Adv. Radio Sci., 12, 7581, 2014 .
www.adv-radio-sci.net/12/75/2014/ Ad vVancesin

doi:10.5194/ars-12-75-2014 Radio Science
© Author(s) 2014. CC Attribution 3.0 License.

On parallel random number generation for accelerating simulations
of communication systems

C. Brugger, S. Weithoffer, C. de Schryver, U. Wasenmdiller, and N. Wehn
Microelectronic Systems Design Research Group, University of Kaiserslautern, 67663 Kaiserslautern, Germany

Correspondence taC. Brugger (brugger@eit.uni-kl.de)

Received: 20 December 2013 — Accepted: 5 February 2014 — Published: 10 November 2014

Abstract. Powerful compute clusters and multi-core systemscarrier offsets and timing offsets, and the multiple channels
have become widely available in research and industry nowabetween transmit and receive antennas in multiple-input and
days. This boost in utilizable computational power temptsmultiple-output (MIMO) systems.
people to run compute-intensive tasks on those clusters, ei- Monte Carlo (MC) simulations remain a widely employed
ther for speed or accuracy reasons. Especially Monte Carlainiversal method to solve problems when other approaches
simulations with their inherent parallelism promise very high are not applicableiorn et al, 2010. It is important to note
speedups. Nevertheless, the quality of Monte Carlo simulathat the result quality of a MC simulation strongly depends
tions strongly depends on the quality of the employed ran-on the quality of the RNs used. When only one random num-
dom numbers. In this work we present a comprehensive analber generator (RNG) is used for the complete simulation (for
ysis of state-of-the-art pseudo random number generatorexample for distributing one random number (RN) stream to
like the MT19937 or the WELL generator used for parallel only one or a smaller number of processing elements (PESs)),
stream generation in different settings. These random numit is sufficient to instantiate a single generator with the de-
ber generators can be realized in hardware as well as in sofsired quality properties.
ware and help to accelerate the analysis (or simulation) of Nevertheless, in order to obtain the results fast and with
communications systems. We show that it is possible to genthe desired accuracy, parallel simulations are mandatory. MC
erate high-quality parallel random number streams with bothsimulations are perfect candidates for parallel simulation,
generators, as long as some configuration constraints are medince they rely on a large number of independent experiments
We furthermore depict that distributed simulations with thosethat can be carried out simultaneously. However, the gener-
generator types are viable even to very high degrees of parmation of high-quality independent and identically distributed
allelism. (i.i.d.) RNs is a big challenge. With huge computing clusters
and theCloud becoming accessible for more and more re-
searchers and professionals, it is time to have a closer look
on possible pitfalls and quality issues arising from highly par-
1 Introduction allel simulations.

Various approaches for creating i.i.d. parallel RN streams
The ongoing research activities and technological progresgave been proposed up to now that we study in detail in
over the last years have led to a tremendous increase ithis paper. We give a short summary about available gen-
the complexity of current systems and scientific challengeseration methods for parallel RN streams and how they can
More and more realistic and highly sophisticated models repe tested, together with an overview about related work. For
quire numerical computations, since analytical solutions areghe famous MT19937 Mersenne Twister (MT) and the well-
not available in many cases. For example in the analysis okquidistributed long-period linear (WELL) generator pro-
communications systems, independent random numbers afsosed by Pierre LEcuyer, we show that randomly seeding
required in a lot of places, e.g. for the generation of payloadparallel RNGs is safe, also for very high degrees of par-

data, additive white gaussian channel noise, or the modelingllelism. We have carried out a comprehensive analysis of
of fading channels. Furthermore, we can mention modeling

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.

76 C. Brugger et al.: On Parallel Random Number Generation

possible inter-stream correlations and substreams in the pop- This section will give a brief overview and comments on

ular MT19937 pseudo random number generator (PRNG)ome of the methods for generating multiple independent RN

using the TestUOL test suite, a popular test framework forstreams. We focus on approaches that can be realized in hard-

RN quality analysis. We show that for a well-defined seed-ware by either utilizing multiple RNGs or a fast, parallelized

ing schemes no peculiarities are observed. In summary w&NG and use WELL and MTs generators as examples. Par-

demonstrate that the use of standard state-of-the-art PRNGallel RN streams can be generated from:

like the MT and the WELL is safe, also for parallel simula-

tions. — Multiple identical RNGs starting from different posi-
tions in the period,

2 Background — multiple RNGs of different type,

The generation of high-quality RNs in high volumes has long)]
been a hot topic in research. In general, three types of RNs — @ Single parallelized RNG, or

exist:
— combinations of the above.

