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Abstract. By applying the Transmission-Line Super Theory

(TLST) to a practical transmission-line configuration (two

risers and a horizontal part of the line parallel to the ground

plane) it is elaborated under which physical and geometrical

conditions the horizontal part of the transmission-line can be

represented by a classical telegrapher equation with a suffi-

ciently accurate description of the physical properties of the

line. The risers together with the part of the horizontal line

close to them are treated as separate lines using the TLST.

Novel frequency and local dependent reflection coefficients

are introduced to take into account the action of the bends

and their radiation. They can be derived from the matrizant

elements of the TLST solution. It is shown that the solution

of the resulting network and the TLST solution of the en-

tire line agree for certain line configurations. The physical

and geometrical parameters for these corresponding configu-

rations are determined in this paper.

1 Introduction

Transmission-Line Super Theory (TLST) was introduced by

Haase and Nitsch (2001, 2003) more than one decade ago.

In this theory Maxwell’s equations are represented for a sys-

tem of lossless nonuniform thin transmission lines in a sys-

tem of equations which have the same structure as the tele-

grapher equations. In particular, the TLST equations take

into account all field modes and physical effects that might

occur, including radiation losses. It surpasses the classical

transmission-line theory, which is a special case. Their com-

plex parameters are local and frequency dependent and are

obtained by the solution of integral equations.

In the paper a practical classical transmission-line (cTL) is

regarded. The considered TL consists of a finite part parallel

to the ground plane and two vertical risers connecting the

horizontal part to the conducting ground plane at the ends.

In Sect. 2 the classical analysis of the TL is briefly de-

scribed and the classical reflection coefficients are intro-

duced. In Sect. 3 the fundamentals of TLST are presented

and the finite transmission line with risers is analyzed using

the numerical TLST procedure. The local and frequency de-

pendent parameter matrix elements representing the per unit

length inductance and capacitance values are discussed. A

procedure is shown where the whole TL can be separated

in uniform and nonuniform parts. Only for the nonuniform

parts TLST has to be used and the asymptotic part can be

handled classically. In Sect. 4 novel local and frequency de-

pendent reflection coefficients are introduced and it is shown

how they are related to the matrizant elements of the TLST.

Finally it is shown how the current on the TL can be calcu-

lated using the reflection coefficients. Numerical results for

the finite uniform TL with risers are shown and discussed in

Sect. 5. Calculated results for the novel reflection coefficients

and current values on the TL are shown for several geomet-

rical constitutions of the TL. Finally the results are discussed

and summarized in Sect. 6.

2 A finite TL in classical transmission-line theory

Classical transmission-line theory (cTLT) does not take care

of effects of finite open ends or of risers to the ground plane.

The TL is regarded physically infinite and mathematically a

total length is designated to meet the right resonance frequen-

cies. The dominating TEM mode of such a TL is commonly
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Figure 1. Geometry of a horizontal finite TL (length LTL) with

height h over PEC ground including two risers.

described by the classical transmission-line equations

dU(z)

dz
+ jωL′cTLI (z)= 0

dI (z)

dz
+ jωC′cTLU(z)= 0, (1)

where z is the axial orientation of the TL (see Fig. 1) and

U(z) and I (z) are the complex voltage and current distribu-

tions on the line. The classical (and constant) per unit length

(p.u.l) inductance and capacitance are named as L′cTL and

C′cTL, respectively.

The finite classical TL with risers over a conducting

ground plane (PEC) regarded in this work is shown in Fig. 1.

