
Adv. Radio Sci., 12, 75–81, 2014
www.adv-radio-sci.net/12/75/2014/
doi:10.5194/ars-12-75-2014
© Author(s) 2014. CC Attribution 3.0 License.

On parallel random number generation for accelerating simulations
of communication systems
C. Brugger, S. Weithoffer, C. de Schryver, U. Wasenmüller, and N. Wehn

Microelectronic Systems Design Research Group, University of Kaiserslautern, 67663 Kaiserslautern, Germany

Correspondence to:C. Brugger (brugger@eit.uni-kl.de)

Received: 20 December 2013 – Accepted: 5 February 2014 – Published: 10 November 2014

Abstract. Powerful compute clusters and multi-core systems
have become widely available in research and industry nowa-
days. This boost in utilizable computational power tempts
people to run compute-intensive tasks on those clusters, ei-
ther for speed or accuracy reasons. Especially Monte Carlo
simulations with their inherent parallelism promise very high
speedups. Nevertheless, the quality of Monte Carlo simula-
tions strongly depends on the quality of the employed ran-
dom numbers. In this work we present a comprehensive anal-
ysis of state-of-the-art pseudo random number generators
like the MT19937 or the WELL generator used for parallel
stream generation in different settings. These random num-
ber generators can be realized in hardware as well as in soft-
ware and help to accelerate the analysis (or simulation) of
communications systems. We show that it is possible to gen-
erate high-quality parallel random number streams with both
generators, as long as some configuration constraints are met.
We furthermore depict that distributed simulations with those
generator types are viable even to very high degrees of par-
allelism.

1 Introduction

The ongoing research activities and technological progress
over the last years have led to a tremendous increase in
the complexity of current systems and scientific challenges.
More and more realistic and highly sophisticated models re-
quire numerical computations, since analytical solutions are
not available in many cases. For example in the analysis of
communications systems, independent random numbers are
required in a lot of places, e.g. for the generation of payload
data, additive white gaussian channel noise, or the modeling
of fading channels. Furthermore, we can mention modeling

carrier offsets and timing offsets, and the multiple channels
between transmit and receive antennas in multiple-input and
multiple-output (MIMO) systems.

Monte Carlo (MC) simulations remain a widely employed
universal method to solve problems when other approaches
are not applicable (Korn et al., 2010). It is important to note
that the result quality of a MC simulation strongly depends
on the quality of the RNs used. When only one random num-
ber generator (RNG) is used for the complete simulation (for
example for distributing one random number (RN) stream to
only one or a smaller number of processing elements (PEs)),
it is sufficient to instantiate a single generator with the de-
sired quality properties.

Nevertheless, in order to obtain the results fast and with
the desired accuracy, parallel simulations are mandatory. MC
simulations are perfect candidates for parallel simulation,
since they rely on a large number of independent experiments
that can be carried out simultaneously. However, the gener-
ation of high-quality independent and identically distributed
(i.i.d.) RNs is a big challenge. With huge computing clusters
and theCloud becoming accessible for more and more re-
searchers and professionals, it is time to have a closer look
on possible pitfalls and quality issues arising from highly par-
allel simulations.

Various approaches for creating i.i.d. parallel RN streams
have been proposed up to now that we study in detail in
this paper. We give a short summary about available gen-
eration methods for parallel RN streams and how they can
be tested, together with an overview about related work. For
the famous MT19937 Mersenne Twister (MT) and the well-
equidistributed long-period linear (WELL) generator pro-
posed by Pierre L’Ecuyer, we show that randomly seeding
parallel RNGs is safe, also for very high degrees of par-
allelism. We have carried out a comprehensive analysis of

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.



76 C. Brugger et al.: On Parallel Random Number Generation

possible inter-stream correlations and substreams in the pop-
ular MT19937 pseudo random number generator (PRNG)
using the TestU01 test suite, a popular test framework for
RN quality analysis. We show that for a well-defined seed-
ing schemes no peculiarities are observed. In summary we
demonstrate that the use of standard state-of-the-art PRNGs
like the MT and the WELL is safe, also for parallel simula-
tions.

2 Background

The generation of high-quality RNs in high volumes has long
been a hot topic in research. In general, three types of RNs
exist:

– True RNs,

– quasi RNs, and

– pseudo RNs.

