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Abstract. Model-order reduction provides an efficient way

of computing frequency sweeps for finite-element models,

because the dimension of the reduced-order system depends

on the complexity of the frequency response rather than the

size of the original model. For electrically large domains,

however, the applicability of such methods is unclear because

the system response may be very complicated. This paper

provides a numerical study of the effects of bandwidth, elec-

trical size, and scan angle on the size and convergence of the

ROM, by considering linear antenna arrays. A mathematical

model is proposed and validated against numerical experi-

ments.

1 Introduction

Numerical volume discretization methods, such as finite-

elements (FE), provide a highly flexible approach to the so-

lution of electromagnetic boundary value problems. The re-

sulting systems of linear equations are typically sparse but of

very large scale. They are commonly solved by direct meth-

ods, due to their high robustness. However, both computa-

tional complexity and memory requirements of such meth-

ods are sub-optimal. Iterative solvers, like Krylov sub-space

techniques, provide an attractive alternative which, however,

depends critically on the availability of efficient precondi-

tioners.

In the frequency domain, the structure of the underlying

indefinite vector Helmholtz equation and the effect of dis-

persion error have long impeded the development of effective

preconditions for domains that are electrically large. Recent

advances in domain decomposition (DD), as reported in Lee

et al. (2005) and Rawat and Lee (2007), have greatly facili-

tated the solution of the resulting FE systems, especially in

case of antenna arrays. Nevertheless, such methods just pro-

vide solutions at single frequency points.

When broad frequency bands are to be analyzed, multi-

point methods of model-order reduction (MOR) are more at-

tractive than conventional FE analysis. These techniques em-

ploy well-chosen snapshots of the solution manifold to gen-

erate an approximation space whose dimension is low and

does not depend on the size of the underlying system. State-

of-the-art MOR approaches place expansion points adap-

tively, based on some a posteriori error indicator Chen et al.

(2010), Hesthaven et al. (2012).

The dimension of the reduced-order system (ROM) does,

however, depend on the complexity of the system response

for the specific excitations under consideration. Therefore, it

is unclear whether MOR is suitable for the FE-based broad-

band analysis of large-scale antenna arrays. On the one hand,

these structures are electrically large and exhibit high num-

bers of independent inputs. Moreover, the individual radia-

tors often exhibit resonant behavior. Thus, the resulting fre-

quency response may be expected to be complicated and re-

quire a large ROM to be represented well. On the other hand,

the considered structures serve the prime purpose of radiat-

ing electromagnetic waves. Thus, even though the array may

support a great number of beam forms and a wide range of

scan angles, the excitations and fields of the individual el-

ements are always characterized by a large amount of phase

coherence and slowly changing amplitude distributions. Such

system properties are well-suited for MOR.

The first goal of this paper is to numerically investigate the

effects of bandwidth, electrical size, and scan angle on the

dimension and convergence properties of the ROM. For this

purpose, we consider linear arrays of up to 144 wavelengths

λ in size. We restrict ourselves to these essentially one-

dimensional structures, because they allow to study large-
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scale effects at minimum computational costs. Nevertheless,

for the largest structure the number of FE unknowns exceeds

22 million. Therefore, all FE computations are performed by

a general-purpose DD solver which has successfully been ap-

plied to truly three-dimensional structures; see Rawat and

Lee (2010). Based on the numerical results, we propose a

simple mathematical model based on sampling theory to pre-

dict the convergence properties of the ROM. The model is

validated by comparing its predictions against the results

of additional numerical experiments. In view of the general

principles behind their core findings, the authors conjecture

that they will transfer well to planar and general array con-

figurations.

2 Problem formulation

2.1 Time-harmonic boundary value problem

The electric field is denoted by E, the magnetic field by H ,

the surface current density by K , the relative magnetic per-

meability by µr, and the relative electric permittivity by εr.

The abbreviations k0 and η0 stand for the free-space wave

number and characteristic impedance, respectively.

Given a bounded domain �⊂ R3 with boundary ∂�=

0P ∪0E∪0A and unit outward normal vector n̂, we consider

the time-harmonic boundary value problem (BVP)

∇ ×µ−1
r ∇ ×E− k2

0εrE = 0 in �, (1a)

πt (E)= 0, on 0E, (1b)

[µ−1
r ∇ ×E] = −jk0η0K, on 0P , (1c)

γt (µ
−1
r ∇ ×E)− jk0

√
εr

µr

πt (E)= 0, on 0A. (1d)

Here, γt (E)= n×E denotes the tangential trace and

πt (E)= n̂× (E× n̂) the tangential component trace map-

ping; see Buffa and Ciarlet (2001). The jump operator [E] is

defined by

[E] : [E]ij = γt (Ei)+ γt (Ej ). (2)

For clarity of presentation, we only consider two sub-

domains in the DD formulation and assume that a single ma-

terial region is cut by the interface 0: We decompose � into

two non-overlapping sub-domains such that �=�1 ∪�2,

�1 ∩�2 =∅, 0 =�1 ∩�2, and denote the interface seen

from �1 and �2, respectively, by 012 and 021. For the

boundaries of the sub-domains, we use the notation 0mX =

∂�m ∩0X with X ∈ {E,P,A} and m ∈ {1,2}. The decom-

posed BVP reads

∇ ×µ−1
r,1∇ ×E1− k

2
0εr,1E1 = 0 in �1, (3a)

∇ ×µ−1
r,2∇ ×E2− k

2
0εr,2E2 = 0 in �2, (3b)

πt (E1)= 0 on 01
E, (3c)

πt (E2)= 0 on 02
E, (3d)

[µ−1
r,1∇ ×E1] = −jk0η0K1,

on 01
P (3e)

[µ−1
r,2∇ ×E2] = −jk0η0K2,

on 02
P (3f)

γt (µ
−1
r,1∇ ×E1)− jk0

√
εr,1

µr,1

πt (E1)= 0 on 01
A, (3g)

γt (µ
−1
r,2∇ ×E2)− jk0

√
εr,2

µr,2

πt (E2)= 0 on 02
A, (3h)

T (E1)− T (E2)= 0 on 012, (3i)

T (E2)− T (E1)= 0 on 021. (3j)

Equations 3i and 3j enforce the necessary continuity require-

ments for the electric and magnetic fields on the interface.