To simplify the presentation the following parameters for the

TL are chosen, although the outlined method works in gen-

eral: wire radius r0 = 0.5mm; height over ground h= 5cm;

length of the horizontal part LTL = 2m; total arc length of

the TL L= LTL+ 2h= 2.1m. At the beginning the line is

fed by a lumped source with voltage U0 = 1V and source

impedance Z0 = 50�. The line is terminated with a load

impedance ZL = 50�. The formulas for the classical p.u.l.

inductance L′cTL and capacitance C′cTL are

L′cTL =
µ0

2π
ln

(
2h

r0

)
= 1.06× 10−6 Vs

Am
(2)

C′cTL =
2πε0

ln
(

2h
r0

) = 1.05× 10−11 As

Vm
, (3)

resulting in a characteristic line impedance of ZC =√
L′cTLC

′−1
cTL = 318�.

A current wave originating at +∞, traveling on the hori-

zontal part of the TL in −z direction and being reflected at

the beginning of the TL at z= 0 can be expressed using the

classical left-hand current reflection coefficient Rclass
+ as

I (z)= I1

(
ejkz+Rclass

+ e−jkz
)
. (4)

with I1 being an appropriate constant. From Eq. (1) the ex-

pression for the voltage U(z)=− 1
jωC′

dI (z)
dz

can be deduced

and together with Eq. (4) the result for the left-hand current

reflection coefficient is calculated as

Rclass
+ = e2jkzZCI (z)+U(z)

ZCI (z)−U(z)
=
ZC−Z0

ZC+Z0

. (5)

For the final step in Eq. (5) the general classical solutions for

U(z) and I (z) for a uniform TL(
U(z)

I (z)

)
=

(
cos(kz) −jZC sin(kz)

−
j
ZC

sin(kz) cos(kz)

)
·

(
U(0)

I (0)

)
, (6)

was used. It is obvious that in cTLT the reflection coefficients

are constant.

Corresponding considerations using a current wave travel-

ing on the horizontal part of the line originating at −∞ lead

to the (constant) classical right-hand current reflection coef-

ficient Rclass
− as

Rclass
− = e−2jk(z−LTL)

ZCI (z)−U(z)

ZCI (z)+U(z)
=
ZC−ZL

ZC+ZL

. (7)

3 TLST analysis of a finite TL with risers

3.1 Fundamentals of TLST

Transmission-line super theory (Haase and Nitsch, 2001;

Haase et al., 2003; Haase, 2005; Nitsch et al., 2009;

Nitsch and Tkachenko, 2010) is a full wave description of

Maxwell’s equations cast into the form of telegrapher’s equa-

tions. For a single wire system (with return conductor or

ground plane) the super theory transmission-line equation

for lumped sources or loads at the line ends in the potential-

current representation states (Rambousky et al., 2012)

∂

∂l

[
ϕ(l,f )

i(l,f )

]
+ jωP

∗(1)
(l,f )

[
ϕ(l,f )

i(l,f )

]
=

[
0

0

]
. (8)

The potential on the transmission-line is denoted by ϕ(l,f )

and the current by i(l,f ). The best choice for the line pa-

rameter is the (natural) arc length l of the line and f is the

frequency. The super matrix P
∗(1)

is the transmission-line pa-

rameter matrix. In the case of a one wire system P
∗(1)

is a 2

by 2 matrix. In contrast to cTLT the transmission-line pa-

rameter matrix P
∗(1)
(l,f ) now is complex valued and both

local (l) and frequency (f ) dependent. This parameter matrix

is calculated by an iteration process starting with a low fre-

quency approximation in the zeroth iteration step resulting in

a frequency independent but already local parameter matrix

P
∗(0)
(l) (Nitsch et al., 2009; Rambousky et al., 2012). In pre-

vious work we could show that already the first iteration step

results in an acceptable accuracy (Rambousky et al., 2013a).

The general solution of the super theory transmission-line

equation (8) for the one wire case can be written as[
ϕ(l,f )

i(l,f )

]
=Ml

l0

{
−jωP

∗(1)
}[
ϕ(l0,f )

i(l0,f )

]
, (9)

where the expressionMl
l0

is the so called matrizant or prod-

uct integral (Gantmacher, 1984), and l0 and l > l0 repre-

sent two spatial positions on the TL. Regarding only lumped
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Figure 2. Parameter matrix elements representing the real part of

the p.u.l. inductance for TLST analysis of the TL configuration.