— True RNs

- quasi RNsand Implications of different approaches on the quality of statis-
do RN tics are discussed in detail in Sectslto 4.3

— pseudo RNs

At a first glancefrue RNsseem to be most desirable, since 2-1.1 Multiple generators of the same type
they are really random and can not predicted in any way. = .])
However, true RNs come with some drawbacks: Firstly, theirUsing identical RNGs and starting them from a different po-
generation typically relies on a physical process and there$ition in the generator period corresponds to partitioning a
fore needs a special device that is in general not available ii§ing/e RN stream into block8{ocking and is suitable when
generic computing systems like standard infrastructure as §¢ number of consumed RN for each of the parallel streams
service (laaS) or platform as a service (PaaS) clusters or datg known and bounded. Multiple instances of one RNG type
centers. Secondly, it is quite likely that the untreated outputc@n then be |n|t|a!|zed to a precomputed state. This so-called
of a true RNG is biased. Therefore the output stream needi/MP-aheadechnique Kiaramoto et a).2008 allows for de-
to be monitored continuously, and a bias correction is neededned distances between the streams of the RNGs (w.r.t. po-
that is adjusted continuousl{{l et al., 2013. Thirdly, true sitions in the RNG period). The |n|t|al|zat|op of the multi-
RNs are not repeatable, and forbid re-executing a simulatio?!® generators can also be done by employing other RNGs.
several times with generating exactly the same output — 8VELL and MT generators, for example, are commonly ini-
knock-out criterion for science in general. tialized (seeded) by other small RNGs (seed generators).

Quasi RNsare not random at all, but try to cover a (multi TNiS approach is calleRandom Spacing
dimensional) space with certain characteristics. Prominent AS these also have to be seeded, we realize a random seed-
examples are Sobol or Halton sequences used for MC simynd of the WELL and MT by seeding the seed generators
lations Korn et al, 2010). We do not consider true and quasi differently.
RNs further in this work, details can be found in literature))
(Knuth, 1997 Korn et al, 2010). 2.1.2 Multiple generators of different type

For the main reason of keeping simulations and calcula-

tions reproducible, PRNGs are the most favorable choice for?rhe straight-forward way of getting RNGs of different type

simulation purposes. They try to generate a sequence lookS tousea different algorithm for each _of the R_NGS. Because
ing like “good” RNs by a deterministic algorithm, this means of the limited number of known algorithms with each hav-

i.i.d. from a statistical viewpointL(Ecuyer, 2007). PRNGs ing varying statistical properties and implementation com-

have a number of advantages: they can be run on differen?lex't'es’ such an approach poses strict limits on the number

execution platforms, require no additional hardware Support,‘elnd _quallty of R.NS generated in parallel for obvious reasons
d is not considered here. The WELL and MT generators,

and produce exactly the same output streams when seed | h £ th laorith th diff
with equal values. In the following we will therefore focus owever, allow the use of the same algorithm with differ-

on PRNGs only ent parameter sets that correspond to different underlying re-
' currence polynomials. Correlations between the RN streams
2.1 Generating parallel random numbers generated by following this approach are considered highly

unlikely. As the parameter sets for the WELL and MT gener-
A comprehensive summary about generation methodstor types have to be found by extensive search, parallelism
for parallel RN streams has been given recently byby using this so-calle@arametrizationis also limited {Tian
Hill et al. (2013. and Benkrig 2009.