We here consider a transmission condition T with two trans-

verse derivatives of second order,

T (E)= απt (E)+β∇t ×∇t ×πt (E)

+ γ∇t∇t · γt

(
µ−1

r ∇ ×E
)
, (4)

with complex coefficients α, β and γ . It was shown in Rawat

and Lee (2010) that equivalence of Eqs. (3) and (1) is guar-

anteed provided that =(
β
α
) 6= 0 or <(

β
α
)≥ 0 and =(γ ) 6= 0 or

<(γ )≥ 0. See Dolean et al. (2015) for a more detailed dis-

cussion.

2.1.1 Finite-element formulation

Let H curl(�), H 1(�), H
1
2 (0), and H

1
2 (0) denote the

Sobolev spaces from Buffa and Ciarlet (2001). We define the

subspace H curl
E by

H curl
E (�) := {v ∈H curl(�) | πt (v)= 0 on 0E} (5)

and denote the topological dual spaces of H
1
2 (0mn) and

H
1
2 (0mn) by H−

1
2 (0mn) and H−

1
2 (0mn), respectively. To

implement the DD formulation 3, we introduce auxiliary

variables jm ∈H−
1
2 (0mn) and pm ∈H

−
1
2 (0mn) on the in-

terfaces, by

jm = k
−1
0 γt

(
µ−1

r,m∇ ×Em

)
, m ∈ {1,2}, (6)

pm =
(
k2

0

)−1

∇t · γt

(
µ−1

r,m∇ ×Em

)
, m ∈ {1,2}. (7)

The corresponding FE spaces are denoted by Vcurl
m,E ⊂

H curl
E (�m), V0

mn ⊂H−
1
2 (0mn), and V0mn ⊂H−

1
2 (0mn). The
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FE spaces for the auxiliary variables jm and pm are taken to

be the range of the tangential component map πt (Vcurl
m,E) and

the two-dimensional grad-conforming space, respectively.

The authors’ computer implementation employs basis func-

tions of second order. In the discretization process, we apply

a Galerkin procedure to Eqs. (3j) and (3b), substitute Eq. (6)

for the resulting surface terms, and test the interface con-

dition as well as the definition Eq. (7) by shape functions

u ∈ V0
mn and φ ∈ V0mn, respectively. The resulting FE-DD

system reads[
A1(k0,ξ) C12(k0,ξ)

C21(k0,ξ) A2(k0,ξ)

][
x1(k0)

x2(k0)

]
= jk0η0

[
b1(k0)

b2(k0)

]
, (8)

wherein ξ = (α,β,γ ), Am ∈ CNm×Nm , Cmn ∈ CNm×Nn ,

and bm ∈ CNm , with m,n ∈ {1,2}. The vectors

xm = em, j0m, p0m
T

are of dimension Nm and include

FE degrees of freedom for both the electric field Em and the

auxiliary variables jm and pm inside the sub-domain �m.

The corresponding block matrices are given by

Am =


A

e,e
m − k

2
0B

e,e
m + k0R

e,e
m k0T

e,j
m 0

k0

(
T

e,j
m

)T
+
k0β
α

S
j ,e
m

k2
0

α
T

j ,j
m

k3
0γ

α
D

j ,p
m

0 F
p,j
m k0T

p,p
m

 , (9)

Cmn =

 0 0 0

−k0

(
T

e,j
mn

)T
−

k0β
α

S
j ,e
mn

k2
0

α
T

j ,j
mn

k3
0γ

α
D

j ,p
mn

0 0 0

 , (10)

bm =

ym
0

0

 , (11)

wherein

[
Ae,e
m

]
ij
=

(
∇ × vi,µ

−1
r,j ∇ × vj

)
�m
, (12a)[

Be,e
m

]
ij
=
(
vi,εr,jvj

)
�m
, (12b)[

R
e,j
m

]
ij
= j

〈
πt (vi),πt (vj )

〉
0mA
, (12c)[

T
e,j
mn

]
ij
=
〈
πt (vi),uj

〉
0mn

, (12d)[
T

j ,j
mn

]
ij
=

〈
ui,uj

〉
0mn

, (12e)[
S

j ,e
mn

]
ij
=
〈
∇ ×ui,∇ ×πt (vj )

〉
0mn

, (12f)[
D

j ,p
mm

]
ij
=
〈
ui,∇φj

〉
0mn

, (12g)[
T

p,p
mm

]
ij
=
〈
φi,φj

〉
0mn

, (12h)[
F

p,j
mm

]
ij
=
〈
∇φi,uj

〉
0mn

, (12i)[
ym
]
i
= 〈πt (vi),γt (H )〉0H , (12j)

with vi,vj ∈ Vcurl
m,E , and ui,uj ∈ V0

mn and φi,φj ∈ V0mn. The

volume (. . .) and surface 〈. . .〉 bilinear forms are given by

(u,v)� =

∫
�

u · vd�, (13a)

〈u,v〉0 =

∫
0

u · vd0, (13b)

〈φ,ψ〉0 =

∫
0

φψd0. (13c)

3 Reduced-order model

As a prerequisite for projection-based MOR, the system

Eq. 8 has to be rewritten in affinely decomposed form with

respect to the wavenumber k0. This is achieved by defining

the following wavenumber-independent matrices:

A0
m =

A
e,e
m 0 0

0 0 0

0 F
p,j
m 0

 , A1
m =

 R
e,e
m T

e,j
m 0(

T
e,j
m

)T
0 0

0 0 T
p,p
m

 ,

A2
m =

−B
e,e
m 0 0

0 0 0

0 0 0

 , A3
m =

 0 0 0

S
j ,e
m 0 0

0 0 0

 ,
A4
m =

0 0 0

0 T
j ,j
m 0

0 0 0

 , A5
m =

0 0 0

0 0 D
j ,p
m

0 0 0

 ,
(14)
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and

C0
mn = 0, C1

mn =

 0 0 0

−

(
T

e,j
mn

)T
0 0

0 0 0

 ,
C2
mn = 0, C3

mn =

 0 0 0

−S
j ,e
mn 0 0

0 0 0

 ,
C4
mn =

0 0 0

0 T
j ,j
mn 0

0 0 0

 , C5
mn =

0 0 0

0 0 D
j ,p
mn

0 0 0

 ,
(15)

with m,n ∈ {1,2}. Thus 8 takes the form(∑I

i=1
φi(k0)Âi

)
x̂(k0)=

(∑J

j=1
θj (k0)b̂j

)
, (16a)

y(k0)=
(∑J

j=1
ηj (k0)b̂

T
j

)
x̂(k0), (16b)

with wavenumber-dependent functions φi,θj ,ηj : R→ C

defined by

φ0(k0)= 1, φ1(k0)= k0, φ2(k0)= k
2
0, (17)

φ3(k0)= k0

β

α
, φ4(k0)= k

2
0

1

α
, φ5(k0)= k

3
0

γ

α
, (18)

θj = jk0η0, ηj = 1, (19)

and block matrices Âi and block vectors x̂(k0), b̂i given by

Âi =

[
Ai1 Ci12

Ci21 Ai2

]
∈ C(N1+N2)×(N1+N2), (20a)

x̂(k0)=

[
x1(k0)

x2(k0)

]
∈ C(N1+N2), (20b)

b̂i =

[
bi1
bi2

]
∈ C(N1+N2). (20c)

A multi-point reduced-order model (ROM) is built from

the FE solutions x(ki0) of Eq. 16 at M expansion points

k1
0, . . .,k

M
0 , with M �N1+N2, which are selected adap-

tively; see Sect. 3.1. The first step is to compute a unitary

projection matrix V ∈ CN1+N2,M with

range(VM)= span{x(ki0)}, i = 1. . .M. (21)

Then, Galerkin projection leads to a ROM of the form(∑I

i=1
φi(k0)Ãi

)
x̃(k0)=

(∑J

j=1
θj (k0)̃bj

)
, (22a)

ỹ(k0)=
(∑J

j=1
ηj (k0)̃bj

)
x̃(k0) (22b)

wherein the reduced matrices and vectors are defined as

Ãi = V∗M ÂiVM ∈ CM×M , (23)

b̃i = V∗M b̂i ∈ CM . (24)

Thus, ROM construction requires the solution of the large-

scale FE-DD system Eq. 16 at each expansion point. Since
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Then, Galerkin projection leads to a ROM of the form

(∑I

i=1
φi(k0)Ãi

)
x̃(k0) =

(∑J

j=1
θ j(k0)b̃ j

)
, (22a)

ỹ(k0) =
(∑J

j=1
η j(k0)b̃T

j

)
x̃(k0), (22b)200

wherein the reduced matrices and vectors are defined as

Ãi = V∗MÂiVM ∈ CM×M , (23)

b̃i = V∗M b̂i ∈ CM . (24)

Thus, ROM construction requires the solution of the large-
scale FE-DD system (16) at each expansion point. Since (16)205

is solved iteratively, ROM construction time is determined
not only by the ROM dimension M but also by the conver-
gence behavior of the linear solver. To improve solver perfor-
mance, we use an adaptive two-level preconditioner based on
the reduced-order system already available at a given adap-210

tive step.

3.1 Adaptivity

As demonstrated in Patera and Rozza (2006–2007), the 2-
norm of the residual r(k0) of (16a) according to the ROM
solution x̃(k0),215

r(k0) =
(∑J

j=1
θ j(k0)b̂ j

)
−

(∑I

i=1
φi(k0)Âi

)
VM x̃(k0), (25)

can be evaluated very efficiently, using reduced-order quan-
tities only. It was suggested in de la Rubia et al. (2009) to
employ the relative residual norm ρ,

ρ(k0) =
‖r(k0)‖2∥∥∥∑J

j=1 θ j(k0)b̂ j

∥∥∥
2

, (26)220

as an inexpensive error indicator for guiding the placement of
the expansion points ki

0: At a given stage of ROM generation,
ρ is evaluated for a dense sampling {ks

0} of the wavenum-
ber interval under investigation, and the following expan-
sion point is chosen where the relative residual is the largest.225

ROM generation terminates when ρ has fallen below a user-
defined threshold ρ0 for all ks

0.

4 Numerical Experiments

To simplify mathematical analysis and minimize the costs of
numerical tests, we consider a structure that is structurally230

simple and electrically large in a single direction. Specifi-
cally, we choose a linear array of NA equally spaced, per-
fectly conducting dipoles in free space. The geometry of the
FE domain is shown in Fig. 1. On the outer surface, absorb-
ing boundary conditions are applied. The dipoles are excited235

at their centers by lumped ports of impedance ZP = 73 Ω. To
steer the array pattern towards a given angle θs, the incident
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Figure 1: FE model of linear array of dipoles. Black rectan-
gles indicate lumped ports. Dimensions are in mm.

waves at the ports an are taken of unit magnitude and linear
phase distribution,

an = e− jk0zn cosθs , (27)240

where zn is the z coordinate of the dipole axis. Specifically,
the limiting cases of broadside (θs = π

2 rad) and end-fire
(θs = 0 rad) arrays are considered. The FE-DD system (16)
is solved by the restarted GMRES(30) iterative method with
stopping criterion δ = 10−6; see Saad and Schultz (1986). The245

ROM termination criterion is maxρ(k0) = 10−6. Preliminary
studies on smaller arrays using standard FE techniques rather
than DD have confirmed that the behavior of the ROM is
mainly determined by the antenna configuration and almost
independent of the FE formulation. Thus no additional data250

are given.

4.1 Varying Number of Radiators NA

Let the center frequency fc = 4 GHz and bandwidth B =

2 GHz be given. We investigate the convergence behavior
of the adaptive ROM by varying the number of dipoles in the255

range NA = 12 . . .192 and, correspondingly, the electric size
of the array in the range (6 . . .96) λ at 4 GHz.