At a first glance,true RNsseem to be most desirable, since
they are really random and can not predicted in any way.
However, true RNs come with some drawbacks: Firstly, their
generation typically relies on a physical process and there-
fore needs a special device that is in general not available in
generic computing systems like standard infrastructure as a
service (IaaS) or platform as a service (PaaS) clusters or data
centers. Secondly, it is quite likely that the untreated output
of a true RNG is biased. Therefore the output stream needs
to be monitored continuously, and a bias correction is needed
that is adjusted continuously (Hill et al., 2013). Thirdly, true
RNs are not repeatable, and forbid re-executing a simulation
several times with generating exactly the same output – a
knock-out criterion for science in general.

Quasi RNsare not random at all, but try to cover a (multi
dimensional) space with certain characteristics. Prominent
examples are Sobol or Halton sequences used for MC simu-
lations (Korn et al., 2010). We do not consider true and quasi
RNs further in this work, details can be found in literature
(Knuth, 1997; Korn et al., 2010).

For the main reason of keeping simulations and calcula-
tions reproducible, PRNGs are the most favorable choice for
simulation purposes. They try to generate a sequence look-
ing like “good” RNs by a deterministic algorithm, this means
i.i.d. from a statistical viewpoint (L’Ecuyer, 2007). PRNGs
have a number of advantages: they can be run on different
execution platforms, require no additional hardware support,
and produce exactly the same output streams when seeded
with equal values. In the following we will therefore focus
on PRNGs only.

2.1 Generating parallel random numbers

A comprehensive summary about generation methods
for parallel RN streams has been given recently by
Hill et al. (2013).

This section will give a brief overview and comments on
some of the methods for generating multiple independent RN
streams. We focus on approaches that can be realized in hard-
ware by either utilizing multiple RNGs or a fast, parallelized
RNG and use WELL and MTs generators as examples. Par-
allel RN streams can be generated from:

– Multiple identical RNGs starting from different posi-
tions in the period,

– multiple RNGs of different type,

– a single parallelized RNG, or

– combinations of the above.

Implications of different approaches on the quality of statis-
tics are discussed in detail in Sects.4.1to 4.3.

2.1.1 Multiple generators of the same type

Using identical RNGs and starting them from a different po-
sition in the generator period corresponds to partitioning a
single RN stream into blocks (Blocking) and is suitable when
the number of consumed RNs for each of the parallel streams
is known and bounded. Multiple instances of one RNG type
can then be initialized to a precomputed state. This so-called
jump-aheadtechnique (Haramoto et al., 2008) allows for de-
fined distances between the streams of the RNGs (w.r.t. po-
sitions in the RNG period). The initialization of the multi-
ple generators can also be done by employing other RNGs.
WELL and MT generators, for example, are commonly ini-
tialized (seeded) by other small RNGs (seed generators).
This approach is calledRandom Spacing.

As these also have to be seeded, we realize a random seed-
ing of the WELL and MT by seeding the seed generators
differently.

2.1.2 Multiple generators of different type

The straight-forward way of getting RNGs of different type
is to use a different algorithm for each of the RNGs. Because
of the limited number of known algorithms with each hav-
ing varying statistical properties and implementation com-
plexities, such an approach poses strict limits on the number
and quality of RNs generated in parallel for obvious reasons
and is not considered here. The WELL and MT generators,
however, allow the use of the same algorithm with differ-
ent parameter sets that correspond to different underlying re-
currence polynomials. Correlations between the RN streams
generated by following this approach are considered highly
unlikely. As the parameter sets for the WELL and MT gener-
ator types have to be found by extensive search, parallelism
by using this so-calledParametrizationis also limited (Tian
and Benkrid, 2009).

Adv. Radio Sci., 12, 75–81, 2014 www.adv-radio-sci.net/12/75/2014/



C. Brugger et al.: On Parallel Random Number Generation 77

2.1.3 Single, parallelized generator

Generating parallel streams of RNs by using a single paral-
lelized RNG corresponds to parsing a single RN stream into
substreams. If the RNs from a single stream are distributed
according to a round-robin scheme (i.e. the first RN to the
first substream, the second RN to the second substream, ...),
the resulting partitioning is calledLeap Frogpartitioning (see
Hill et al., 2013).