Adv. Radio Sci., 12, 7581, 2014 www.adv-radio-sci.net/12/75/2014/

C. Brugger et al.: On Parallel Random Number Generation 77

2.1.3 Single, parallelized generator Table 1.Ressource consumption of implementations for FPGAs.

max. Freq. Throughput

Generating parallel streams of RNs by using a single paral- .
RNG BRAMs Slices [MHZz] [Gbps]

lelized RNG corresponds to parsing a single RN stream into

substreams. If the RNs from a single stream are distributed MT19937% 1 57 100.0 3.20
according to a round-robin scheme (i.e. the first RN to the TinymT? 0 65 100.0 3.20
first substream, the second RN to the second substream, ...), MT19937 2 330 24.2 0.77
'::Iiﬁ ;etsatﬂtlggf;rtmonmg is callddeap Frogpartitioning (see 3P M > 207 258.3 24.03
' 4-IP MT3 4 290 277.7 35.54

8-1P MT3 8 566 283.5 72.58

2.2 Quality issues

1 On a MaxWorkstation (Virtex-6) from Maxeler Technologies Inc.
2 (Chandrasekaran and Amji2008 on a Virtex-E.

As stated before, PRNGs do not produce real RNs, but try ° (Palal and Stefay2008 on a Virtex-4.

to create a “good” output streams that looks random. Eval-

uating the quality of PRNGS has bgen an active topic .forthat there may be problems when not carefully selecting the
a long time. To a special degree, this research was drlverrlight assembly configuration (see Setg)
by Pierre L'Ecuyer, Michael Mascagni, and others who in- '

vestigated novel RNG approaches. For example, L'Ecuyer

has formulated several key criteria for “good” RNGs: along 3 Related work

period, repeatable outputs, portability to different execution

platforms, and the ability to split the output sequence intoA hardware implementation of the MT algorithm has, for ex-
multiple independent blocks (what means they should imple-ample, been reported bZfandrasekaran and Am;ji2008.
ment an efficient jump-ahead strategy) and each block again Parallel RN generation by multiple MT generator cores
into substreams with the leap frog approalcE¢uyer, 2007, with different parameter sets was described Biarf and
L'Ecuyer and Pannetqr2005. D. E. Knuth has summarized Benkrid 2009. They reported their design to outperform
the basic test strategies for single-stream RNGs in his famou€PU and GPU implementations of the MT algorithm by a
book “The Art of Computer ProgrammingKauth, 1997, factor of 25« and 9 respectively w.r.t. throughput. An in-
with the first edition already released in 1969. Nowadays, thevestigation of the statistical properties of the generated num-
TestUOL1 suite developed by L'Ecuyer in 20@7Hcuyer and bers, however, was not performed.

Simard 2007) is considered the most comprehensive one and Dalal and Stefan presentaderleaved ParallelizatioflP)

is preferred by many researche&a(mon et al.2011 Hill and Chunked Parallelization(CP), two methodologies for
etal, 2013. parallelizing RNGs of MT and WELL typeQalal and Ste-

A first requirement for a good parallel PRNG is that it also fan, 2008. There, the state vector of the RNG is partitioned
has to be a good sequential PRN&ifivasan et a|.2003. in a way that multiple numbers can be generated in parallel.

Obviously, when testing different substreams of one PRNGA corner case of this scheme, a fully parallel implementa-
itis mandatory to ensure that exactly the same substream caion of the MT, was reported by Sriram and Kearn8yiam
be outputted again to allow debugging and reproducibility ofand Kearney2009. Both parallelization schemes result in
the test resultsHill et al., 2013. a Leap Frogpartitioning at the outputs of the parallelized
In 2003, Srinivasan et al. have stressed the impor-RNGs. However, they are only practical for grades of paral-
tance of test concepts for parallel RNGs, in particular forlelism that are a divider of the state vector size (that is 624
high-performance computing (HPC) applicatio8sifivasan for the MT19337).
et al, 2003. They have introduced the ternstra-stream Table 1 lists the resource consumption of selected MT
andinter-stream correlationgo highlight that both charac- implementations on field programmable gate array (FPGA).
teristics are crucial for a “good” parallel RNG: the quality of Even if the different target FPGAs are taken into account it
each substream itself, and the independence of all substreanb&comes clear that IP and CP are more hardware efficient
from each other. They also presented first test strategies fathan using multiple instances of the respective serial genera-
parallel RNs. tor. We have been able to confirm these numbers in our own
In order to test inter-stream correlations, Salmon etinvestigations. While BRAMs can become a critical resource
al. (2011) have concatenated blocks of multiple substream highly parallel RNG architectures we also considered the
with a round-robin scheme to a single test stream that theyinyMT with an internal state of 127 bits, far smaller than
have fed into the TestUO1 suitSglmon et al.2011). Due the MT with 19937 bits. The TinyMT only uses registers for
to the correlation tests included in TestUO1, correlations bethe state storing, but is characterized by a smaller period.
tween the substreams coming from different generators are L'Ecuyer and Panneton have compared throughput and
detected. We also follow this approach in our work, but showjump-ahead computation times for LFSRs, MT, and the

