
Adv. Radio Sci., 12, 61–67, 2014
www.adv-radio-sci.net/12/61/2014/
doi:10.5194/ars-12-61-2014
© Author(s) 2014. CC Attribution 3.0 License.

FPGA implementation of trellis decoders for linear block codes

S. Scholl1, E. Leonardi2, and N. Wehn1

1Microelectronic Systems Design Research Group, University of Kaiserslautern, 67663 Kaiserslautern, Germany
2Institute of Informatics, Federal University of Rio Grande do Sul, 91501970 Porto Alegre, Brazil

Correspondence to:S. Scholl (scholl@eit.uni-kl.de)

Received: 13 December 2013 – Accepted: 5 February 2014 – Published: 10 November 2014

Abstract. Forward error correction based on trellises has
been widely adopted for convolutional codes. Because of
their efficiency, they have also gained a lot of interest from
a theoretic and algorithm point of view for the decoding
of block codes. In this paper we present for the first time
hardware architectures and implementations for trellis de-
coding of block codes. A key feature is the use of a sophis-
ticated permutation network, the Banyan network, to imple-
ment the time varying structure of the trellis. We have imple-
mented the Viterbi and the max-log-MAP algorithm in dif-
ferent folded versions on a Xilinx Virtex 6 FPGA.

1 Introduction

Forward error correction is widely used in today’s commu-
nication systems for the correction of transmission errors.
In the last years and decades many different error correc-
tion schemes have been introduced and successfully adopted
in various communication standards. Prominent examples
for channel codes are convolutional codes, Reed-Solomon
codes, turbo codes and LDPC codes.

The optimal correction strategy is called maximum like-
lihood (ML) decoding. Since ML decoding is very complex
for many practically used codes, most of the decoding al-
gorithms are suboptimal heuristics, e.g. the turbo decoding
algorithm (Lin and Costello, 2004). However, in this paper
we consider two algorithms, that can efficiently perform ML
decoding of convolutional codes or small block codes: the
Viterbi algorithm (VA) (Viterbi, 1967) and the BCJR algo-
rithm (Bahl et al., 1974).

The efficiency of the VA and BCJR algorithm originate
mainly in the exploitation of the code’s structure, which is
graphically represented as a trellis diagram. In the past a vast
amount of research has been carried out on trellis based de-

coding for convolutional codes, including works from gen-
eral theory to hardware implementations for real world ap-
plications.

However, not only convolutional codes can be described
by trellis diagrams. Also block codes can be represented as
trellis and thus efficient decoding algorithms for convolu-
tional trellises can also be applied to block codes. Trellis de-
coders for block codes have many different applications as
standalone ML decoder or as components of larger decoding
heuristics. Here we want to point out just a few use cases:

– as a maximum likelihood decoder for small block codes

– as a component decoder for turbo product codes,Pyn-
diah et al.(1994)

– as a check node decoder for generalized LDPC codes,
Tanner(1981)

– as a component for soft decision decoding of Reed-
Solomon codes, e.g. inVardy and Be’ery(1991), Liu
and Lin(2004)

Trellises of block codes mostly have a special struc-
ture (called time varying trellis), that poses a major chal-
lenge for the hardware designer. So far hardware architec-
tures and implementations have not been considered yet. In
Kim et al. (2003) a trellis decoder was implemented on an
FPGA, but its use is restricted to a small group of block
codes, that do not have a time varying structure.

In this paper we propose an architecture, that is able to
handle all block codes of reasonable size. We solve the chal-
lenge posed by the time varying structure by introducing a
optimized Banyan permutation network, that is tailored to
the application. We evaluate the architectures for the VA and
BCJR as well as folded versions by implementing them on

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.

62 S. Scholl et al.: FPGA implementation of trellis decoders for linear block codes

a Virtex 6. To our best knowledge, this is the first hardware
implementation of trellis decoding for arbitrary block codes.