2.2 Quality issues

As stated before, PRNGs do not produce real RNs, but try
to create a “good” output streams that looks random. Eval-
uating the quality of PRNGs has been an active topic for
a long time. To a special degree, this research was driven
by Pierre L’Ecuyer, Michael Mascagni, and others who in-
vestigated novel RNG approaches. For example, L’Ecuyer
has formulated several key criteria for “good” RNGs: a long
period, repeatable outputs, portability to different execution
platforms, and the ability to split the output sequence into
multiple independent blocks (what means they should imple-
ment an efficient jump-ahead strategy) and each block again
into substreams with the leap frog approach (L’Ecuyer, 2007;
L’Ecuyer and Panneton, 2005). D. E. Knuth has summarized
the basic test strategies for single-stream RNGs in his famous
book “The Art of Computer Programming” (Knuth, 1997),
with the first edition already released in 1969. Nowadays, the
TestU01 suite developed by L’Ecuyer in 2007 (L’Ecuyer and
Simard, 2007) is considered the most comprehensive one and
is preferred by many researchers (Salmon et al., 2011; Hill
et al., 2013).

A first requirement for a good parallel PRNG is that it also
has to be a good sequential PRNG (Srinivasan et al., 2003).
Obviously, when testing different substreams of one PRNG,
it is mandatory to ensure that exactly the same substream can
be outputted again to allow debugging and reproducibility of
the test results (Hill et al., 2013).

In 2003, Srinivasan et al. have stressed the impor-
tance of test concepts for parallel RNGs, in particular for
high-performance computing (HPC) applications (Srinivasan
et al., 2003). They have introduced the termsintra-stream
and inter-stream correlationsto highlight that both charac-
teristics are crucial for a “good” parallel RNG: the quality of
each substream itself, and the independence of all substreams
from each other. They also presented first test strategies for
parallel RNs.

In order to test inter-stream correlations, Salmon et
al. (2011) have concatenated blocks of multiple substreams
with a round-robin scheme to a single test stream that they
have fed into the TestU01 suite (Salmon et al., 2011). Due
to the correlation tests included in TestU01, correlations be-
tween the substreams coming from different generators are
detected. We also follow this approach in our work, but show

Table 1.Ressource consumption of implementations for FPGAs.

max. Freq. Throughput
RNG BRAMs Slices [MHz] [Gbps]

MT199371 1 57 100.0 3.20
TinyMT1 0 65 100.0 3.20
MT199372 2 330 24.2 0.77

3-CP MT3 2 207 258.3 24.03
4-IP MT3 4 290 277.7 35.54
8-IP MT3 8 566 283.5 72.58

1 On a MaxWorkstation (Virtex-6) from Maxeler Technologies Inc.
2 (Chandrasekaran and Amira, 2008) on a Virtex-E.
3 (Dalal and Stefan, 2008) on a Virtex-4.

that there may be problems when not carefully selecting the
right assembly configuration (see Sect.4.3).

3 Related work

A hardware implementation of the MT algorithm has, for ex-
ample, been reported by (Chandrasekaran and Amira, 2008).

Parallel RN generation by multiple MT generator cores
with different parameter sets was described by (Tian and
Benkrid, 2009). They reported their design to outperform
CPU and GPU implementations of the MT algorithm by a
factor of 25× and 9× respectively w.r.t. throughput. An in-
vestigation of the statistical properties of the generated num-
bers, however, was not performed.

Dalal and Stefan presentedInterleaved Parallelization(IP)
and Chunked Parallelization(CP), two methodologies for
parallelizing RNGs of MT and WELL type (Dalal and Ste-
fan, 2008). There, the state vector of the RNG is partitioned
in a way that multiple numbers can be generated in parallel.
A corner case of this scheme, a fully parallel implementa-
tion of the MT, was reported by Sriram and Kearney (Sriram
and Kearney, 2009). Both parallelization schemes result in
a Leap Frogpartitioning at the outputs of the parallelized
RNGs. However, they are only practical for grades of paral-
lelism that are a divider of the state vector size (that is 624
for the MT19337).

