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Abstract. This article broaches the issue of the propaga-

tion of transient signals in gigahertz transverse electromag-

netic (GTEM) cells. As a representative for transient sig-

nals a damped sinusoidal (DS) is used with three different

mid-band frequencies. The signal transmission of the DS in

the GTEM1250 is qualified and discussed on the basis of

the Pearson correlation coefficient (Pcc). The Pcc gives an

overview of the signal transmission quality for all measur-

ing points within the testvolume and signal distortions can

be identified. A 100 MHz DS is weakly distorted in several

measuring points. The Pcc at those points decreases and a

signal shape variance can be assumed. Furthermore inhomo-

geneities of the GTEM1250 caused by the cell door can be

identified.

1 Introduction

The continuously increasing use of electric and electronic

equipment requires a save handling. This includes a de-

fined immunity against unintentional and intentional inter-

ference. Furthermore the radiated emission of every electric

and electronic equipment is subjected to a normative thresh-

old. Therefore it is necessary to measure the radiated suscep-

tibility and emissions of electronic equipment. These mea-

surements has to be performed under far field conditions. In

addition it is very important to isolate the equipment under

test (EUT) from the electromagnetic environment. Those two

criteria are fulfilled by a gigahertz transverse electromag-

netic (TEM) waveguide.

In general a TEM waveguide is suitable to transmit tran-

sient signals undistorted. Depending on the usable frequency

range this is valid only for selected signals. In this paper

the damped sinusoidal (DS) is considered. This signal is of-

ten used in the electromagnetic compatibility (EMC). One

example are High-Power Electromagnetic (HPEM) systems,

which use this kind of signal. Another example are electric

installations, where sinusoidal interferences during a switch-

ing operation are possible. These facts show, that it is very

important to evaluate the consequences of a sinusoidal inter-

ference for an EUT. To estimate the reaction of any EUT to

such an interference, an undistorted transmission is an essen-

tial characteristic of the used GTEM cell. A qualification of

the transmission of the waveguide is realized in this article.

The evaluation is implemented with the Pearson correlation

coefficient (Pcc).

The article has the following structure: Initially the mea-

surement setup is described in Sect. 2. This part includes the

signal generation of the DS, the measurement of the electric

field distribution inside the test volume of the GTEM1250

and the calculation of the Pcc. Afterwards the evaluation of

the measurement results follows in Sect. 3. The conclusion

discusses the transmission behaviour of the DS inside of the

GTEM1250 and the DS as a waveguide classifying signal in

frequency as well as in time domain (TD).

2 Measurement setup

The transmission characteristics of the GTEM1250 are eval-

uated with a DS, generated with a vector signal generator. A

directly modelling of the DS is not possible. Therefore the

damped sinusoidal is generated with a sine modelled double

exponential function. In Fig. 1 an example of the output volt-
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Figure 1. 100 MHz damped sinusoidal (DS).

age of a 100 MHz DS is shown. The voltage output is directly

monitored with an oscilloscope.

The maximum output voltage of the signal generator is

1 V. Losses along the cables and the field probe antenna fac-

tor require a amplified signal.

The field probe is optoelectronic. Within the test volume

of the GTEM1250 the transmission of the Ey component of

the supplied DS is evaluated. The test volume is sampled in

64 measuring points. According to the manufacturers rec-

ommendations (TESEQ, 2014) the measurement points are

placed in a height of 0.541 m above the bottom of the cell. In

each direction the measuring points have a distance of 0.13 m

to each other.

To qualify the measured signal within the test volume, a

reference is required. This reference is measured at a septum

height of 0.485 m, whereby the E-field probe is centred to

the septum at a height of 0.24 m. At this reference point the

measurement is performed with the identical E-field probe

that is used in the test volume. The influence of the probe is

the same for both measurements and the losses of cables and

distortions of the amplifier do not affect the signal compari-

son.

Depending on the size and shape of a waveguide, a cutoff

frequency exists. Above this cutoff frequency higher order

modes can propagate in the test volume (Koch, 1998; Thye,

2012). Due to the higher order modes, the TEM mode does

no longer dominate the field distribution. The field distribu-

tion of the GTEM cell at the chosen reference point is undis-

torted. No higher order modes are capable of propagation and

the field consists only of a TEM-mode.