www.adv-radio-sci.net/12/75/2014/ Adv. Radio Sci., 12, 78% 2014

78 C. Brugger et al.: On Parallel Random Number Generation

Table 2. Upper bound probability of a collision for random number generators running at 5 GHz for 100 years.

Chip with System of 1000 System of one

RNG 2 generators 1000 RNGs of such chips million chips
TinyMT <1018 <10713 <1077 <101
MT19937 <1075982 105976 <1075970 <107594
WELL44497b <10 13375 1013369 <10713363 1013357

WELL generator in 2005LEcuyer and Pannetqr2005. 4.1 Mersenne twister substream analysis
They have shown that the jump-ahead computation time

exponentially increases with the number of internal states insince the MT19937 is one of the most popular PRNGs and
the PRNG. implemented in many available libraries and software tools,
Hill et al. (2013) have carried out an analysis on variouswe have analyzed the quality of MT19937 substreams gener-
Mersenne Twister for Graphic Processors (MTGP) configu-ated with the leap frog method. We have used the MT19937
rations with the TestUO1 Big Crush battery in 2012 and haveC implementation as provided by Matsumoto and Nishimura,
found only a few weaknessesli(l et al., 2013. They con- refined by Richard Wagner in 20b9The seed was fixed to
cluded that the use of the MTGP with longer periods there-0x00001571.
fore is safe. In total we have run 88 test on a selection of substreams
At SC11, Salom et al. (2011) have presented an evaluatiofrom up to 64 total substreams. Due to the high runtimes even
of so-calledcounter-based PRNGShey are highly scalable, on the employed compute cluster especially for higher num-
can be implemented on central processing unit (CPU), graphbers of substreams, we were not able to check all configura-
ics processor unit (GPU), and FPGA based architectures, anglons. In 58 of 88 cases, only tests number 80 and 81 (that are
therefore seem to be very promising for distributed HPC sim-always failed by the MT19937) have failed. In 27 cases one
ulations. The presented PRNGs pass the Big Crust test baidditional test was suspicious, and only in 3 cases two addi-
tery of the TestUO1 suite without failures and even beat thetional tests showed suspicious outputs. In summary, the ob-
MT19337. At the same time, the counter-based generatorgained results have shown no suspicious values at all. There-
can achieve around the same throughput as the MT1933fore we conclude that it is safe to split standard MT19937
in software. However, counter-based PRNGs have not beeBtreams into up to 64 substreams, what should be sufficient

considered for hardware implementation up to now, this isfor supplying up to 64 PEs with one generator instance.
ongoing research due to their higher implementation com-

plexity. 4.2 Investigating seed collisions

4 New investigations One method of generating independent random number gen-
erators is to use multiple instances of the same generator
We have seen that a lot of approaches have been followed twith different seeds. Each obtained output stream is then a
generate and test parallel RNs. However, we had difficultiessubsequence of one long period sequence, while the starting
to evaluate the scalability and efficiency of these methods forpoint depends on the seed. For random streams, the distance
highly parallel settings. For example, the leap frog approachbetween two streams is unknown and they might even over-
does not scale above the dimensionality of the PRNG, i.elap. Overlapping streams are highly correlated and have to be
627 for the MT19937 Hlill et al., 2013. Splitting the RN avoided. Before considering this, let us investigate the prob-
stream into blocks in advance with the jump-ahead algorithmability it is that two substreams overlap.
is critical if it cannot be ensured that the amount of consumed It is helpful to visualize the period as a circle in which each
numbers never exceeds the defined block sizes. Furthermor@stance of a random number generator draws consecutive
also the jump-ahead computations are quite compute intenraumbers on this circle, see Fifj. When two seeds are too
sive and do not scale very welH{ll et al., 2013. Instan- close together on this circle, the streams of random numbers
tiating multiple generators with different parameters soundsoverlap and we have a stream collision. In the following setup
promising, but also in this case the available number of conwe consider independent RNGs with a period lengthof
figuration is limited Tian and Benkrigd2009. For each RNG we drawconsecutive RNs. Let us consider
Therefore we have investigated partitioning schemes thatwo RNGs. The probability for the second one to not collide
aim at high degrees of parallel RN streams, in particular ran-
dom seeding approaches with standard generators. The re-
sults are given in the following sections. Ihttp://www.comp.nus.edu.sg/~noi/tasks/2010/PKMATCH/
MersenneTwister,Hast access: 5 February 2014.