Fig. 2 presents radiation patterns derived from the ROM,
for NA = 192. The qualitative behavior is as expected: Since
the dipoles are one-half wavelength apart at the chosen fre-260

quency, f = 4 GHz, the radiation patterns of not only the
broadside but also the end-fire array are quarter-symmetric.

Fig. 3 shows the convergence behavior of the ROM for
different numbers of dipoles. The difference between Fig. 3a
and Fig. 3b is striking: The broadside array does not exhibit265

any pre-asymptotic region and leads to exponential conver-
gence rates right from the start whereas the end-fire con-
figuration leads to a pronounced plateau, followed by expo-
nential convergence. In both cases, convergence rates in the
asymptotic region deteriorate slowly with increasing number270

of dipoles. In consequence, ROM dimension remains almost
constant for the broadside array, as illustrated by Fig. 4a. In
the end-fire case, in contrast, both plateau width and ROM
dimension increase linearly with the number of dipoles; see
Fig. 4b. For completeness, the dimensions of the underlying275

FE-DD systems and corresponding ROMs for different num-
bers of dipoles are collected in Table 1.

Figure 1. FE model of linear array of dipoles. Black rectangles in-

dicate lumped ports. Dimensions are in mm.

Eq. 16 is solved iteratively, ROM construction time is de-

termined not only by the ROM dimension M but also by

the convergence behavior of the linear solver. To improve

solver performance, we use an adaptive two-level precondi-

tioner based on the reduced-order system already available at

a given adaptive step.

3.1 Adaptivity

As demonstrated in Patera and Rozza (2006–2007), the 2-

norm of the residual r(k0) of Eq. 16a according to the ROM

solution x(k0),

r(k0)=
(∑J

j=1
θj (k0)b̂j

)
−

(∑I

i=1
φi(k0)Âi

)
VM x(k0), (25)

can be evaluated very efficiently, using reduced-order quan-

tities only. It was suggested in de la Rubia et al. (2009) to

employ the relative residual norm ρ,

ρ(k0)=
‖r(k0)‖2∥∥∥∑J
j=1θj (k0)b̂j

∥∥∥
2

, (26)

as an inexpensive error indicator for guiding the placement of

the expansion points ki0: At a given stage of ROM generation,

ρ is evaluated for a dense sampling {ks0} of the wavenum-

ber interval under investigation, and the following expan-

sion point is chosen where the relative residual is the largest.

ROM generation terminates when ρ has fallen below a user-

defined threshold ρ0 for all ks0.

4 Numerical experiments

To simplify mathematical analysis and minimize the costs of

numerical tests, we consider a structure that is structurally

simple and electrically large in a single direction. Specifi-

cally, we choose a linear array of NA equally spaced, per-

fectly conducting dipoles in free space. The geometry of the

FE domain is shown in Fig. 1. On the outer surface, absorb-

ing boundary conditions are applied. The dipoles are excited

at their centers by lumped ports of impedance ZP = 73 �.

To steer the array pattern towards a given angle θs , the inci-

dent waves at the ports an are taken of unit magnitude and
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(c) End-fire array; φ = 0 rad.
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(d) End-fire array; φ = π
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Figure 2: Normalized radiation patterns of NA = 192 dipoles
at 4 GHz, where radiators are one-half wavelength apart.
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Figure 3: Error indicator maxρ vs. ROM dimension for dif-
ferent dipole counts NA. Parameters: fc = 4 GHz, B = 2 GHz.

Table 1: Computational data for fc = 4 GHz, B = 2 GHz.

Number of Dimension
Radiators FE-DD ROM

– End-fire Broadside

12 1.8·106 21 16
24 3.2·106 27 18
48 5.9·106 35 19
96 11.4·106 46 21

192 22.5·106 75 22
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Figure 4: ROM dimension versus number of dipoles NA. Pa-
rameters: fc = 4 GHz, B = 2 GHz.
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(a) Broadside: magnitude.
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(b) End-fire: magnitude.
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(c) Broadside: phase.
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(d) End-fire: phase.

Figure 5: Frequency response of active reflection coefficient
for selected dipoles. Array size: NA = 48 elements.

4.2 Varying Bandwidth B

For given center frequency fc = 4 GHz and number of
dipoles NA = 48, we construct ROMs of varying bandwidth280

B = (0.5 . . .4) GHz.
Fig. 5 illustrates the frequency response of the active re-

flection coefficient for one dipole at the center and one at the
end of the array. It can be seen that broadside and end-fire
arrays behave similarly: In both cases, the detuning effects285

of the periodic environment on the center dipole are clearly
visible.

rad.

Figure 2. Normalized radiation patterns of NA = 192 dipoles at

4 GHz, where radiators are one-half wavelength apart.

linear phase distribution,

an = e
−jk0zn cosθs , (27)

where zn is the z coordinate of the dipole axis. Specifi-

cally, the limiting cases of broadside (θs =
π
2

rad) and end-

fire (θs = 0 rad) arrays are considered.

The FE-DD system Eq. (16) is solved by the restarted GM-

RES(30) iterative method with stopping criterion δ = 10−6;

see Saad and Schultz (1986). The ROM termination criterion

is maxρ(k0)= 10−6. Preliminary studies on smaller arrays

using standard FE techniques rather than DD have confirmed

that the behavior of the ROM is mainly determined by the

antenna configuration and almost independent of the FE for-

mulation. Thus no additional data are given.

4.1 Varying number of radiators NA

Let the center frequency fc = 4 GHz and bandwidth B =

2 GHz be given. We investigate the convergence behavior of

the adaptive ROM by varying the number of dipoles in the

range NA = 12. . .192 and, correspondingly, the electric size

of the array in the range (6. . .96) λ at 4 GHz.

Figure 2 presents radiation patterns derived from the

ROM, forNA = 192. The qualitative behavior is as expected:

Since the dipoles are one-half wavelength apart at the chosen

frequency, f = 4 GHz, the radiation patterns of not only the

broadside but also the end-fire array are quarter-symmetric.

Figure 3 shows the convergence behavior of the ROM for

different numbers of dipoles. The difference between Fig. 3a
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(a) Broadside array; φ = 0 rad.
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(b) Broadside array; θ = π
2 .
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(c) End-fire array; φ = 0 rad.
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(d) End-fire array; φ = π
2 rad.