The paper is structured as follows: in Sect.2 we first
present the construction rules for a trellis, followed by a brief
description of the algorithms in Sect.3. Section4 describes
the proposed architectures and the implementation results
can be found in Sect.5.

2 Trellis construction for block codes

We consider a binary block code with block lengthN and
K information bits. The code is defined by its parity check
matrix (PCM)H of dimension(N − K) × N . The columns
of H are denoted byhk. A valid code word is denoted by
x = (x0,x1, ...,xN−1) and the received log-likelihood ratios
(LLRs) byy = (y0,y1, ...,yN−1)

A trellis diagram is a graphical representation of the code
word space of a channel code. Every path in a trellis connect-
ing the starting and end point correspond to exactly one code
word.

The trellis diagram for block codes can be constructed in
two different ways: using the generator matrix or the parity
check matrix (PCM) of the code.

The first construction method is based on the generator
matrix (seeLin and Costello(2004) for more information).
Since this construction method is quite complex and requires
the generator matrix to be in a special form (trellis oriented
generator matrix form), we apply the second construction
method based on the PCM.

The PCM method provides full flexibility on the matrix,
so that any PCM can be used. Furthermore, the trellis struc-
ture can easily be deduced from the PCM, which makes it
suitable for a hardware implementation. Since the trellis de-
scribes a block code, we call it a bit-level trellis – in contrast
to the convolutional trellis. In the following we describe the
construction method ofWolf (1978).

The bit-level trellis hasN trellis steps (sometimes called
time steps), andM = 2N−K states per step. The states are
labelled by a binaryN−K tuplesm

k , wherem = 0,1, ...,M−

1 denotes the index of a state in stepk = 0,1, ...,N .
To construct the trellis, the states between stepk andk +1

are connected by branches. There are two different types of
branches. One corresponds to code bit ’0’ (xk = 0) the other
one to code bit ’1’ (xk = 1). The branches are established
recursively as follows: From each statesm

k of step k two
branches depart to state

sm
k+1 = sm

k for xk = 0

sl
k+1 = sm

k + hk for xk = 1

Since only paths froms0
0 to s0

N represent code words, all other
paths can be expurgated.

There are some remarkable differences between a convolu-
tional trellis and a bit-level trellis. A bit-level trellis is in gen-

1 1 1 0 1 0 1
0 1 0 1 1 1 1

H =

00

01

10

11

Bit = 0

Bit = 1

Figure 1. Example for a trellis construction using the PCMH

eral a time-varying trellis, i.e. state transitions change over
time – in contrast to the convolutional trellis.

Besides the time varying property, in a bit-level trellis only
one bit is associated with a time step. In a convolutional trel-
lis usually two or more bits correspond to one time step.

Additionally, it should be pointed out that the “0” branches
always connect states having the same label. This property
can be exploited in hardware, as we will see later.

A small example forN = 7 andK = 5 with aM = 4 state
trellis is depicted in Fig.1 to clarify the trellis construction.

3 Trellis decoding algorithms

Once the trellis representation of a code is obtained, it en-
ables the use of very efficient decoding algorithms, like the
VA and the BCJR algorithm. In this section we give a short
summary of these two algorithms for bit-level trellises and
their variants in the log domain.

3.1 Viterbi algorithm

The VA (Viterbi, 1967) performs ML decoding efficiently on
a trellis. It looks for the most probable path in the trellis by
recursively building up paths through the trellis and discard-
ing unlikely paths in every step. We shortly repeat the VA
in the logarithm domain, that is usually used for hardware
implementation.

For the VA every trellis statesm
k is assigned a state metric

α
(
sm
k

)
. The state metrics for stepk are calculated recursively

from those of stepk − 1.

1. initialize the state metrics at step 0:s0
0 with 0 and all

othersm
0 (m 6= 0) with -infinity

2. For all statesk = 1, ..,N − 1 and all indicesm =

0,1..,M − 1 calculate

α
(
sl
k

)
= max

[
α

(
sl
k−1

)
, α

(
sm
k−1

)
+ yk−1

]
(1)

wheresl
k = sm

k−1 + hk−1

3. output the path which led to the maximum state metric
α

(
s0
N

)
, called the traceback step.