Table 1 lists the resource consumption of selected MT
implementations on field programmable gate array (FPGA).
Even if the different target FPGAs are taken into account it
becomes clear that IP and CP are more hardware efficient
than using multiple instances of the respective serial genera-
tor. We have been able to confirm these numbers in our own
investigations. While BRAMs can become a critical resource
in highly parallel RNG architectures we also considered the
TinyMT with an internal state of 127 bits, far smaller than
the MT with 19937 bits. The TinyMT only uses registers for
the state storing, but is characterized by a smaller period.

L’Ecuyer and Panneton have compared throughput and
jump-ahead computation times for LFSRs, MT, and the

www.adv-radio-sci.net/12/75/2014/ Adv. Radio Sci., 12, 75–81, 2014



78 C. Brugger et al.: On Parallel Random Number Generation

Table 2.Upper bound probability of a collision for random number generators running at 5 GHz for 100 years.

Chip with System of 1000 System of one
RNG 2 generators 1000 RNGs of such chips million chips

TinyMT <10−18 <10−13 <10−7 <10−1

MT19937 <10−5982 <10−5976 <10−5970 <10−5964

WELL44497b <10−13375 <10−13369 <10−13363 <10−13357

WELL generator in 2005 (L’Ecuyer and Panneton, 2005).
They have shown that the jump-ahead computation time
exponentially increases with the number of internal states in
the PRNG.

Hill et al. (2013) have carried out an analysis on various
Mersenne Twister for Graphic Processors (MTGP) configu-
rations with the TestU01 Big Crush battery in 2012 and have
found only a few weaknesses (Hill et al., 2013). They con-
cluded that the use of the MTGP with longer periods there-
fore is safe.

At SC11, Salom et al. (2011) have presented an evaluation
of so-calledcounter-based PRNGs. They are highly scalable,
can be implemented on central processing unit (CPU), graph-
ics processor unit (GPU), and FPGA based architectures, and
therefore seem to be very promising for distributed HPC sim-
ulations. The presented PRNGs pass the Big Crust test bat-
tery of the TestU01 suite without failures and even beat the
MT19337. At the same time, the counter-based generators
can achieve around the same throughput as the MT19337
in software. However, counter-based PRNGs have not been
considered for hardware implementation up to now, this is
ongoing research due to their higher implementation com-
plexity.

4 New investigations

We have seen that a lot of approaches have been followed to
generate and test parallel RNs. However, we had difficulties
to evaluate the scalability and efficiency of these methods for
highly parallel settings. For example, the leap frog approach
does not scale above the dimensionality of the PRNG, i.e.
627 for the MT19937 (Hill et al., 2013). Splitting the RN
stream into blocks in advance with the jump-ahead algorithm
is critical if it cannot be ensured that the amount of consumed
numbers never exceeds the defined block sizes. Furthermore,
also the jump-ahead computations are quite compute inten-
sive and do not scale very well (Hill et al., 2013). Instan-
tiating multiple generators with different parameters sounds
promising, but also in this case the available number of con-
figuration is limited (Tian and Benkrid, 2009).

Therefore we have investigated partitioning schemes that
aim at high degrees of parallel RN streams, in particular ran-
dom seeding approaches with standard generators. The re-
sults are given in the following sections.

4.1 Mersenne twister substream analysis

Since the MT19937 is one of the most popular PRNGs and
implemented in many available libraries and software tools,
we have analyzed the quality of MT19937 substreams gener-
ated with the leap frog method. We have used the MT19937
C implementation as provided by Matsumoto and Nishimura,
refined by Richard Wagner in 20091. The seed was fixed to
0x00001571.

In total we have run 88 test on a selection of substreams
from up to 64 total substreams. Due to the high runtimes even
on the employed compute cluster especially for higher num-
bers of substreams, we were not able to check all configura-
tions. In 58 of 88 cases, only tests number 80 and 81 (that are
always failed by the MT19937) have failed. In 27 cases one
additional test was suspicious, and only in 3 cases two addi-
tional tests showed suspicious outputs. In summary, the ob-
tained results have shown no suspicious values at all. There-
fore we conclude that it is safe to split standard MT19937
streams into up to 64 substreams, what should be sufficient
for supplying up to 64 PEs with one generator instance.