Figure 3. Parameter matrix elements representing the imaginary

part of the p.u.l inductance for TLST analysis of the TL configu-

ration.

sources or lumped loads at the ends of the wires, Eq. (9) can

be calculated using the appropriate boundary conditions of

the TL model.

3.2 TLST parameter elements for a finite TL with

risers

The parameter matrices P
∗(0)
(l) and P

∗(1)
(l,f ) resulting

from the TLST iteration process are independent of the

lumped sources and loads. The P∗12 elements representing the

p.u.l. inductance are shown in Fig. 2 (real part) and in Fig. 3

(imaginary part).

Figure 2 indicates that in the TLST the classical p.u.l. in-

ductance L′cTL is reached at a certain distance away from the

risers for the configuration presented in Fig. 1. The graph of

the inductance bends when approaching the ends of the hor-

izontal part of the line and reaches its minima at the ends of

the horizontal parts. A reason for this behavior can be found

in Nitsch et al. (2009). When passing through the risers it in-

Figure 4. Current on the TL calculated using TLST approach for

f = 1GHz compared to classical TL theory.

creases again. Also the imaginary part of L′ deviates signifi-

cantly from the classical value (zero) at the risers, indicating

the most radiative parts of the TL.

The current on the TL calculated using TLST with first

order iteration parameter matrix is shown in Fig. 4 for a fre-

quency of 1GHz. To have a comparable arc length, the total

length of the classical TL was also set to 2.1m. It is clearly

seen that the real current distribution deviates significantly

from the classical theory, mainly because of the radiating

losses at the used frequency.

3.3 Decomposition of the TL based on the group

property of the matrizant

In the example of Fig. 1 the TL can be decomposed in the

left-hand riser part, the uniform middle part (asymptotic re-

gion) and the right-hand riser part. Attention has to be paid

that the junctions are located where the composed TL shows

almost classical behavior (see Fig. 2). Therefore the junctions

have to be sufficiently far away from the riser, like at z1 and

z2 as shown in Fig. 5. Now, the TLST parameter matrices

for the single parts of the decomposed TL can be calculated.

Because even the tail end of an otherwise classical TL shows

significant deviation of the line parameters in TLST, the ele-

ments of the parameter matrix have to be adjusted due to the

junction. For the used TL with risers the asymptotic region

(part II) was defined as a classical TL with constant line pa-

rameters using Eqs. (2) and (3). The riser parts I and III were

adjusted for the junctions by hand to ignore the tail ends and

to meet the classical values at the junctions. This is shown in

Fig. 6 with the dashed curves.

For the whole TL current and potential in the load ZL at

the end of the line (l = L) can be calculated using the first
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Figure 5. Partitioning of the nonuniform TL of Fig. 1 into an

asymptotic region (part II) and the two riser regions (parts I and

III).

Figure 6. Real part of the parameter matrix element P
∗(1)
12 for the

defined three parts of the nonuniform TL and their manual adjust-

ment at the junctions.

order parameter matrix P
∗(1)

[
ϕ(L)

i(L)

]
=ML

0

{
−jωP

∗(1)
}[
ϕ(0)

i(0)

]
=ML

[
ϕ(0)

i(0)

]
. (10)

The matrix ML is the matrizant over the whole arc length of

the TL using the parameter matrix P
∗(1)

of the whole TL.