Adv. Radio Sci., 12, 61–67, 2014 www.adv-radio-sci.net/12/61/2014/

S. Scholl et al.: FPGA implementation of trellis decoders for linear block codes 63

More detailed information on the VA can easily be found
in literature (Lin and Costello, 2004; Wolf, 1978).

3.2 BCJR and Max-log-MAP algorithm

A drawback of the VA is that it does not provide any soft
output information, which is required by modern decoding
heuristics. However, the BCJR algorithm (Bahl et al., 1974)
provides such additional information.

For hardware implementations is it advantageous to use
the BCJR algorithm in the logarithm domain, which is
called log-MAP, or its low complexity version max-log-MAP
(Robertson et al., 1995). In this paper we consider the max-
log-MAP, because it provides low complexity without de-
grading the decoding performance significantly.

In the max-log-MAP (and also the BCJR algorithm) every
state is assigned two state metrics: the forward state metrics
α

(
sm
k

)
and the backward state metricsβ

(
sm
k

)
.

Max-log-MAP decoding consists of three phases:

1. forward recursion (calculates state metricsα
(
sm
k

)
)

2. backward recursion (calculates state metrics (β
(
sm
k

)
)

3. soft output calculation (usingα
(
sm
k

)
, β

(
sm
k+1

)
andyk)

The forward recursion is equal to that of the VA in Eq. (1).
For the backward recursion the states are processed in re-
versed order, i.e. from right to left. Details of the algorithm
can be found e.g. inLin and Costello(2004).

It can already be seen, that the recursion steps are im-
portant in both the VA and the max-log-MAP. It consists of
add-compare-select (ACS) operations in Eq. (1) and requires
permutations of state metrics according to the time varying
branch structure. In the following section, we will focus on
the hardware architecture for such a recursion unit for bit-
level trellises.

4 Proposed architectures

In this section we present the hardware architectures for the
VA and the max-log-MAP decoder for bit-level trellises. We
propose the use of a Banyan network to implement the flexi-
ble state transitions. Finally we present a folded architecture,
which reduces the decoder area to enable the implementation
for trellises with a large number of states.

4.1 Architectures for Viterbi and Max-Log-MAP
algorithm

The top level architectures for Viterbi and max-log-MAP de-
coder are depicted in Figs.2 and3. Although they look dif-
ferent, their core functionality is the recursion unit, which is
identical in both cases.

The recursion unit for a simple case of a 4 state trellis is
shown in Fig.4. All state metricsα

(
sm
k

)
of one time stepk are

recursion
unit

recursion
unit

survivor bit
memory

survivor bit
memory

parity check ROMparity check ROM

traceback
unit

traceback
unit

input
LLRs

output
bits

Figure 2. Top level architecture of the Viterbi decoder

recursion
unit

recursion
unit

α metric memoryα metric memory

parity check ROMparity check ROM

soft output
unit

soft output
unit

input
LLRs

output
LLRs (APP)

LLR
memory

LLR
memory

Figure 3. Top level architecture for the max-log-MAP decoder

calculated in parallel. The different trellis steps are calculated
consecutively, i.e. one trellis step per clock cycle. The state
metrics are temporarily stored in the registers.

One iteration consists of routing the state metrics through
the permutation network first. The routing is done accord-
ing to the branch structure of the trellis and is determined
by the columns of the PCMhk. Then the ACS units calcu-
late Eq. (1). Finally the state metrics are stored in the register
again.

Note, that the state metrics are directly fed back to the ACS
units. This maps the branches for code bit ’0’ to the hard-
ware.

The state metrics and received LLRsy are represented as
fixed point numbers. To keep the number of bits low and
therefore to save resources without provoking catastrophic
overflows, modulo arithmetic is used here (Hekstra, 1989).