Figure 2: Normalized radiation patterns of NA = 192 dipoles
at 4 GHz, where radiators are one-half wavelength apart.
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Figure 3: Error indicator maxρ vs. ROM dimension for dif-
ferent dipole counts NA. Parameters: fc = 4 GHz, B = 2 GHz.

Table 1: Computational data for fc = 4 GHz, B = 2 GHz.

Number of Dimension
Radiators FE-DD ROM

– End-fire Broadside

12 1.8·106 21 16
24 3.2·106 27 18
48 5.9·106 35 19
96 11.4·106 46 21

192 22.5·106 75 22
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(a) Broadside array.
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(b) End-fire array.

Figure 4: ROM dimension versus number of dipoles NA. Pa-
rameters: fc = 4 GHz, B = 2 GHz.
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(a) Broadside: magnitude.
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(b) End-fire: magnitude.
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(c) Broadside: phase.
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(d) End-fire: phase.

Figure 5: Frequency response of active reflection coefficient
for selected dipoles. Array size: NA = 48 elements.

4.2 Varying Bandwidth B

For given center frequency fc = 4 GHz and number of
dipoles NA = 48, we construct ROMs of varying bandwidth280

B = (0.5 . . .4) GHz.
Fig. 5 illustrates the frequency response of the active re-

flection coefficient for one dipole at the center and one at the
end of the array. It can be seen that broadside and end-fire
arrays behave similarly: In both cases, the detuning effects285

of the periodic environment on the center dipole are clearly
visible.

Figure 3. Error indicator maxρ vs. ROM dimension for different

dipole counts NA. Parameters: fc = 4 GHz, B = 2 GHz.
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(a) Broadside array; φ = 0 rad.
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(b) Broadside array; θ = π
2 .
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(c) End-fire array; φ = 0 rad.
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(d) End-fire array; φ = π
2 rad.

Figure 2: Normalized radiation patterns of NA = 192 dipoles
at 4 GHz, where radiators are one-half wavelength apart.
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(b) End-fire array.

Figure 3: Error indicator maxρ vs. ROM dimension for dif-
ferent dipole counts NA. Parameters: fc = 4 GHz, B = 2 GHz.

Table 1: Computational data for fc = 4 GHz, B = 2 GHz.

Number of Dimension
Radiators FE-DD ROM

– End-fire Broadside

12 1.8·106 21 16
24 3.2·106 27 18
48 5.9·106 35 19
96 11.4·106 46 21

192 22.5·106 75 22
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(a) Broadside array.
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(b) End-fire array.

Figure 4: ROM dimension versus number of dipoles NA. Pa-
rameters: fc = 4 GHz, B = 2 GHz.
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(a) Broadside: magnitude.
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(b) End-fire: magnitude.
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(c) Broadside: phase.
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(d) End-fire: phase.

Figure 5: Frequency response of active reflection coefficient
for selected dipoles. Array size: NA = 48 elements.

4.2 Varying Bandwidth B

For given center frequency fc = 4 GHz and number of
dipoles NA = 48, we construct ROMs of varying bandwidth280

B = (0.5 . . .4) GHz.
Fig. 5 illustrates the frequency response of the active re-

flection coefficient for one dipole at the center and one at the
end of the array. It can be seen that broadside and end-fire
arrays behave similarly: In both cases, the detuning effects285

of the periodic environment on the center dipole are clearly
visible.

Figure 4. ROM dimension versus number of dipoles NA. Parame-

ters: fc = 4 GHz, B = 2 GHz.

and b is striking: the broadside array does not exhibit any

pre-asymptotic region and leads to exponential convergence

rates right from the start whereas the end-fire configuration

leads to a pronounced plateau, followed by exponential con-

vergence. In both cases, convergence rates in the asymptotic

region deteriorate slowly with increasing number of dipoles.

In consequence, ROM dimension remains almost constant

for the broadside array, as illustrated by Fig. 4a. In the end-

fire case, in contrast, both plateau width and ROM dimen-

sion increase linearly with the number of dipoles; see Fig. 4b.

For completeness, the dimensions of the underlying FE-DD

systems and corresponding ROMs for different numbers of

dipoles are collected in Table 1.

4.2 Varying bandwidth B

For given center frequency fc = 4 GHz and number of

dipoles NA = 48, we construct ROMs of varying bandwidth

B = (0.5. . .4)GHz.

Figure 5 illustrates the frequency response of the active

reflection coefficient for one dipole at the center and one at

the end of the array. It can be seen that broadside and end-fire

arrays behave similarly: in both cases, the detuning effects

of the periodic environment on the center dipole are clearly

visible.
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Table 1. Computational data for fc = 4 GHz, B = 2 GHz.

Number of Dimension

Radiators FE-DD ROM

– End-fire Broadside

12 1.8·106 21 16

24 3.2·106 27 18

48 5.9·106 35 19

96 11.4·106 46 21

192 22.5·106 75 22
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(a) Broadside array; φ = 0 rad.
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(b) Broadside array; θ = π
2 .
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(c) End-fire array; φ = 0 rad.
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(d) End-fire array; φ = π
2 rad.

Figure 2: Normalized radiation patterns of NA = 192 dipoles
at 4 GHz, where radiators are one-half wavelength apart.
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(b) End-fire array.

Figure 3: Error indicator maxρ vs. ROM dimension for dif-
ferent dipole counts NA. Parameters: fc = 4 GHz, B = 2 GHz.

Table 1: Computational data for fc = 4 GHz, B = 2 GHz.

Number of Dimension
Radiators FE-DD ROM

– End-fire Broadside

12 1.8·106 21 16
24 3.2·106 27 18
48 5.9·106 35 19
96 11.4·106 46 21

192 22.5·106 75 22
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(a) Broadside array.
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(b) End-fire array.

Figure 4: ROM dimension versus number of dipoles NA. Pa-
rameters: fc = 4 GHz, B = 2 GHz.
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(a) Broadside: magnitude.
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(b) End-fire: magnitude.
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(c) Broadside: phase.
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(d) End-fire: phase.