On the other hand, current and potential in the load ZL can

be calculated using the matrizants Mman
I , Mman

II and Mman
III of

the single parts I, II and III of the TL with the manually (at

the junctions) adapted parameter matrices as[
ϕ(L)

i(L)

]
=Mman

III ·M
man
II ·M

man
I

[
ϕ(0)

i(0)

]
. (11)

For example Mman
I is the matrizant covering the arc length

from l = 0 to l = z1+h= 0.6m using the manually (at the

junction) adapted first order parameter matrix P
∗(1)

I,man result-

ing in

Mman
I =Mz1+h

0

{
−jωP

∗(1)

I,man

}
. (12)

To validate the equivalence of Eqs. (10) and (11) the current

in ZL at the end of the TL was calculated in both ways. The

result is shown in Fig. 7 and gives very good agreement. It

Figure 7. Current in the load ZL at the end of the TL of Fig. 1.

has to be mentioned again that in the assembled solution the

middle part (part II) of the TL was regarded as a pure clas-

sical TL. The results so far show that the current distribution

on a real TL with risers can be calculated by dividing the

line in uniform and nonuniform parts. The nonuniform parts

have to be calculated using an advanced TLT, like TLST. The

uniform parts can be handled as classical TL. The overall ma-

trizant of the TL can be assembled by multiplying the single

matrizants of the TL parts in correct order.

4 Novel local and frequency dependent current

reflection coefficients and amplitude functions

The idea now is to transfer the concept of current reflection

coefficients from cTLT to a realistic finite transmission-line

with risers at both ends.

4.1 Derivation of the novel current reflection

coefficients using TLST

In TLST voltage U(z) is replaced by the potential ϕ(l) and

current I (z) by i(l). Again l is the natural parameter of

the TL (arc length) including the risers. As an extension of

Eqs. (5) and (7) the now l and frequency dependent current

reflection coefficients can also be defined as the quotient of

an incoming and outgoing current wave as

R̃+(l) := e
2jklZCi(l)+ϕ(l)

ZCi(l)−ϕ(l)
(13)

and

R̃−(l) := e
−2jk(l−L)ZCi(l)−ϕ(l)

ZCi(l)+ϕ(l)
. (14)

The advanced current reflection coefficients R̃+(l) and R̃−(l)

now are expressed using the results of TLST calculations.

Due to the group feature of the resulting matrizants (see
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Figure 8. Transmission-line configuration for derivation of the

right-hand current reflection coefficient R̃−(l) of the TL with ris-

ers.

Sect. 3.3), the matrizant of the whole TL can be composed

as a matrix product of matrizants representing parts of the

TL. Therefore, actually only the riser parts I and III have to

be calculated using TLST and the classical matrizant can be

used for the asymptotic region (part II). A theoretical restric-

tion for our approach is that no radiation coupling between

the two riser parts of the TL is allowed. This is assured if

the horizontal length LTL of the TL is large compared to the

height h over ground.

4.1.1 The right-hand reflection coefficient R̃−(l)

In Fig. 8 the TL configuration for derivation of the right-hand

current reflection coefficient R−(l) is depicted. Imagine a

current wave coming from −∞ travels in positive z direc-

tion, gets reflected at the right-hand riser and travels back to

−∞. The classical telegrapher’s equations are valid in the

asymptotic region, defined by L1 ≤ l ≤ L2. The matrizant

Ml
L

{
−jωP

∗(1)
}
≡M(l,L) can be decomposed in

M(l,L)=M(l,L2) ·M(L2,L), (15)

where the second factor on the right side of Eq. (15) is inde-

pendent of l. The l dependence is restricted to the asymptotic

region. For LTL� h the radiation coupling is negligible and

R̃−(l) is independent of R̃+(l).

In a next step the quotient in Eq. (14) has to be expressed

by matrizants of the TLST calculation. Generally the relation[
ϕ(l2)

i(l2)

]
=M(l2, l1)

[
ϕ(l1)

i(l1)

]
∀l1, l2 ∈ [0,L] (16)

holds. Setting l2 = l and l1 = L and using the boundary con-

dition ϕ(L)= UL = ZLi(L) the potential-current vector at

arc length l can be expressed as[
ϕ(l)

i(l)

]
=M(l,L)

[
ϕ(L)

i(L)

]

= i(L)

[
M11(l,L) M12(l,L)

M21(l,L) M22(l,L)

]
·

[
ZL

1

]
. (17)

Figure 9. Transmission-line configuration for derivation of the left-

hand current reflection coefficient R̃+(l) of the TL with risers.