Adv. Radio Sci., 12, 7581, 2014 www.adv-radio-sci.net/12/75/2014/

http://www.comp.nus.edu.sg/~noi/tasks/2010/PKMATCH/MersenneTwister.h
http://www.comp.nus.edu.sg/~noi/tasks/2010/PKMATCH/MersenneTwister.h

C. Brugger et al.: On Parallel Random Number Generation 79

seed 1

rﬂcollision Table 3. Test failing for our robust parallel seeding procedure.

seed 2 number of failing tests for block size of
seed 1 RNGs 8 12 30 1k 10k 100k

1
2
4
8
16
64
256
1024 - - - - — - -

I ONNNN|

|

|

|

|

|

|
NRNNNNNNN

seed 3

Figure 1. The circles represent the whole period of the random
number generator. We consider three instances of the same randor® Parallel | | | | | | | - RNG 1
number generator. Each generator is seeded with a random numbeRtreams | [[[[[[

-+ RNG 2
and a specific amount of random numbers are drawn from it. In the .
left case the streams do not overlap, while on the right side the first l Serialized Stream d
random number generator collides with the second. 17T T 1 = T -
Figure 2. Showing how parallel streams of two independent RNGs
with the first one is: can be serialized when run on a serial processor. In the shown case
the parallel program operates on equal blatké random numbers.
L-21+1
Py, = — (1)

. o The resulting probabilities for various RNGs are shown
When we add one more, the probability of this third 9eneri Table 2. For RNGs with reasonably large state vectors

e s e s o e probabityof seed colsion below 16 for
Ipn gener.al it isP y P ‘incredibly large systems containing one billion RNGs run-

ning at 5 GHz for 100 years. We can conclude that when the
L—22—1) seed is chosen randomly a collision is negligibly unlikely for
P3> sz- (2) the MT19937 and WELL44497b. However, for the TinyMT

more advanced parallelization methods should be utilized,
We can extend this series and get an upper bound estimatike e.g. parameterization.
for the collision probabilityP,:

4.3 Inter-stream correlations

L—(G-1)(2 -1

> ©

In the last section we have seen that stream collisions are
highly unlikely for different seeds. Based on this insight it
We assume that our random number generators run witiseems reasonable to realize parallel random number genera-
5GHz, generating one RN per clock cycle, running for tion by using independent RNGs each with a random seeds.
100 years. This results in anof about 188. For the MT ~ However then question remains what the quality of these
the state vector has 19 937 bits resulting in a period of aboustreams is. The generator might for example show long-
105992 We consider chips with 1000 of such generators. Weterm correlations resulting in inter-stream correlations, as
are interested in the collision rate for such chips and hugeliscussed in Sec2.2
system containing up to one millions of them. To calculate We now derive a methodology on how to analyze inter-
the fractions containing such large numbers we have used thétream correlations. For this it is helpful to keep the appli-
fractionspackage in Python. To reduce the number of multi- cation in mind that uses the parallel RNG. In general it is
plications we estimate the collision rate with an even higherpossible to execute a parallel program on a serial processor
upper bound as: for which only one instruction is executed at a specific time.
That means a single stream of random numbers exists that
is equal to how the parallel RNGs are accessed during ex-
(4) ecution. Thus we can analyze parallel RNGs also with the
standard test suites for single streams by using this serialized
This power can be efficiently computed with only Jég— 1) stream.
multiplications instead ot — 1 required for Eq.J). Forn = While in general the serialized stream is an arbitrarily in-
10° these are 20 instead of 999 999 multiplications. terleaved stream from the parallel streams, it is helpful to

n
Py=1-P, <1-J]
i=1

n—1
5 S1_(L—(n—L1)(21—1)> .