Figure 5: Frequency response of active reflection coefficient
for selected dipoles. Array size: NA = 48 elements.

4.2 Varying Bandwidth B

For given center frequency fc = 4 GHz and number of
dipoles NA = 48, we construct ROMs of varying bandwidth280

B = (0.5 . . .4) GHz.
Fig. 5 illustrates the frequency response of the active re-

flection coefficient for one dipole at the center and one at the
end of the array. It can be seen that broadside and end-fire
arrays behave similarly: In both cases, the detuning effects285

of the periodic environment on the center dipole are clearly
visible.

Figure 5. Frequency response of active reflection coefficient for se-

lected dipoles. Array size: NA = 48 elements.

Figure 6 presents the convergence behavior of the adaptive

ROM for different choices of bandwidth: the broadband array

leads to a very short pre-asymptotic region at most, whereas

the end-fire configuration exhibits a pronounced plateau. In

the asymptotic region, both cases result in exponential con-

vergence which deteriorates with increasing bandwidth. Fig-

ure 7 illustrates the behavior of the ROM dimension as a

function of bandwidth for both broadside and end-fire con-

figurations.
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Figure 6: Error indicator maxρ versus ROM dimension for
different bandwidths B. Parameters: NA = 48, fc = 4 GHz.
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(a) Broadside array.
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(b) End-fire array.

Figure 7: ROM dimension versus bandwidth B. Parameters:
NA = 48, fc = 4 GHz.

Fig. 6 presents the convergence behavior of the adaptive
ROM for different choices of bandwidth: The broadband
array leads to a very short pre-asymptotic region at most,290

whereas the end-fire configuration exhibits a pronounced
plateau. In the asymptotic region, both cases result in expo-
nential convergence which deteriorates with increasing band-
width. Fig. 7 illustrates the behavior of the ROM dimension
as a function of bandwidth for both broadside and end-fire295

configurations.

5 Proposed Explanation of Convergence Properties

A first hint at the origin of the peculiar convergence behavior
is given by the distributions of the electric near-fields on the
side face of the FE domain plotted in Fig. 8: Figs. 8a and 8b300

illustrate that, for the broadside array, the field distribution
does not change much over the frequency range (2 – 4) GHz,
because the excitations are in phase, and the domain is elec-
trically small perpendicular to the z direction. In case of the
end-fire configuration, however, the fields vary strongly with305

frequency, in accordance with (27); see Figs. 8c and 8d.
Changes in spatial distribution are crucial because the

projection-based MOR of Section 3 is an approximation

(a) Broadside array at 2 GHz, θs = π
2 .

(b) Broadside array at 4 GHz, θs = π
2 .

(c) Endfire array at 2 GHz, θs = 0.

(d) Endfire array at 4 GHz, θs = 0.

Figure 8: Magnitude of electric field on outer boundary of FE
domain. Array size: NA = 48 dipoles.

method that employs the electric field at the expansion
wavenumbers, corresponding to the FE solutions x(ki

0), as310

basis functions in the spatial domain.
As long as the structure is electrically large in the z direc-

tion only, and provided that the electric behavior of a single
radiator does not change fundamentally over the considered
frequency range, one may decompose the fields into local-315

ized contributions that do not vary much with frequency and
wave-like components w(z,k0) in z direction, in accordance
with the steering angle θs:

w(z,k0) = e− jk0zcosθs = e− j2π f z
c0

cosθs . (28)

Herein, c0 is the vacuum speed of light. It is therefore a nec-320

essary requirement for convergence of the ROM that the pro-
jection space of (21) must resolve all w(z,k0) that get excited
by (27) over the considered frequency range. The authors
suppose that it is the non-fulfillment of such condition that
causes the plateau in the convergence behavior. Our mathe-325

matical model is as follows: We express the frequency as

f = fc + ∆ f (29)

with center frequency fc and the equivalent baseband fre-
quency ∆ f . By introducing the spatial frequency

fz = ∆ f
cosθs

c0
, (30)330

Figure 6. Error indicator maxρ versus ROM dimension for different

bandwidths B. Parameters: NA = 48, fc = 4 GHz.
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Figure 6: Error indicator maxρ versus ROM dimension for
different bandwidths B. Parameters: NA = 48, fc = 4 GHz.
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Figure 7: ROM dimension versus bandwidth B. Parameters:
NA = 48, fc = 4 GHz.

Fig. 6 presents the convergence behavior of the adaptive
ROM for different choices of bandwidth: The broadband
array leads to a very short pre-asymptotic region at most,290

whereas the end-fire configuration exhibits a pronounced
plateau. In the asymptotic region, both cases result in expo-
nential convergence which deteriorates with increasing band-
width. Fig. 7 illustrates the behavior of the ROM dimension
as a function of bandwidth for both broadside and end-fire295

configurations.

5 Proposed Explanation of Convergence Properties

A first hint at the origin of the peculiar convergence behavior
is given by the distributions of the electric near-fields on the
side face of the FE domain plotted in Fig. 8: Figs. 8a and 8b300

illustrate that, for the broadside array, the field distribution
does not change much over the frequency range (2 – 4) GHz,
because the excitations are in phase, and the domain is elec-
trically small perpendicular to the z direction. In case of the
end-fire configuration, however, the fields vary strongly with305

frequency, in accordance with (27); see Figs. 8c and 8d.
Changes in spatial distribution are crucial because the

projection-based MOR of Section 3 is an approximation

(a) Broadside array at 2 GHz, θs = π
2 .

(b) Broadside array at 4 GHz, θs = π
2 .

(c) Endfire array at 2 GHz, θs = 0.

(d) Endfire array at 4 GHz, θs = 0.