4.2 Investigating seed collisions

One method of generating independent random number gen-
erators is to use multiple instances of the same generator
with different seeds. Each obtained output stream is then a
subsequence of one long period sequence, while the starting
point depends on the seed. For random streams, the distance
between two streams is unknown and they might even over-
lap. Overlapping streams are highly correlated and have to be
avoided. Before considering this, let us investigate the prob-
ability it is that two substreams overlap.

It is helpful to visualize the period as a circle in which each
instance of a random number generator draws consecutive
numbers on this circle, see Fig.1. When two seeds are too
close together on this circle, the streams of random numbers
overlap and we have a stream collision. In the following setup
we considern independent RNGs with a period length ofL.
For each RNG we drawl consecutive RNs. Let us consider
two RNGs. The probability for the second one to not collide

1http://www.comp.nus.edu.sg/~noi/tasks/2010/PKMATCH/
MersenneTwister.h, last access: 5 February 2014.

Adv. Radio Sci., 12, 75–81, 2014 www.adv-radio-sci.net/12/75/2014/

http://www.comp.nus.edu.sg/~noi/tasks/2010/PKMATCH/MersenneTwister.h
http://www.comp.nus.edu.sg/~noi/tasks/2010/PKMATCH/MersenneTwister.h


C. Brugger et al.: On Parallel Random Number Generation 79

seed 1

seed 2

seed 3

seed 2

seed 3

seed 1

collision

Figure 1. The circles represent the whole period of the random
number generator. We consider three instances of the same random
number generator. Each generator is seeded with a random number
and a specific amount of random numbers are drawn from it. In the
left case the streams do not overlap, while on the right side the first
random number generator collides with the second.

with the first one is:

P2 =
L − 2l + 1

L
. (1)

When we add one more, the probability of this third gener-
ator not colliding with the first two depends on their actual
position. The probability is the least when both are far apart.
In general it is:

P3 ≥ P2
L − 2(2l − 1)

L
. (2)

We can extend this series and get an upper bound estimate
for the collision probabilityP̂n:

P̂n = 1− Pn ≤ 1−

n∏
i=1

L − (i − 1)(2l − 1)

L
. (3)

We assume that our random number generators run with
5 GHz, generating one RN per clock cycle, running for
100 years. This results in anl of about 1018. For the MT
the state vector has 19 937 bits resulting in a period of about
106002. We consider chips with 1000 of such generators. We
are interested in the collision rate for such chips and huge
system containing up to one millions of them. To calculate
the fractions containing such large numbers we have used the
fractionspackage in Python. To reduce the number of multi-
plications we estimate the collision rate with an even higher
upper bound as:

P̂n ≤ 1−

(
L − (n − 1)(2l − 1)

L

)n−1

. (4)

This power can be efficiently computed with only log2(n−1)

multiplications instead ofn−1 required for Eq. (3). Forn =

106 these are 20 instead of 999 999 multiplications.

Table 3.Test failing for our robust parallel seeding procedure.

number of failing tests for block size of
RNGs 1 4 8 12 30 1 k 10 k 100 k 1 M

1 2 2 2 2 2 2 2 2 2
2 2 2 – – – – – 2 2
4 2 – – – – – – 2 2
8 2 – – – – – – 2 2

16 – – – – – – – 2 2
64 – – – – – – – 2 2

256 – – – – – – – 2 2
1024 – – – – – – – 2 2

2 Parallel
Streams

Serialized Stream

...

...

...
d

RNG 1

RNG 2

Figure 2. Showing how parallel streams of two independent RNGs
can be serialized when run on a serial processor. In the shown case
the parallel program operates on equal blocksd of random numbers.

The resulting probabilities for various RNGs are shown
in Table 2. For RNGs with reasonably large state vectors
the probability of a seed collision is below 10−5964 even for
incredibly large systems containing one billion RNGs run-
ning at 5 GHz for 100 years. We can conclude that when the
seed is chosen randomly a collision is negligibly unlikely for
the MT19937 and WELL44497b. However, for the TinyMT
more advanced parallelization methods should be utilized,
like e.g. parameterization.

4.3 Inter-stream correlations

In the last section we have seen that stream collisions are
highly unlikely for different seeds. Based on this insight it
seems reasonable to realize parallel random number genera-
tion by using independent RNGs each with a random seeds.
However then question remains what the quality of these
streams is. The generator might for example show long-
term correlations resulting in inter-stream correlations, as
discussed in Sect.2.2.