Inserting the results for ϕ(l) and i(l) in Eq. (14) leads to the

advanced expression for the right-hand current reflection co-

efficient R̃−(l) which is now local and frequency dependent.

R̃−(l)= e
−2jk(l−L)

· (ZL [−M11(l,L)+ZCM21(l,L)]

+(−M12(l,L)+ZCM22(l,L)))

· (ZL [M11(l,L)+ZCM21(l,L)]

+M12(l,L)+ZCM22(l,L))
−1. (18)

4.1.2 The left-hand reflection coefficient R̃+(l)

The TL configuration for the derivation of R̃+(l) is depicted

in Fig. 9. It is assumed that a current wave traveling in −z

direction gets reflected at the left-hand side of the TL. Using

the same concept as before the matrizant can be decomposed

in a non l dependent part and an l dependent part (asymptotic

region), that isM(l,0)=M(l,L1) ·M(L1,0). The second

one includes the essential physical property of the reflection

process.

Using the same derivation method as before (now setting

l1 = 0 and l2 = l) one gets the following advanced expression

for the left-hand current reflection coefficient R̃+(l) which is

again local and frequency dependent.

R̃+(l)= e
2jkl

· (−Z0 [M11(l,0)+ZCM21(l,0)]

+M12(l,0)+ZCM22(l,0))

· (−Z0 [−M11(l,0)+ZCM21(l,0)]

−M12(l,0)+ZCM22(l,0))
−1. (19)

4.2 Derivation of the amplitude function C̃+(l)

The configuration for calculating the amplitude function of a

forward (+z-direction) traveling current wave is depicted in

Fig. 5. It is assumed that the load impedance is ideal (ZL =

ZC) for all used frequencies and the traveling current wave is

not reflected at the end of the TL. With i(l)= C̃+(l)e
−jkl and

ϕ(l)= ZCC̃+(l)e
−jkl the following expression for C̃+(l) can

be derived by summation:

C̃+(l)= e
jkl i(l)ZC+ϕ(l)

2ZC

. (20)
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Figure 10. Transmission-line configuration for derivation of the

left-hand amplitude function C̃+(l) and the description of multiple

reflections.

The quotient in Eq. (20) can be expressed again using the

matrizants of the TLST calculation. With the relation[
ϕ(l)

i(l)

]
=M(l,0)

[
U0−Z0i(0)

i(0)

]
, (21)

leading to the expressions

ϕ(l)= i(l)ZC (22)

=M11(l,0)(U0−Z0i(0))+M12(l,0)i(0)

i(l)=M21(l,0)(U0−Z0i(0))+M22(l,0)i(0), (23)

a result for the characteristic impedance ZC can be received

by division:

ZC =
M11(l,0) [U0−Z0i(0)]+M12(l,0)i(0)

M21(l,0) [U0−Z0i(0)]+M22(l,0)i(0)
. (24)

Solving Eq. (24) for i(0) yields

i(0)= U0 [M21(l,0)ZC−M11(l,0)] [Z0ZCM21(l,0)

−M22(l,0)ZC−M11(l,0)Z0+M12(l,0)]
−1. (25)

The intermediate result Eq. (25) has to be insertet into

Eqs. (22) and (23). Then using Eq. (20) and considering that

the determinant ofM(l,0) is always 1, results in the final

expression for C̃+(l):

C̃+(l)= U0e
jkl [−Z0ZCM21(l,0)

+M22(l,0)ZC+M11(l,0)Z0−M12(l,0)]
−1 (26)

Inserting the classical matrix elements from Eqs. (6) into

(26) the cTLT expression for the amplitude function, C̃class
+ =

U0/(Z0+ZC), is received.