A correlation between the reference signal (x) and those

measured in the test volume (yi), is a qualification of the

transmission. The Pcc ρi is calculated (Kölling et al., 2011)

(Eq. 1).
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Figure 2. Uncertainty contribution of the field homogeneity within

the test volume of the GTEM1250 (Hamann, 2014).
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(x[k] − x)2 ·

√
1
N

N∑
k=1

(y[k] − y)2

(1)

Discrete frequencies for the supplied DS have to be cho-

sen. According to the manufactures recommendations the

GTEM1250 is usable in a frequency range from DC to

18 GHz. Hamann and Garbe (2014) investigated this cell in

a large frequency band (30 MHz–3 GHz) and calculated the

uncertainty contribution of the field homogeneity, which is

depicted in Fig. 2. The uncertainty is constant up to a fre-

quency of 100 MHz. Above 100 MHz the uncertainty in the

test volume of the GTEM1250 has a high peak. Therefore,

a DS with a frequency of 100 MHz is likely to be distorted.

Additional characteristic frequencies are 230 and 400 MHz.

Thus the GTEM1250 has at 230 MHz a worse uncertainty

than at a frequency of 400 MHz. Those three frequencies

show a characteristically uncertainty with a comparable low

or high value. The reason for that uncertainty might lead to

distortion.

The correlation coefficient for a DS with a frequency of

100 MHz should be much lower than for a DS with a fre-

quency of 230 or 400 MHz. One reason is based in the exci-

tation of a higher order mode. Resonances at lower frequen-

cies, e.g. 100 MHz, are more severe because of non ideal

absorbing structures for this frequency band (Cuming Mi-

crowave, 2014). In the following chapter the cell characteris-

tics are discussed and evaluated by the application of a DS to

the cell at the three frequencies discussed above.

3 Evaluation of the transmission characteristics of the

GTEM1250 on the basis of the Pcc

In this chapter the properties of the GTEM1250 are analysed

with the correlation coefficient. The correlation between the

reference and the signals within the test volume (Fig. 3) of

the GTEM cell is visualized in a heat map.
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Figure 3. Testvolume of the GTEM1250.
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Figure 4. Pcc for a 100 MHz DS within the GTEM1250.

Figure 4 shows the calculated Pcc for a DS with a fre-

quency of 100 MHz. The z′ axis at x′= 0 cm in the shown

results is parallel to the middle of the septum. The measuring

points along the z′ axis at x′=−49 cm and x′= 49 cm are

along the edge of the septum. Along the z′ axis at x′= 49 cm

the cell door is located. This geometrical dimensions should

be kept in mind during the evaluation of the field distribu-

tion using the Pcc. Beginning with a correlation coefficient

of ρxy = 0.99 at z′= 91 cm, ρxy decreases continuously in

the direction of the rear wall. At the end of the test volume

at z′= 0 m, the Pcc is ρxy = 0.93. Other seen cell character-

istics which distort the field distribution are the edges of the

septum and the door of the GTEM1250. In comparison with

the majority of the Pcc, minimal asymmetries can be seen at

these points.

To investigate the signal with a correlation coefficient of

ρxy = 0.93 more significantly, the signals at the reference and

the measuring point are compared in the TD. This is shown

in Fig. 5.

The normalisation applied to the signals takes the increas-

ing septum height and the resulting decrease of the electric

field strength into account. Due to the normalisation of the

signals a comparison becomes more significant. As that re-

veals non idealities of the waveguide.

In TD, it is possible to show influences of higher order

modes more detailed. Reflections can be identified after the

first period of the DS, after 6.7 ns, which is equivalent to a

reflected wave with a group velocity of c0=
1

√
µ0 ε0

over a
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Figure 5. Comparison of the reference signal and the pulse with

in the test volume for a 100 MHz DS (z′= 0 m, x′= 0.07 m,

ρxy ≈ 0.93).
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Figure 6. Comparison of the reference signal and the pulse within

the test volume for a 100 MHz DS (z′= 0.91 m, x′= 0.07 m,

ρxy ≈ 0.99).

length of approximately 2 m. This corresponds to twice the

distance from the measuring point z′= 0 m (Fig. 4) to the

tips of the pyramidal absorbers.

The signals, displayed in Fig. 6, match well for the first

period of the DS. After the first period a time delay occurs.

In comparison, the measured DS at z′= 0.91 m matches with

the reference until the fourth period. With these two exam-

ples it can be shown, that the correlation coefficient is a

proven quality criterion for a DS. Therefore the differences

(1ρxy ≈ 0.06) of the correlation coefficients is a dimension

for the signal deformation.