www.adv-radio-sci.net/12/75/2014/ Adv. Radio Sci., 12, 78% 2014

80 C. Brugger et al.: On Parallel Random Number Generation

Table 4. Test failing with Tausworthe seeding. 5 Conclusion
RNG count: 1 2 4 8 16 32 64 128 Therecentincrease in available computation power on highly
MT19937 5> 2 2 41 64 79 100 106 parallel computing clusters or tk@louc_j hgve enabled re-
WELL44497b 2 2 2 102 88 89 89* searchers and professionals to run distributed Monte Carlo
simulations easier than ever before. However, those paral-
* Tested with smaller test-suite Crush instead of Big Crush. lel simulations require high-quality parallel random number

streams. In this work we have analysed to which extent state-
of-the-art PRNG qualify for their employment in parallel set-
. . . tings. We show that the popular MT19937 Mersenne Twister
consider some representative cases. We consider that the pr

i blocks of rand b fth "8nd the superior WELL random number generator are able to
gram operates on bloCks ot random NUMDETS of e SAME SIZ&.q ;¢ high-quality parallel random number streams, in par-

d Th|§ IS clgarly the case fpr Monte Carlo smulaﬂons, usediicylar with the random seeding method. Furthermore we re-
very wu_jel_y In communication system S'm“"’?‘“of‘s- Then we veal that seed collisions for those two generator types are
can serialize the parallel streams as shown in Eig. very unlikely, even for high degrees of parallelism, and that
no inter-stream correlations are observable. Nevertheless, the
parallel seeding method has to be carefully selected. We

Random seeding requires the use of a RNG itself to generatBrésent a working method and show how to test it. Al in
numbers of all the seed values. In Sek®the probabilities all, we conclude that applications involving parallel random
for seed collisions are only valid when all starting points are"umber streams need special attention on this point, though
equally likely. This means the seeding procedure has to p&vailable generators are well-applicable for these tasks.
carefully validated, such that it does not favor specific start-

ing points.

For our robust seeding procedure, we use the seeding algdcknowledgementsie gratefully acknowledge the partial finan-
rithm integrated in the MT19937 C implementation (version cial support from the Center of Mathematical and Computational
2002) and seed the RN@with seed+n. We have tested the Modelling (CMY of the University of Kaiserslautern and from the
serialized stream for eight independent seead calculated German Federal Ministry of Education and Research _under grant
the mean of failing tests. Al investigations have been madd’UMPer 01LY1202D. The authors alone are responsible for the
with the Big Crush battery from the TestUO1 suite v1.2.3. content of this paper.

The result is shown in Table N _ Edited by: J. Gotze

For one generator already two test are failing, for which peyiewed by: M. Lechtenberg and one anonymous referee
the MT is known for. However, for increasing numbers of
RNGs and block sizes, the serialized stream gets even bet-
ter. For block sizes of 100k and higher the same TestUOlR
results are as for single MT stream. This is due to the limited eferences

analysis window of the TestUO1 suite as sample sizes of thpChandrasekaran, S. and Amira, A.: High Performance FPGA Imple-
tests that have been conductedhave been in the order of mentation of the Mersenne Twister, in: Electronic Design, Test
10° = n = 10°. and Applications, DELTA 2008, 4th IEEE International Sympo-
As a counterexample we have implemented a naive seed- sjym on, 482-485, ddi0.1109/DELTA.2008.112008.
ing procedure based on the Tausworthe 88 RNG. It seedpalal, I. L. and Stefan, D.: A Hardware Framework for the Fast
the complete state vectarof the MT with the first values Generation of Multiple Long-period Random Number Streams,
from a Tausworthe RNG. This Tausworthe 88 is itself seeded in: Proceedings of the 16th international ACM/SIGDA sympo-
with the vector [0x88cb47c9 + 2 (segé 1), 0x8a9cdf65 + 4 sium on Field programmable gate arrays, FPGA '08, 245-254,
(seed + n), Oxcaf40ed9 + 8 (se@d- 1)]. In this case only a ACM, New York, NY, USA, do0i10.1145/1344671.1344707
block sized of one has been considered for eight indepen- 2008. o
dent seegl The number of failing test are shown in Tagle ~ Haramoto, H., Matsumoto, M., Nishimura, T. Panneton, F.,
Starting from eight RNGs the number of failing tests dramat- and L'Ecuyer, P. Efficient Jump Ahead for F2-Linear Ran-

