c(i)]
2. (11)

3 Simulation

The signal processing is done with The Mathworks
MATLAB®. The sampling frequency is fs = 5kHz; the win-
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dow length is wl = 100 and the PAST forgetting factor is
β= 0.8. The simulation is based on an electric power signal
of 50Hz powered to 380kV that is constantly present. At the
time of 2s, two other signal components are added: another
sinusoid of ≈290Hz at ≈15kV with an exponential damping
factor of 3 and a direct component of ≈75kV with an expo-
nential factor of 6. The signal has additive white Gaussian
noise resulting in an SNR of 80dB. The following demon-
stration is based on one run of this simulation producing a
signal like in Fig. 3.

When parameter estimation is done without respecting the
constraint of stationarity, the results will be corrupted right
after the model order changes. The less samples prior the
model order change affect the estimation (due to exponen-
tial averaging) the less corrupted the estimates are. This is
illustrated by Fig. 4 for frequency estimation and Fig. 5 for
subsequent amplitude estimation.

In Lechtenberg et al. (2013), the concept of (segmentation
and) back projection is introduced. Using back projection
circumvents the corruption by recalculating the threatened
region of samples. Fig. 6 demonstrates this for the frequency
estimation. However, in contrast to the frequency being cor-
rectly modeled as constant, the amplitude is also modeled
as constant; this is not correct due to the not considered ex-
ponential damping, see Eq. (1). In Fig. 7, the estimates are
clearly off the true values.

Using the signal model in Eq. (2) for the amplitude estima-
tion requires more information; it utilizes a set of input sam-

Figure 3. Input signal with an event shortly after 2 s producing de-
caying DC offset and additional sinusoids.

2.4 Segmentation and back projection

Anticipating, after the estimation of all signal parameters,
a reconstruction of the signal is possible. The difference of
this reconstruction to the input signal is an indicator for the
fulfillment of the assumptions necessary for the algorithms.
Calculating the MSE of this signal error and monitoring (by
statistical means liken ·σ -rules) enables the robust detection
of a violated stationarity assumption. These values can be ex-
pected to be fairly constant and may not contain significant
steps. If a significant violation is detected, the time instant
indicating a transient process from one stationary state to an-
other may be found. This evaluation provides a so-called seg-
mentation of the signal (Lechtenberg et al., 2013).

Furthermore, with the help of this segmentation informa-
tion, it is possible to reconstruct the parameters without the
uncertainties of the compromised windows. When an event
is detected and the segmentation is triggered, a timer is set to
wait a short while until the parameters can be expected to be
valid/certain again (see Fig.2). With the help of these valid
parameters, the estimation for the time between the event and
the time-out can be redone time-reversed. Of course, this re-
quires the input samples to be memorized back to the time
instant of segmentation.

Although this enables the reparation of the corrupted esti-
mates, the delay resulting from the sliding window principle
cannot be compensated, obviously. In consequence, the re-
sulting parameter estimation provides clean estimates both
prior to (causality principle) and after (back projection) the
event.

2.5 Estimation of complex amplitude

Phase and amplitude estimation can be obtained by a simple
LS approach referring to the signal model in Eq. (6). Since
time index, frequency and exponential factor are known, the
matrix A can be built. Together with the samples, the com-
plex amplitude can be estimated. Using the same method, the
synchrophasor can be determined by referencing a constant
frequency – i.e. the system’s fundamental frequency – and
calibrating an offset-phase to adapt to the UTC-time (Martin
et al., 2006). However, a real-time system like FPGA is rec-
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Fig. 2. Quasi-stationary segments of measurement samples, uncer-
tainty regions, sample window and back projection concept.

wait a short while until the parameters can be expected to be
valid/certain again (see Fig. 2). With the help of these valid
parameters, the estimation for the time between the event and
the time-out can be redone time-reversed. Of course, this re-
quires the input samples to be memorized back to the time
instant of segmentation.

Although this enables the reparation of the corrupted esti-
mates, the delay resulting from the sliding window principle
cannot be compensated, obviously. In consequence, the re-
sulting parameter estimation provides clean estimates both
prior to (causality principle) and after (back projection) the
event.