In addition the GTEM cell characteristics are verified for

the DS with center frequencies 230 and 400 MHz. Accord-

ing to the uncertainty in Fig. 2, the Pcc for those frequen-

cies should be higher. The Pcc for the test volume of the

GTEM1250 at a frequency of 230 MHz is shown in Fig. 7.

The correlation coefficient is constant over the area of the

test volume. 62 of the 64 measuring points result in a corre-

lation coefficient between ρxy = 0.97 and ρxy = 0.98. Below
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Figure 7. Pcc at a 230 MHz DS within the GTEM1250
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Figure 8. Comparison of the reference signal and the pulses with

in the test volume for a 230 MHz DS (z′
1
= 0.63 m, x′

1
= 0.07 m,

ρxy1≈ 0.98; z′
2
= 0.14 m, x′

2
=−0.49 m, ρxy2≈ 0.96).

the edge of the septum, there are two points where the ref-

erence and the signal within the test volume correlate with

a coefficient of ρxy = 0.96. According to the Pcc a DS at

230 MHz is transmitted much better then at 100 MHz. This

can be confirmed by results in TD, shown in Fig. 8.

According to the measurements of Hamann and Garbe

(2014) a DS with a center frequency of 400 MHz leads to a

smaller uncertainty in comparison to 100 and 230 MHz. The

effect of this changed uncertainty is evaluated. The resulting

correlation coefficients are displayed in Fig. 9.

The overall value of the Pcc of the 64 measurement points

is very high. It fluctuates between ρxy = 0.99 and ρxy = 1 and

represents the reference very well. A comparison of the sig-

nals with the maximum and minimum correlation coefficient

in TD is shown in Fig. 10. Both measured DS match very

well with the reference.

According to the results of this work, the GTEM1250 is

principally able to transmit transient signals undistorted. This

is verified with three DS frequencies and evaluated with the

Pcc as well as in TD. In TD a comparison with the mea-

sured reference is performed. Frequencies which lead ac-
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Figure 9. Pcc at a 400 MHz DS within the GTEM1250.
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Figure 10. Comparison of the reference signal and the pulses with

in the test volume for a 400 MHz DS (z′
1
= 0.63 m, x′

1
= 0.49 m,

ρxy1≈ 0.99; z′
2
= 0.63 m, x′

2
=−0.07 m, ρxy2≈ 1).

cording Hamann and Garbe (2014) to a higher uncertainty,

e.g. 100 MHz), have a Pcc of ρxy = 0.93. The two other DS

frequencies, 230 and 400 MHz, have a Pcc with a maximum

of ρxy = 1 (400 MHz). In TD reflections can be observed

for the 100 MHz DS after the first period. An inhomoge-

neous field distribution can be seen. The measured 230 and

400 MHz DS correspond to the reference signal within in

complete test volume. The field distribution at these frequen-

cies is much better.

The shown transmission characteristic of the GTEM1250

and the differences for the three discussed frequencies be-

long to the excitation of higher order modes. For 100 MHz

the first higher order mode can be observed and reflections

become more dominant. At 250 MHz there are other higher

order modes and those are – contrary to the one at 100 MHz

– mitigated by the absorbers!
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4 Conclusions

The results of this work show that the Pearson correlation co-

efficient can be used to qualify the waveguide with respect to

signal distortion; thus measuring points with a shape invari-

ant signal transmission can be identified. The transient sig-

nals used for these measurements were DS waveforms with

a center frequency chosen with regard to an uncertainty anal-

ysis of former frequency domain measurements. It is shown

that resonances causing a large uncertainty in frequency do-

main result in reflections in time domain and thus in a de-

crease of the Pearson correlation coefficient. At frequencies

with a lower field induced uncertainty dispersion caused by

the excitation of higher order modes can be identified as a

source slight variations in the Pearson correlation coefficient.

With these time domain measurements it can be shown that

small variations of the Pearson correlation coefficient iden-

tify a deformed signal shape. Although there still is a strong

correlation between reference and signal, it is possible to use

the Pearson correlation coefficient in order to identify critical

signal properties – e.g. a frequency of the DS corresponding

to the resonance of a higher order mode. In addition the eval-

uation of the measurements reveal positions within the test

volume where additional investigations might be required as

imperfections in the geometry of the waveguide distort the

electromagnetic fields.
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