Figure 8: Magnitude of electric field on outer boundary of FE
domain. Array size: NA = 48 dipoles.

method that employs the electric field at the expansion
wavenumbers, corresponding to the FE solutions x(ki

0), as310

basis functions in the spatial domain.
As long as the structure is electrically large in the z direc-

tion only, and provided that the electric behavior of a single
radiator does not change fundamentally over the considered
frequency range, one may decompose the fields into local-315

ized contributions that do not vary much with frequency and
wave-like components w(z,k0) in z direction, in accordance
with the steering angle θs:

w(z,k0) = e− jk0zcosθs = e− j2π f z
c0

cosθs . (28)

Herein, c0 is the vacuum speed of light. It is therefore a nec-320

essary requirement for convergence of the ROM that the pro-
jection space of (21) must resolve all w(z,k0) that get excited
by (27) over the considered frequency range. The authors
suppose that it is the non-fulfillment of such condition that
causes the plateau in the convergence behavior. Our mathe-325

matical model is as follows: We express the frequency as

f = fc + ∆ f (29)

with center frequency fc and the equivalent baseband fre-
quency ∆ f . By introducing the spatial frequency

fz = ∆ f
cosθs

c0
, (30)330

Figure 7. ROM dimension versus bandwidth B. Parameters: NA =

48, fc = 4 GHz.

5 Proposed explanation of convergence properties

A first hint at the origin of the peculiar convergence behavior

is given by the distributions of the electric near-fields on the

side face of the FE domain plotted in Fig. 8: Fig. 8a and b

illustrate that, for the broadside array, the field distribution

does not change much over the frequency range (2–4) GHz,

because the excitations are in phase, and the domain is elec-

trically small perpendicular to the z direction. In case of the

end-fire configuration, however, the fields vary strongly with

frequency, in accordance with Eq. (27); see Fig. 8c and d.

Changes in spatial distribution are crucial because the

projection-based MOR of Sect. 3 is an approximation

method that employs the electric field at the expansion

wavenumbers, corresponding to the FE solutions x(ki0), as

basis functions in the spatial domain.

As long as the structure is electrically large in the z direc-

tion only, and provided that the electric behavior of a single

radiator does not change fundamentally over the considered

frequency range, one may decompose the fields into local-

ized contributions that do not vary much with frequency and

wave-like components w(z,k0) in z direction, in accordance

with the steering angle θs:

w(z,k0)= e
−jk0zcosθs = e

−j2πf z
c0

cosθs
. (28)
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Herein, c0 is the vacuum speed of light. It is therefore a

necessary requirement for convergence of the ROM that

the projection space of Eq. (21) must resolve all w(z,k0)

that get excited by Eq. (27) over the considered frequency

range. The authors suppose that it is the non-fulfillment

of such condition that causes the plateau in the conver-

gence behavior. Our mathematical model is as follows:

we express the frequency as

f = fc+1f (29)

with center frequency fc and the equivalent baseband fre-

quency 1f . By introducing the spatial frequency

fz =1f
cosθs

c0

, (30)

the waves (Eq. 28) take the form

w(z,fz)= e
−j2πfc

z
c0

cosθs
e−j2πfzz (31)

with

fz ∈

[
−
B cosθs

2c0

,
B cosθs

2c0

]
. (32)

We next assume an equidistant spatial sampling in z direction

and apply the discrete Fourier transformation. According to

Oppenheim and Schafer (1989, p. 698), the length L of the

field domain leads to a spatial frequency resolution of

δfz =
1

L
. (33)

Thus, the minimum number of frequencies Mmin required to

sample the interval (Eq. 32) is given by

Mmin =
BLcosθs

c0

. (34)

5.1 Varying number of radiators

Equation (34) suggests that the required number of expansion

frequencies Mmin depends on the length L of the computa-

tional domain weighted by the cosine of the steering angle,

Lcosθs, rather than the number of radiators. However, it is

common use to embed the array in an air buffer of constant

size: In the examples of Sect. 4.1, L was always taken as

L= (NA+ 4)d, (35)

where d is the distance between radiators. Hence

Mmin =
B(NA+ 4)d cosθs

c0

. (36)

Equation 36 predicts that plateaus do not occur in the case

of broadside arrays, cosθs = 0, whatever the number of ra-

diators Na . This agrees with the experimental findings of

Fig. 3a. For the end-fire case, cosθs = 1, the results of

Eq. (36) have been included in Fig. 6a. It can be seen that the

theoretical results are slightly conservative. However, they

track the actual width of the plateau very well, over the en-

tire range of 12–192 dipoles.
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Figure 6: Error indicator maxρ versus ROM dimension for
different bandwidths B. Parameters: NA = 48, fc = 4 GHz.
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Figure 7: ROM dimension versus bandwidth B. Parameters:
NA = 48, fc = 4 GHz.

Fig. 6 presents the convergence behavior of the adaptive
ROM for different choices of bandwidth: The broadband
array leads to a very short pre-asymptotic region at most,290

whereas the end-fire configuration exhibits a pronounced
plateau. In the asymptotic region, both cases result in expo-
nential convergence which deteriorates with increasing band-
width. Fig. 7 illustrates the behavior of the ROM dimension
as a function of bandwidth for both broadside and end-fire295

configurations.

5 Proposed Explanation of Convergence Properties

A first hint at the origin of the peculiar convergence behavior
is given by the distributions of the electric near-fields on the
side face of the FE domain plotted in Fig. 8: Figs. 8a and 8b300

illustrate that, for the broadside array, the field distribution
does not change much over the frequency range (2 – 4) GHz,
because the excitations are in phase, and the domain is elec-
trically small perpendicular to the z direction. In case of the
end-fire configuration, however, the fields vary strongly with305

frequency, in accordance with (27); see Figs. 8c and 8d.
Changes in spatial distribution are crucial because the

projection-based MOR of Section 3 is an approximation

(a) Broadside array at 2 GHz, θs = π
2 .

(b) Broadside array at 4 GHz, θs = π
2 .

(c) Endfire array at 2 GHz, θs = 0.

(d) Endfire array at 4 GHz, θs = 0.