4.2 Permutation network

An essential part of the trellis decoders is the permutation
network (PN). It routes the state metrics along the Bit “1”
branches during the recursion.

The PNs in the trellis decoders must haveM = 2N−K in-
puts and outputs. The network is controlled by the column
bits of the PCMhk and consists of 2× 2 butterfly switches,
which can permute or route through its two inputs.

We first investigate the use of the well known Benes PN
(Benes, 1964) and in a second step propose the use of a more
sophisticated network, the Banyan PN (Goke and Lipovski,
1973).

The Benes PN is capable of performing all possibleM!

permutations, although in this application onlyM are re-
quired. Therefore, the Benes PN uses more resources than
necessary. A drawback of the Benes PN is its elevated
number of 2· log2(M) − 1 stages, which directly lengthens

www.adv-radio-sci.net/12/61/2014/ Adv. Radio Sci., 12, 61–67, 2014

64 S. Scholl et al.: FPGA implementation of trellis decoders for linear block codes

ACS

ACS

ACS

ACS

PCM Memorycontains
state metric α

'1' branch

'0' branch

'1' branch

y
i

Figure 4. Architecture of the recursion unit

the maximum combinational path of the recursion unit and
thus decreases the throughput. Furthermore the Benes PN
requires a complex controlling logic, which maps the bits
from the PCM to the control bits of the switches, see Fig.7.

The second network studied is the Banyan PN. It performs
the necessary permutation with approximately half the num-
ber of stages (log2(M)) in comparison to the Benes PN. This
reduces the signal propagation time and improves through-
put. Moreover the Banyan PN has approximately half the
number of switches (see Fig.5). Another advantage is that
the bits of the columns of the PCM can directly be applied
to control the switches in the network. No extra controlling
logic is required. The small number of switches and the sav-
ing of the complex controlling logic makes the Banyan PN
the network of choice for this application.

In the following, we provide our method of how to build up
such a network. The Banyan PN is constructed from two But-
terfly PNs and a final permutation stage. The smallest Butter-
fly PN is composed of a single switch and larger ones can be
constructed recursively, i.e. a network withM inputs is ob-
tained from two Butterfly PNs withM/2 inputs.

We place the second Butterfly PN below the first one and
denote the outputs byS(i) with i = 0,1, ..,M/2− 1 andi =

M/2, ..,M − 1. The final stage is a column ofM/2 switches
that placed right of the two Butterfly PNs. Their inputs are
denoted byI (i) with i = 0,1, ..,M − 1 and their outputs by
B(i). The connections between the two Butterfly PNs and the
final stage is done by the following algorithm:
Finally, we connect the outputsB(i) of the final stage to the
outputsO(i) of the Banyan PN by using the following algo-
rithm:
Each input of the network has to be able to reach all the
M different output addresses and that is only possible with
N −K stages. Thus it is impossible to do all the required per-
mutations with a network with less stages than the Banyan.

Algorithm 1. Intermediate connections of a Butterfly PN.
Algorithm 1: Intermediate connections of a Butterfly PN
 for (i = 0 to (M/4 -1)) do
 I(2∗i) ← S(2∗i)
 I(2∗i + 1) ← S(2∗i + M/2)
 I(2∗i + M/2) ← S(2∗i + 1)
 I(2∗i + M/2 + 1) ← S(2∗i + M/2 + 1)
 end for

Algorithm 2. Output connections of a Banyan PN.
Algorithm 2: Output connections of a Banyan PN
 for (i = 0 to (M/2 -1)) do
 O(i) ← B(2∗i)
 O(i + M/2) ← B(2∗i + 1)
 end for

Figure6 shows the construction of an 8× 8 Banyan PN
using the algorithms from above.

4.3 Folding

For trellises with a large number of statesM, the above pre-
sented architecture grows quickly and may become too large
for an FPGA implementation. To counteract this problem,
we propose folding to reduce the required resources of the
decoder at the expense of a reduced throughput.