2.5 Estimation of Complex Amplitude

Phase and amplitude estimation can be obtained by a simple
LS approach referring to the signal model in Eq. (6). Since
time index, frequency and exponential factor are known, the
matrix A can be built. Together with the samples, the com-
plex amplitude can be estimated. Using the same method, the
synchrophasor can be determined by referencing a constant
frequency — i.e. the system’s fundamental frequency — and
calibrating an offset-phase to adapt to the UTC-time (Martin
et al., 2006). However, a real-time system like FPGA is rec-
ommended for meeting the temporal requirements of PMU
measurements.

Since the construction of the matrix A is not constrained to
a fixed window length and window time offset but only needs
to fulfill the LS requirement, i.e. an overdetermined system
of equations, the application of back projection (Sec. 2.4) is
straight forward.

The signal model and the matrix A, resp., can easily be
used to reconstruct the input signal. This enables the calcu-
lation of the (R)MSE ((rooted) mean squared error) between
this reconstruction and the original input samples:

RMSE(n) =

√√√√ 1

N

n∑
i=n−N+1

[x(i)−A(i,ω)c(i)]
2. (11)

3 Simulation

The signal processing is done with The Mathworks
MATLAB®. The sampling frequency is fs = 5kHz; the win-
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dow length is wl = 100 and the PAST forgetting factor is
β= 0.8. The simulation is based on an electric power signal
of 50Hz powered to 380kV that is constantly present. At the
time of 2s, two other signal components are added: another
sinusoid of ≈290Hz at ≈15kV with an exponential damping
factor of 3 and a direct component of ≈75kV with an expo-
nential factor of 6. The signal has additive white Gaussian
noise resulting in an SNR of 80dB. The following demon-
stration is based on one run of this simulation producing a
signal like in Fig. 3.

When parameter estimation is done without respecting the
constraint of stationarity, the results will be corrupted right
after the model order changes. The less samples prior the
model order change affect the estimation (due to exponen-
tial averaging) the less corrupted the estimates are. This is
illustrated by Fig. 4 for frequency estimation and Fig. 5 for
subsequent amplitude estimation.

In Lechtenberg et al. (2013), the concept of (segmentation
and) back projection is introduced. Using back projection
circumvents the corruption by recalculating the threatened
region of samples. Fig. 6 demonstrates this for the frequency
estimation. However, in contrast to the frequency being cor-
rectly modeled as constant, the amplitude is also modeled
as constant; this is not correct due to the not considered ex-
ponential damping, see Eq. (1). In Fig. 7, the estimates are
clearly off the true values.

Using the signal model in Eq. (2) for the amplitude estima-
tion requires more information; it utilizes a set of input sam-
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ples and the ESPRIT-estimated parameters fi and γi for fre-
quency (Fig. 6) and damping (Fig. 8) to solve a set of equa-
tions for the only missing parameter ci. As Fig. 9 visualizes,
the signal model supports the complete signal. A comparison
of the RMSE evaluating the estimation against the input sig-
nal also confirms this study contrasting both prior presented
simulations (Fig. 10).

Although the amplitudes of an estimation without sup-
port for damping inside the signal model will not match (see
Fig. 7), these amplitudes can be used to estimate the damp-
ing factor γi as can be seen in Fig. 11. This estimation of γi
is less corrupted than in Fig. 8 since the effect of back pro-
jection simulates stationarity. The segmentation information
from the back projection and the information about the ex-
ponential damping can jointly be used to estimate the initial
amplitude of such temporary sinusoid; Fig. 12 demonstrates
this.

4 Conclusions

Parameter estimation in an environment of superposed sinu-
soids in which not all of them are continuously present but
emerging step-like and fading in an exponentially damped
fashion is not trivial. There are three main challenges:
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ommended for meeting the temporal requirements of PMU
measurements.

Since the construction of the matrixA is not constrained to
a fixed window length and window time offset but only needs
to fulfill the LS requirement, i.e. an overdetermined system
of equations, the application of back projection (Sect.2.4) is
straight forward.