ically i dering thi . d | Thi dom Number Generators, INFORMS J. Comput., 20, 385-390,
ically increases, rendering this naive procedure useless. This doi:10.1287/ijoc.1070.0252008.

stresses the importance of the seeding method. Hill, D. R. C., Mazel, C., Passerat-Palmbach, J., and Traore, M. K.
For the robust seeding procedure we can conclude that no pijstribution of random streams for simulation practitioners, Con-
inter-stream correlations are observable. Further the use of curr. Comp.-Pract. E., 25, 1427-1442, d6i:1002/cpe.2942
independent MT generators even improves their quality. 2013.
Knuth, D. E.: Seminumerical Algorithms, vol. 2 of The Art of Com-
puter Programming, Addison-Wesley, Reading, Massachusetts, 3
Edn., 1997.

4.4 Random seeding

Adv. Radio Sci., 12, 7581, 2014 www.adv-radio-sci.net/12/75/2014/

http://dx.doi.org/10.1109/DELTA.2008.113
http://dx.doi.org/10.1145/1344671.1344707
http://dx.doi.org/10.1287/ijoc.1070.0251
http://dx.doi.org/10.1002/cpe.2942

C. Brugger et al.: On Parallel Random Number Generation 81

Korn, R., Korn, E., and Kroisandt, G.: Monte Carlo Methods and Salmon, J., Moraes, M., Dror, R., and Shaw, D.: Parallel random
Models in Finance and Insurance, Boca Raton, FL: CRC Press, numbers: As easy as 1, 2, 3, in: High Performance Computing,
2010. Networking, Storage and Analysis (SC), 2011 International Con-

L'Ecuyer, P.: Pseudorandom Number Generators, Tech. rep., DIRO, ference for, 1-12, 2011.

Université de Montreal, C.P. 6128, Succ. Centre-Ville Mon- Srinivasan, A., Mascagni, M., and Ceperley, D.: Testing Paral-

tréal (Québec), Canada, H3C 3J7, availablehép://www.iro. lel Random Number Generators, Parallel Comput., 29, 69-94,
umontreal.ca/~lecuyer/myftp/papers/eqf.fdbt access: 26 Au- doi:10.1016/S0167-8191(02)001632003.
gust 2014), 2007. Sriram, V. and Kearney, D.: An FPGA Implementation of a

L'Ecuyer, P. and Panneton, F.: Fast random number generators Parallelized MT19937 Uniform Random Number Generator,
based on linear recurrences modulo 2: overview and compari- EURASIP Journal on Embedded Systems, 2009, 507426,
son, in: Simulation Conference, 2005 Proceedings of the Winter, doi:10.1155/2009/50742&009.

110-119, doit0.1109/WSC.2005.1574242005. Tian, X. and Benkrid, K.: Mersenne Twister Random Number Gen-

L'Ecuyer, P. and Simard, R.: TestU01: A C library for empirical eration on FPGA, CPU and GPU, in: Adaptive Hardware and
testing of random number generators, ACM Trans. Math. Soft- Systems, 2009. AHS 2009, NASA/ESA Conference on, 460—
ware, 33, 22-1-22-40, ddi0.1145/1268776.12687,72007. 464, doi10.1109/AHS.2009.1,120009.

www.adv-radio-sci.net/12/75/2014/ Adv. Radio Sci., 12, 78%, 2014

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/eqf.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/eqf.pdf
http://dx.doi.org/10.1109/WSC.2005.1574244
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1016/S0167-8191(02)00163-1
http://dx.doi.org/10.1155/2009/507426
http://dx.doi.org/10.1109/AHS.2009.11