In the folded architecture not allM state metrics in one
trellis step are calculated in one clock cycle. Instead the state
metrics are calculated, e.g. in two clock cycles. In this case
half of the ACS units can be reused.

Furthermore it reduces the size of the PN by more than
half given that its construction is recursive (see above). Note,
that the folded Banyan PN withM/2 exactly fulfils the per-
mutation requirements of the folded architecture, and is thus
suitable for folded architectures.

The number of clock cycles required to calculate the state
metrics of one trellis step is called folding factorf and must
be a power of 2.

Due to folding the size of the PN, the number of ACS
units and the soft output unit (for the max-log-MAP decoder)
is largely reduced. However, some additional hardware re-
sources are needed to distribute the state metrics to the PN
and ACS units and registers to store the partially calculated
state metrics.

The area reduction of the soft output unit is directly pro-
portional to the folding factorf . Therefore folding is espe-
cially advantageous for the max-log-MAP decoder.

5 FPGA implementation

To evaluate the architectures in detail we have implemented
the architectures on a Xilinx Virtex 6 (XC6VLX75T-3)
FPGA using ISE 14.1. The architectures for the VA, the
max-log-MAP and their folded version have been evaluated
for trellises with different number of states. We analyse the

Adv. Radio Sci., 12, 61–67, 2014 www.adv-radio-sci.net/12/61/2014/

S. Scholl et al.: FPGA implementation of trellis decoders for linear block codes 65
4 :

bits of the PCM hk and consists of 2× 2 butterfly switches,
which can permute or route through its two inputs.

We first investigate the use of the well known Benes PN
(Benes (1964)) and in a second step propose the use of a more220

sophisticated network, the Banyan PN (Goke and Lipovski
(1973)).

The Benes PN is capable of performing all possible M !
permutations, although in this application only M are re-
quired. Therefore, the Benes PN uses more resources than225

necessary. A drawback of the Benes PN is its elevated num-
ber of 2 · log2(M)− 1 stages, which directly lengthens the
maximum combinational path of the recursion unit and thus
decreases the throughput. Furthermore the Benes PN re-
quires a complex controlling logic, which maps the bits from230

the PCM to the control bits of the switches, see Fig. 7.
The second network studied is the Banyan PN. It performs

the necessary permutation with approximately half the num-
ber of stages (log2(M)) in comparison to the Benes PN. This
reduces the signal propagation time and improves through-235

put. Moreover the Banyan PN has approximately half the
number of switches (see Fig. 5). Another advantage is that
the bits of the columns of the PCM can directly be applied
to control the switches in the network. No extra controlling
logic is required. The small number of switches and the sav-240

ing of the complex controlling logic makes the Banyan PN
the network of choice for this application.

In the following, we provide our method of how to build up
such a network. The Banyan PN is constructed from two But-
terfly PNs and a final permutation stage. The smallest Butter-245

fly PN is composed of a single switch and larger ones can be
constructed recursively, i.e. a network with M inputs is ob-
tained from two Butterfly PNs with M/2 inputs.

We place the second Butterfly PN below the first one and
denote the outputs by S(i) with i= 0,1, ..,M/2− 1 and i=250

M/2, ..,M −1. The final stage is a column of M/2 switches
that placed right of the two Butterfly PNs. Their inputs are
denoted by I(i) with i= 0,1, ..,M − 1 and their outputs by
B(i). The connections between the two Butterfly PNs and
the final stage is done by the following algorithm:255

Algorithm 1 Intermediate connections of a Butterfly PN
for (i= 0 to (M/4− 1)) do
I(2 ∗ i)← S(2 ∗ i)
I(2 ∗ i+ 1)← S(2 ∗ i+M/2)
I(2 ∗ i+M/2)← S(2 ∗ i+ 1)
I(2 ∗ i+M/2 +1)← S(2 ∗ i+M/2 +1)

end for

Finally, we connect the outputs B(i) of the final stage to
the outputs O(i) of the Banyan PN by using the following
algorithm:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