We now derive a methodology on how to analyze inter-
stream correlations. For this it is helpful to keep the appli-
cation in mind that uses the parallel RNG. In general it is
possible to execute a parallel program on a serial processor
for which only one instruction is executed at a specific time.
That means a single stream of random numbers exists that
is equal to how the parallel RNGs are accessed during ex-
ecution. Thus we can analyze parallel RNGs also with the
standard test suites for single streams by using this serialized
stream.

While in general the serialized stream is an arbitrarily in-
terleaved stream from the parallel streams, it is helpful to

www.adv-radio-sci.net/12/75/2014/ Adv. Radio Sci., 12, 75–81, 2014



80 C. Brugger et al.: On Parallel Random Number Generation

Table 4.Test failing with Tausworthe seeding.

RNG count: 1 2 4 8 16 32 64 128

MT19937 2 2 2 41 64 79 100 106
WELL44497b 2 2 2 102 88∗ 89∗ 89∗

∗ Tested with smaller test-suite Crush instead of Big Crush.

consider some representative cases. We consider that the pro-
gram operates on blocks of random numbers of the same size
d. This is clearly the case for Monte Carlo simulations, used
very widely in communication system simulations. Then we
can serialize the parallel streams as shown in Fig.2.

4.4 Random seeding

Random seeding requires the use of a RNG itself to generate
numbers of all the seed values. In Sect.4.2 the probabilities
for seed collisions are only valid when all starting points are
equally likely. This means the seeding procedure has to be
carefully validated, such that it does not favor specific start-
ing points.

For our robust seeding procedure, we use the seeding algo-
rithm integrated in the MT19937 C implementation (version
2002) and seed the RNGn with seed0+n. We have tested the
serialized stream for eight independent seed0 and calculated
the mean of failing tests. All investigations have been made
with the Big Crush battery from the TestU01 suite v1.2.3.
The result is shown in Table3.

For one generator already two test are failing, for which
the MT is known for. However, for increasing numbers of
RNGs and block sizes, the serialized stream gets even bet-
ter. For block sizes of 100 k and higher the same TestU01
results are as for single MT stream. This is due to the limited
analysis window of the TestU01 suite as sample sizes of the
tests that have been conductedn have been in the order of
109

≥ n ≥ 106.
As a counterexample we have implemented a naive seed-

ing procedure based on the Tausworthe 88 RNG. It seeds
the complete state vectorn of the MT with the first values
from a Tausworthe RNG. This Tausworthe 88 is itself seeded
with the vector [0x88cb47c9 + 2 (seed0 +n), 0x8a9cdf65 + 4
(seed0 + n), 0xcaf40ed9 + 8 (seed0 + n)]. In this case only a
block sized of one has been considered for eight indepen-
dent seed0. The number of failing test are shown in Table4.
Starting from eight RNGs the number of failing tests dramat-
ically increases, rendering this naive procedure useless. This
stresses the importance of the seeding method.

For the robust seeding procedure we can conclude that no
inter-stream correlations are observable. Further the use of
independent MT generators even improves their quality.

5 Conclusion

The recent increase in available computation power on highly
parallel computing clusters or theCloud have enabled re-
searchers and professionals to run distributed Monte Carlo
simulations easier than ever before. However, those paral-
lel simulations require high-quality parallel random number
streams. In this work we have analysed to which extent state-
of-the-art PRNG qualify for their employment in parallel set-
tings. We show that the popular MT19937 Mersenne Twister
and the superior WELL random number generator are able to
create high-quality parallel random number streams, in par-
ticular with the random seeding method. Furthermore we re-
veal that seed collisions for those two generator types are
very unlikely, even for high degrees of parallelism, and that
no inter-stream correlations are observable. Nevertheless, the
parallel seeding method has to be carefully selected. We
present a working method and show how to test it. All in
all, we conclude that applications involving parallel random
number streams need special attention on this point, though
available generators are well-applicable for these tasks.

Acknowledgements.We gratefully acknowledge the partial finan-
cial support from the Center of Mathematical and Computational
Modelling (CM)2 of the University of Kaiserslautern and from the
German Federal Ministry of Education and Research under grant
number 01LY1202D. The authors alone are responsible for the
content of this paper.