4.3 Calculation of the TL current using novel reflection

coefficients and amplitude function

In the last step the current on the TL has to be determined

using the previously derived reflection coefficients R̃−(l),

R̃+(l) and the amplitude function C̃+(l). Therefore the con-

figuration of Fig. 10 is used with arbitrary loadsZ0 andZL. A

forward traveling outgoing current wave i1(l)= C̃+(l)e
−jkl

would be reflected at the end and the current wave i2(l)=

Figure 11. Reflection coefficients |R̃+|, |R̃−| at the center point for

the classical TL with risers of Fig. 1

C̃+(l)e
−jklR̃−e

−jk(L−l) would travel back. This reflected

wave would be reflected again at the beginning of the TL and

the current wave i3(l)= C̃+(l)e
−jklR̃−e

−jk(L−l)R̃+e
−jkl

would travel also again to the end of the TL. Theoretically

this procedure would be repeated endlessly leading to an ex-

pression for the current wave with two infinite sums

i(l)= C̃+(l)

∞∑
n=0

(
e−jkLR̃−e

−jkLR̃+

)n
e−jkl

+C̃+(l)e
−jkLR̃−

∞∑
n=0

(
e−jkLR̃+e

−jkLR̃−

)n
e−jk(L−l).. (27)

The two sums in Eq. (27) represent geometrical series and

can be simplified leading to the final result for the current on

the TL

i(l)=
C̃+(l)

(
e−jkl + R̃−e

−2jkLejkl
)

1− R̃−R̃+e−2jkL
. (28)

It has to be mentioned that for the asymptotic region, that is

l ∈ [L1,L2], the reflection coefficients are constant.

When the current on the TL is known for example from

a full wave simulation the current reflection coefficients can

be calculated. This is shown for R̃+(l). For the asymptotic

region a backward traveling wave can be expressed as i(l)=

Ĩ1

(
ejkl + R̃+e

−jkl
)
. A straight forward calculation results in

R̃+(l)=

(
jki(l)−

di(l)
dl

jki(l)+
di(l)
dl

)
e2jkl . (29)

5 Numerical calculations for classical TL with risers

First, the TL from Fig. 1 is regarded with the before men-

tioned line parameters LTL = 2m, L= 2.1m, h= 5cm and

Adv. Radio Sci., 13, 161–168, 2015 www.adv-radio-sci.net/13/161/2015/
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Figure 12. Current for different positions on the TL calculated us-

ing the reflection coefficients.

r0 = 0.5mm. The TL is driven by a voltage source U0 = 1V

with source impedance Z0 = 50� and terminated by a load

ZL = 50�. Elements of the parameter matrix P
∗(1)

(TLST)

are shown in Figs. 2 and 3. Using formulas Eqs. (19) and (18)

the current reflection coefficients |R̃+| and |R̃−| were calcu-

lated for the center position on the TL at l = L/2 in the fre-

quency range from 100 MHz to 1 GHz as shown in Fig. 11. It

is clearly seen that the current reflection coefficients deviate

from their classical value significantly with rising frequency

because of the radiated energy losses. Because source and

load impedance are the same in this configuration, |R̃+| and

|R̃−| have the same value.

Using Eq. (28) the current can be calculated for different

positions and frequencies. Fig. 12 shows the results for the

positions L1, L/2 and L2. Also shown (black dash-dotted

line) is the current |I (L/2)| resulting from a MoM calcu-

lation using the Concept-II code (Brüns et al., 2011). The

correspondence between full wave analysis and calculation

using novel local and frequency dependent reflection coeffi-

cients is excellent.