8 16 32 64 128 256

N
um

be
ro

fs
w

itc
he

s

Number of inputs

Benes
Banyan

Fig. 5. Number of switches used by the Benes and the Banyan PN

Control bits from PCM

Butterfly PN

Butterfly PN

Fig. 6. Eight input Banyan PN: it needs less switches than the Benes
PN and no controlling is needed

Algorithm 2 Output connections of a Banyan PN
for (i= 0 to (n/2− 1)) do
O(i)←B(2 ∗ i)
O(i+n/2)←B(2 ∗ i+ 1)

end for

Each input of the network has to be able to reach all the
M different output addresses and that is only possible with260

N−K stages. Thus it is impossible to do all the required per-
mutations with a network with less stages than the Banyan.

Fig. 6 shows the construction of an 8x8 Banyan PN using
the algorithms from above.

4.3 Folding265

For trellises with a large number of states M , the above pre-
sented architecture grows quickly and may become too large
for an FPGA implementation. To counteract this problem,
we propose folding to reduce the required resources of the
decoder at the expense of a reduced throughput.270

Figure 5. Number of switches used by the Benes and the Banyan
PN

Control bits from PCM

Butterfly PN

Butterfly PN

Figure 6. Eight input Banyan PN: it needs less switches than the
Benes PN and no controlling is needed

resource consumption regarding the required look-up tables
(LUTs) after place & route.

The numbers presented are only dependent on the num-
ber of trellis statesM and not on the number of trellis steps
N . The number of trellis stepsN only influences the size of
the memories. However this is not the critical resource in the
design.

The quantization of the metrics is dependent on the context
in which the decoders are used. However it has been experi-
enced by simulations that a state metric quantization of 7 Bits
for the VA and 8 bits for the max-log-MAP is reasonable.

In Figs.8 and9 the required LUTs for the unfolded archi-
tecture (f = 1) is shown, separated for each decoder part.

For the VA almost 50 % of the LUTs are occupied by the
ACS units. The PN also consumes nearly 50 % of the LUTs.
Therefore the ACS units and the PN are the dominating parts.

Complex Controlling Logic

Bits from PCM memory

Figure 7. Eight input Benes PN: it needs more switches than the
Banyan PN and additional controlling is needed

0

500

1000

1500

2000

2500

3000

8 16 32 64

LU
Ts

Trellis states

CONTROL UNIT
PERMUTATION NETWORK

ACS UNITS

Figure 8. Viterbi decoder: look-up tables

The remaining fraction is occupied by the controlling, which
also includes the traceback unit.

The max-log-MAP is dominated by the soft output unit,
which needs approximately 50 % of all LUTs. The PN and
the ACS units consume around 25 % each.

In Figs.10 and11 the number of required LUTs for dif-
ferent folded architectures are shown. It shows how the oc-
cupied resources reduce and allows for the implementation
of larger trellises. The throughput decrease for the VA can be
seen in Fig.12.

6 Conclusions

In this paper we have investigated hardware architectures for
bit-level trellises. We have selected the trellis construction
based on the PCM, because it provides maximum flexibility.
After a brief review of the VA and the BCJR decoding algo-
rithms, we proposed efficient hardware architectures. A key

www.adv-radio-sci.net/12/61/2014/ Adv. Radio Sci., 12, 61–67, 2014

66 S. Scholl et al.: FPGA implementation of trellis decoders for linear block codes

0

1000

2000

3000

4000

5000

6000

7000

8 16 32 64

LU
Ts

Trellis states

CONTROL UNIT
ACS UNITS

PERMUTATION NETWORK
SOFT OUTPUT UNIT

Figure 9. Max-log-MAP decoder : look-up tables

0

2000

4000

6000

8000

10000

12000

14000

32 64 128 256

LU
Ts

Trellis states

Parallel
Folding Factor 2
Folding Factor 4
Folding Factor 8

Figure 10. Viterbi decoder: LUTs dependent on folding factor

feature is the Banyan PN, which maps the time variant prop-
erty of the trellis efficiently to hardware and significantly out-
performs standard solutions like the Benes PN. Furthermore
we presented a folded version of the architecture to enable
the implementation for large trellises. Finally the resource
consumption and throughput of the architecture have been
evaluated on a Xilinx Virtex 6 FPGA.