The signal model and the matrixA, resp., can easily be
used to reconstruct the input signal. This enables the calcu-
lation of the (R)MSE ((rooted) mean squared error) between
this reconstruction and the original input samples:

RMSE(n) =

√√√√ 1

N

n∑
i=n−N+1

[x(i) − A(i,ω)c(i)]2. (11)

3 Simulation

The signal processing is done with The Mathworks
MATLAB ™. The sampling frequency isfs = 5kHz; the win-
dow length iswl = 100 and the PAST forgetting factor is
β = 0.8. The simulation is based on an electric power sig-
nal of 50 Hz powered to 380 kV that is constantly present.
At the time of 2 s, two other signal components are added:
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ples and the ESPRIT-estimated parameters fi and γi for fre-
quency (Fig. 6) and damping (Fig. 8) to solve a set of equa-
tions for the only missing parameter ci. As Fig. 9 visualizes,
the signal model supports the complete signal. A comparison
of the RMSE evaluating the estimation against the input sig-
nal also confirms this study contrasting both prior presented
simulations (Fig. 10).

Although the amplitudes of an estimation without sup-
port for damping inside the signal model will not match (see
Fig. 7), these amplitudes can be used to estimate the damp-
ing factor γi as can be seen in Fig. 11. This estimation of γi
is less corrupted than in Fig. 8 since the effect of back pro-
jection simulates stationarity. The segmentation information
from the back projection and the information about the ex-
ponential damping can jointly be used to estimate the initial
amplitude of such temporary sinusoid; Fig. 12 demonstrates
this.
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quency (Fig. 6) and damping (Fig. 8) to solve a set of equa-
tions for the only missing parameter ci. As Fig. 9 visualizes,
the signal model supports the complete signal. A comparison
of the RMSE evaluating the estimation against the input sig-
nal also confirms this study contrasting both prior presented
simulations (Fig. 10).

Although the amplitudes of an estimation without sup-
port for damping inside the signal model will not match (see
Fig. 7), these amplitudes can be used to estimate the damp-
ing factor γi as can be seen in Fig. 11. This estimation of γi
is less corrupted than in Fig. 8 since the effect of back pro-
jection simulates stationarity. The segmentation information
from the back projection and the information about the ex-
ponential damping can jointly be used to estimate the initial
amplitude of such temporary sinusoid; Fig. 12 demonstrates
this.
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another sinusoid of≈ 290 Hz at≈ 15 kV with an exponen-
tial damping factor of 3 and a direct component of≈ 75 kV
with an exponential factor of 6. The signal has additive white
Gaussian noise resulting in an SNR of 80 dB. The following
demonstration is based on one run of this simulation produc-
ing a signal like in Fig.3.

When parameter estimation is done without respecting the
constraint of stationarity, the results will be corrupted right
after the model order changes. The less samples prior the
model order change affect the estimation (due to exponen-
tial averaging) the less corrupted the estimates are. This is
illustrated by Fig.4 for frequency estimation and Fig.5 for
subsequent amplitude estimation.

In Lechtenberg et al.(2013), the concept of (segmentation
and) back projection is introduced. Using back projection cir-
cumvents the corruption by recalculating the threatened re-
gion of samples. Figure6 demonstrates this for the frequency
estimation. However, in contrast to the frequency being cor-
rectly modeled as constant, the amplitude is also modeled
as constant; this is not correct due to the not considered ex-
ponential damping, see Eq. (1). In Fig. 7, the estimates are
clearly off the true values.

Using the signal model in Eq. (2) for the amplitude estima-
tion requires more information; it utilizes a set of input sam-
ples and the ESPRIT-estimated parametersfi andγi for fre-
quency (Fig.6) and damping (Fig.8) to solve a set of equa-
tions for the only missing parameterci . As Fig.9 visualizes,
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of the RMSE evaluating the estimation against the input sig-

2 2.2 2.4
0

100

400

[kV]

[s]

Fig. 5. Amplitude estimation without back projection using signal
model without damping (dashed: theoretical; : break in scale)

2 2.2 2.4
0

100

200

300

[Hz]

[s]

Fig. 6. Estimation of frequency parameter with back projection

ples and the ESPRIT-estimated parameters fi and γi for fre-
quency (Fig. 6) and damping (Fig. 8) to solve a set of equa-
tions for the only missing parameter ci. As Fig. 9 visualizes,
the signal model supports the complete signal. A comparison
of the RMSE evaluating the estimation against the input sig-
nal also confirms this study contrasting both prior presented
simulations (Fig. 10).