In Fig. 13 the reflection coefficients |R̃−| are shown for the

TL from Fig. 1 with h= 5cm for different loads ZL (short

circuited, 50�, matched and open). The source impedance

remains at Z0 = 50�, so |R̃+| is the same for all ZL values

and is explicitly shown for the open case. The classical cur-

rent reflection coefficient for an open TL is negative because

of the necessary phase shift of the current wave. In Fig. 13 the

absolute value of R̃− is presented, but of course for ω→ 0

the real part of R̃− would tend to the value−1. For a matched

load the classical reflection coefficient is zero. That means

the current wave would completely be absorbed in the load

and no reflected wave would be produced. In a real TL with

risers there is no fixed matched load for all frequencies any

longer (Rambousky et al., 2013b). The nonuniformity of a

Figure 13. Reflection coefficients at l = L/2 for different load

impedances ZL.

Figure 14. Reflection coefficients at l = L/2 for different heights h

of the TL over PEC ground.

real TL is responsible for the scattering of the current wave

at the local (e.g. bends) or distributed (e.g. varying height

over ground) scattering centers. With a classical matched

load impedance the current reflection coefficient |R̃−| rises

with frequency as can clearly be seen in Fig. 13.

Another interesting fact is the influence of the height h

of the TL over ground on the reflection coefficient. With de-

creasing height h a TL should show increasingly classical be-

havior. This can be seen also in the gradient of the reflection

coefficients. In Fig. 14 it is shown that for decreasing height h

the frequency dependence of |R̃+| decreases also and would

approach the constant classical value for h→ 0. The curve

with the blue diamonds in Fig. 14 was produced by calcu-

lating the current on the TL with the MoM code Concept-II

and using Eq. (29) to calculate R̃+(l). There is again a good

correspondence between MoM and TLST results.
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Figure 15. Current at the middle of the TL (l = L/2) for a constant

height h= 5cm and different horizontal length LTL.

As mentioned before the original TLST calculation of

the current on the TL is an exact solution while the calcu-

lation using the novel reflection coefficients is still an ap-

proximation because the mutual influence of the risers is

neglected. When the ratio of the horizontal part of the TL

and the height above the conducting ground plane, LTL/h,

is large enough there will be no significant influence due

to the risers. The current on the TL then should be the

same as for a pure TLST calculation and a current calcu-

lation using the above reflection coefficient method at least

for the asymptotic region. This can be seen in Fig. 15 for

the ratio LTL/h= 50cm/5cm= 10. The correspondence is

nearly perfect. Reducing the ratio dramatically to LTL/h=

5cm/5cm= 1 where the length of the horizontal part is

equal to the height of the risers, there is a distinct mismatch

between the two current calculation procedures (see also

Fig. 15). But from a practical point of view the differences

are not crucial so that for practical applications the reflection

coefficient method can be used even with smaller LTL/h ra-

tios.

6 Conclusion

In this paper it was shown that cTLT is not sufficient for a fi-

nite classical TL with risers at high frequencies. For efficient

analysis the TL can be separated into the two riser parts and

the asymptotic region. The latter can be handled with cTLT

while the riser parts have to be calculated using an advanced

TLT, like TLST. The product of matrizants for the three parts

finally gives the matrizant for the original whole TL.

Novel reflection coefficients were defined according to the

concept of the constant classical ones which are now local

and frequency dependent. The current on the TL was calcu-

lated using these novel reflection coefficients. For TLs where

the horizontal part is significantly larger than the height of

the risers the so calculated current fits very well to the ex-

act solution using only TLST or a full wave method. Nu-

merical results were shown for several configurations of load

impedance or heights of the risers. The result for the current

determined via the novel reflection coefficients leads even for

small LTL/h ratios to practically usable values.

The presented method for the analysis of nonuniform

TLs is essential for a network theory where such TLs

are to be handled. It could be shown that junctions are

allowed in regions which show nearly classical behavior for

an otherwise nonuniform TL. The formulas for the novel

reflection coefficients possess exactly those type of poles,

which are necessary for the singularity expansion method

(SEM) analysis of the basic frequencies of a TL system. The

extension of SEM for nonuniform TL will be of interest for

future work.
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