Acknowledgements.We gratefully acknowledge partially financial
support by the DFG (project-ID: KI 1754/1-1) as well as by the
Center of Mathematical and Computational Modelling of the
University of Kaiserslautern. We thank F. Kienle for his valuable
comments and suggestions.

Edited by: J. Götze
Reviewed by: two anonymous referees

0

5000

10000

15000

20000

25000

30000

32 64 128 256

LU
Ts

Trellis states

Parallel
Folding Factor 2
Folding Factor 4
Folding Factor 8

Figure 11.Max-log-MAP decoder: LUTs dependent on folding fac-
tor

0

20

40

60

80

100

120

140

160

180

16 32 64 128 256

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

Trellis states

Parallel
Folding Factor 2
Folding Factor 4
Folding Factor 8

Figure 12.Viterbi decoder: throughput dependent on folding factor

References

Bahl, L., Cocke, J., Jelinek, F., and Raviv, J.: Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate, IEEE T. In-
form. Theory, IT-20, 284–287, 1974.

Benes, V. E.: Optimal Rearrangeable Multistage Connecting Net-
works, The Bell System Technical Journal, 4, 1641–1656, 1964.

Goke, L. R. and Lipovski, G. J.: Banyan Networks for Partitioning
Multiprocessor Systems, 1st Annual Symposium on Computer
Architecture, 21–28, 1973.

Hekstra, A. P.: An Alternative to Metric Rescaling in Viterbi De-
coders, IEEE T. Commun., 37, 1220–1222, 1989.

Kim, S., Ryoo, S., and Lee, S.: Block Turbo Codes Using Multiple
Soft Outputs, in: Proceedings of the 3rd ISTC, Vol. 1, 247–250,
Brest, 2003.

Lin, S. and Costello, D.: Error Control Coding 2nd., Prentice Hall
PTR, Upper Saddle River, New Jersey, USA, 2004.

Liu, C. Y. and Lin, S.: Turbo encoding and decoding of
Reed-Solomon codes through binary decomposition and self-
concatenation, IEEE T. Commun., 52, 1484–1493, 2004.

Adv. Radio Sci., 12, 61–67, 2014 www.adv-radio-sci.net/12/61/2014/

S. Scholl et al.: FPGA implementation of trellis decoders for linear block codes 67

Pyndiah, R., Glavieux, A., Picart, A., and Jacq, S.: Near optimum
decoding of product codes, in: Proc. IEEE Global Telecommuni-
cations Conf. GLOBECOM ’94. Communications: The Global
Bridge, 339–343, 1994.

Robertson, P., Villebrun, E., and Hoeher, P.: A Comparison of Op-
timal and Sub-Optimal MAP decoding Algorithms Operating
in the Log-Domain, in: Proc. 1995 International Conference on
Communications (ICC ’95), 1009–1013, Seattle, Washington,
USA, 1995.

Tanner, R. M.: A Recursive Approach to Low Complexity Codes,
IEEE T. Inform. Theory, IT-27, 533–547, 1981.

Vardy, A. and Be’ery, Y.: Bit-level soft-decision decoding of Reed-
Solomon codes, IEEE T. Commun., 39, 440–444, 1991.

Viterbi, A. J.: Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm, IEEE T. Inform.
Theory, 13, 260–269, 1967.

Wolf, J.: Efficient maximum likelihood decoding of linear block
codes using a trellis, IEEE T. Inform. Theory, 24, 76–80, 1978.

www.adv-radio-sci.net/12/61/2014/ Adv. Radio Sci., 12, 61–67, 2014