Edited by: J. Götze
Reviewed by: M. Lechtenberg and one anonymous referee

References

Chandrasekaran, S. and Amira, A.: High Performance FPGA Imple-
mentation of the Mersenne Twister, in: Electronic Design, Test
and Applications, DELTA 2008, 4th IEEE International Sympo-
sium on, 482–485, doi:10.1109/DELTA.2008.113, 2008.

Dalal, I. L. and Stefan, D.: A Hardware Framework for the Fast
Generation of Multiple Long-period Random Number Streams,
in: Proceedings of the 16th international ACM/SIGDA sympo-
sium on Field programmable gate arrays, FPGA ’08, 245–254,
ACM, New York, NY, USA, doi:10.1145/1344671.1344707,
2008.

Haramoto, H., Matsumoto, M., Nishimura, T., Panneton, F.,
and L’Ecuyer, P.: Efficient Jump Ahead for F2-Linear Ran-
dom Number Generators, INFORMS J. Comput., 20, 385–390,
doi:10.1287/ijoc.1070.0251, 2008.

Hill, D. R. C., Mazel, C., Passerat-Palmbach, J., and Traore, M. K.:
Distribution of random streams for simulation practitioners, Con-
curr. Comp.-Pract. E., 25, 1427–1442, doi:10.1002/cpe.2942,
2013.

Knuth, D. E.: Seminumerical Algorithms, vol. 2 of The Art of Com-
puter Programming, Addison-Wesley, Reading, Massachusetts, 3
Edn., 1997.

Adv. Radio Sci., 12, 75–81, 2014 www.adv-radio-sci.net/12/75/2014/

http://dx.doi.org/10.1109/DELTA.2008.113
http://dx.doi.org/10.1145/1344671.1344707
http://dx.doi.org/10.1287/ijoc.1070.0251
http://dx.doi.org/10.1002/cpe.2942


C. Brugger et al.: On Parallel Random Number Generation 81

Korn, R., Korn, E., and Kroisandt, G.: Monte Carlo Methods and
Models in Finance and Insurance, Boca Raton, FL: CRC Press,
2010.

L’Ecuyer, P.: Pseudorandom Number Generators, Tech. rep., DIRO,
Université de Montreal, C.P. 6128, Succ. Centre-Ville Mon-
tréal (Québec), Canada, H3C 3J7, available at:http://www.iro.
umontreal.ca/~lecuyer/myftp/papers/eqf.pdf(last access: 26 Au-
gust 2014), 2007.

L’Ecuyer, P. and Panneton, F.: Fast random number generators
based on linear recurrences modulo 2: overview and compari-
son, in: Simulation Conference, 2005 Proceedings of the Winter,
110–119, doi:10.1109/WSC.2005.1574244, 2005.

L’Ecuyer, P. and Simard, R.: TestU01: A C library for empirical
testing of random number generators, ACM Trans. Math. Soft-
ware, 33, 22-1–22-40, doi:10.1145/1268776.1268777, 2007.

Salmon, J., Moraes, M., Dror, R., and Shaw, D.: Parallel random
numbers: As easy as 1, 2, 3, in: High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Con-
ference for, 1–12, 2011.

Srinivasan, A., Mascagni, M., and Ceperley, D.: Testing Paral-
lel Random Number Generators, Parallel Comput., 29, 69–94,
doi:10.1016/S0167-8191(02)00163-1, 2003.

Sriram, V. and Kearney, D.: An FPGA Implementation of a
Parallelized MT19937 Uniform Random Number Generator,
EURASIP Journal on Embedded Systems, 2009, 507426,
doi:10.1155/2009/507426, 2009.

Tian, X. and Benkrid, K.: Mersenne Twister Random Number Gen-
eration on FPGA, CPU and GPU, in: Adaptive Hardware and
Systems, 2009. AHS 2009, NASA/ESA Conference on, 460–
464, doi:10.1109/AHS.2009.11, 2009.

www.adv-radio-sci.net/12/75/2014/ Adv. Radio Sci., 12, 75–81, 2014

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/eqf.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/eqf.pdf
http://dx.doi.org/10.1109/WSC.2005.1574244
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1016/S0167-8191(02)00163-1
http://dx.doi.org/10.1155/2009/507426
http://dx.doi.org/10.1109/AHS.2009.11