Although the amplitudes of an estimation without sup-
port for damping inside the signal model will not match (see
Fig. 7), these amplitudes can be used to estimate the damp-
ing factor γi as can be seen in Fig. 11. This estimation of γi
is less corrupted than in Fig. 8 since the effect of back pro-
jection simulates stationarity. The segmentation information
from the back projection and the information about the ex-
ponential damping can jointly be used to estimate the initial
amplitude of such temporary sinusoid; Fig. 12 demonstrates
this.
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ples and the ESPRIT-estimated parameters fi and γi for fre-
quency (Fig. 6) and damping (Fig. 8) to solve a set of equa-
tions for the only missing parameter ci. As Fig. 9 visualizes,
the signal model supports the complete signal. A comparison
of the RMSE evaluating the estimation against the input sig-
nal also confirms this study contrasting both prior presented
simulations (Fig. 10).

Although the amplitudes of an estimation without sup-
port for damping inside the signal model will not match (see
Fig. 7), these amplitudes can be used to estimate the damp-
ing factor γi as can be seen in Fig. 11. This estimation of γi
is less corrupted than in Fig. 8 since the effect of back pro-
jection simulates stationarity. The segmentation information
from the back projection and the information about the ex-
ponential damping can jointly be used to estimate the initial
amplitude of such temporary sinusoid; Fig. 12 demonstrates
this.
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nal also confirms this study contrasting both prior presented
simulations (Fig.10).

Although the amplitudes of an estimation without sup-
port for damping inside the signal model will not match (see
Fig. 7), these amplitudes can be used to estimate the damp-
ing factorγi as can be seen in Fig.11. This estimation ofγi

is less corrupted than in Fig.8 since the effect of back pro-
jection simulates stationarity. The segmentation information
from the back projection and the information about the ex-
ponential damping can jointly be used to estimate the initial
amplitude of such temporary sinusoid; Fig.12 demonstrates
this.

4 Conclusions

Parameter estimation in an environment of superposed sinu-
soids in which not all of them are continuously present but
emerging step-like and fading in an exponentially damped
fashion is not trivial. There are three main challenges:

1. the estimation of the number of currently present sinu-
soids (estimation of rank/model order),

2. the segmentation of the signal at the time instants of
model order change (to ensure stationarity), and

3. the choice of the correct signal model.

Only if all of these items are considered, it is possible
to extract all signal parameters (i.e. frequency, exponential
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quency (Fig. 6) and damping (Fig. 8) to solve a set of equa-
tions for the only missing parameter ci. As Fig. 9 visualizes,
the signal model supports the complete signal. A comparison
of the RMSE evaluating the estimation against the input sig-
nal also confirms this study contrasting both prior presented
simulations (Fig. 10).

Although the amplitudes of an estimation without sup-
port for damping inside the signal model will not match (see
Fig. 7), these amplitudes can be used to estimate the damp-
ing factor γi as can be seen in Fig. 11. This estimation of γi
is less corrupted than in Fig. 8 since the effect of back pro-
jection simulates stationarity. The segmentation information
from the back projection and the information about the ex-
ponential damping can jointly be used to estimate the initial
amplitude of such temporary sinusoid; Fig. 12 demonstrates
this.
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1. the estimation of the number of currently present sinu-
soids (estimation of rank/model order),

2. the segmentation of the signal at the time instants of
model order change (to ensure stationarity), and

3. the choice of the correct signal model.

Only if all of these items are considered, it is possible
to extract all signal parameters (i.e. frequency, exponential
damping factor, (initial) amplitude, and segmentation infor-
mation). The success may be evaluated by reconstructing the
signal and comparing it to the input sequence.

In this paper, we advanced the signal model of superposed
sinusoids by adding an exponential factor for damping. By
exploiting ESPRIT’s capability of not only estimating the
frequency parameter but the complete complex pole, the sub-
sequent least-squares estimation can match the signal model
with the only on free parameter; the complex amplitude de-
scribes the phase offset and the initial amplitude of a sinu-
soid.

Considering the direct component to be a sinusoid of 0Hz,
it can jointly be estimated with the other signal components.
In terms of complex computation, the only difference is that
real sinusoids have to be considered with a positive and a
negative frequency (Euler’s identity) but the direct compo-
nent only with one.

Future plug-ins to this work may use information from all
phases of the 3-phase transmission system. Amplitude mod-
ulations (which can also be described as sinusoids very close
in frequency) are still a challenge to be handled. A possi-
ble FPGA implementation may be considered for the fully
enabled system.
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