Figure 8: Magnitude of electric field on outer boundary of FE
domain. Array size: NA = 48 dipoles.

method that employs the electric field at the expansion
wavenumbers, corresponding to the FE solutions x(ki

0), as310

basis functions in the spatial domain.
As long as the structure is electrically large in the z direc-

tion only, and provided that the electric behavior of a single
radiator does not change fundamentally over the considered
frequency range, one may decompose the fields into local-315

ized contributions that do not vary much with frequency and
wave-like components w(z,k0) in z direction, in accordance
with the steering angle θs:

w(z,k0) = e− jk0zcosθs = e− j2π f z
c0

cosθs . (28)

Herein, c0 is the vacuum speed of light. It is therefore a nec-320

essary requirement for convergence of the ROM that the pro-
jection space of (21) must resolve all w(z,k0) that get excited
by (27) over the considered frequency range. The authors
suppose that it is the non-fulfillment of such condition that
causes the plateau in the convergence behavior. Our mathe-325

matical model is as follows: We express the frequency as

f = fc + ∆ f (29)

with center frequency fc and the equivalent baseband fre-
quency ∆ f . By introducing the spatial frequency

fz = ∆ f
cosθs

c0
, (30)330

Figure 8. Magnitude of electric field on outer boundary of FE do-

main. Array size: NA = 48 dipoles.

5.2 Varying bandwidth

Again, Eq. (36) predicts no plateau for broadside arrays,

which agrees well with the experimental findings of Fig. 6a.

The authors conjecture that the short pre-asymptotic region

of 2 iterations present in Fig. 6a for B = 4 GHz is caused by

the fact that, at the highest operating frequency, the transver-

sal dimensions of the FE model correspond to 2.25λ which

is no longer electrically small. For the the end-fire case,

cosθs = 1, the theoretical results of Eq. (36) have been in-

cluded in Fig. 7b. Again, they are somewhat conservative but

track the actual width of the plateau very well, for all consid-

ered bandwidths.

6 Further validations

6.1 Effectiveness of equidistant expansion frequencies

The proposed model predicts that adaptive MOR construc-

tion based on some error indicator is not necessary in the

pre-asymptotic region. Instead, it will suffice to take Mmin

frequencies spaced equally over B.
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the waves (28) take the form

w(z, fz) = e− j2π fc z
c0

cosθs e− j2π fzz (31)

with

fz ∈
[
−Bcosθs

2c0
,

Bcosθs

2c0

]
. (32)

We next assume an equidistant spatial sampling in z direction335

and apply the discrete Fourier transformation. According to
(Oppenheim and Schafer, 1989, p. 698), the length L of the
field domain leads to a spatial frequency resolution of

δ fz =
1
L
. (33)

Thus, the minimum number of frequencies Mmin required to340

sample the interval (32) is given by

Mmin =
BLcosθs

c0
. (34)

5.1 Varying Number of Radiators

Eq. (34) suggests that the required number of expansion fre-
quencies Mmin depends on the length L of the computational345

domain weighted by the cosine of the steering angle, Lcosθs,
rather than the number of radiators. However, it is common
use to embed the array in an air buffer of constant size: In the
examples of Section 4.1, L was always taken as

L = (NA + 4)d, (35)350

where d is the distance between radiators. Hence

Mmin =
B(NA + 4)d cosθs

c0
. (36)

Eq. 36 predicts that plateaus do not occur in the case of
broadside arrays, cosθs = 0, whatever the number of radia-
tors Na. This agrees with the experimental findings of Fig. 3a.355

For the end-fire case, cosθs = 1, the results of (36) have been
included in Fig. 4b. It can be seen that the theoretical re-
sults are slightly conservative. However, they track the actual
width of the plateau very well, over the entire range of 12 –
192 dipoles.360

5.2 Varying Bandwidth

Again, (36) predicts no plateau for broadside arrays, which
agrees well with the experimental findings of Fig. 6a. The au-
thors conjecture that the short pre-asymptotic region of 2 iter-
ations present in Fig. 6a for B = 4 GHz is caused by the fact365

that, at the highest operating frequency, the transversal di-
mensions of the FE model correspond to 2.25 λ which is no
longer electrically small. For the the end-fire case, cosθs = 1,
the theoretical results of (36) have been included in Fig. 7b.
Again, they are somewhat conservative but track the actual370

width of the plateau very well, for all considered bandwidths.
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Figure 9: End-fire array (θs = 0) of NA = 48 dipoles, with fc
= 4 GHz and B = 2 GHz: Error indicator ρ(k0) versus ROM
dimension. Parameter: number of pre-computed equidistant
expansion frequencies.

6 Further Validations

6.1 Effectiveness of Equidistant Expansion Frequencies

The proposed model predicts that adaptive MOR construc-
tion based on some error indicator is not necessary in the375

pre-asymptotic region. Instead, it will suffice to take Mmin
frequencies spaced equally over B.

To test this hypothesis, we consider an end-fire array of 48
dipoles, center frequency 4 GHz, and bandwidth 4 GHz. Ac-
cording to (36), 13 equidistant expansion frequencies are re-380

quired to prevent a plateau from occurring. We initialize the
ROM basis with the solutions at neq equidistant frequency
points before starting the adaptive MOR process. Fig. 9a
shows convergence curves for different choices of neq. For
neq < Mmin, a plateau occurs, and its width is approximately385

Nmin − neq. At neq = Mmin, the onset of exponential conver-
gence is immediate, which confirms that the corresponding
ROM space contains all critical information.

To demonstrate the advantages of adaptive MOR in the
asymptotic region, Fig. 9b gives a comparison to a series390

of ROMs that always use equidistant expansion points: The
convergence rate of the adaptive method is significantly
higher.

6.2 Varying Center Frequency

The proposed model also implies that the width of the plateau395

will be independent of the center frequency fc.
In our numerical test, we investigate an end-fire array of 48

dipoles and bandwidth 2 GHz. Eq. (36) predicts a constant
plateau width of 13 iterations. Fig. 10a gives convergence
curves for different center frequencies in the range 3 – 6 GHz,400

and Fig. 10a presents the corresponding ROM dimensions. It
can be seen that the plateau width is constant, at 12 iterations.

Figure 9. End-fire array (θs = 0) of NA = 48 dipoles, with fc =

4 GHz and B = 2 GHz: Error indicator ρ(k0) versus ROM dimen-

sion. Parameter: number of pre-computed equidistant expansion

frequencies.8 O. Floch et al.: Viability of Model-Order Reduction for Electrically Large Antenna Arrays
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ter frequency.

Figure 10: End-fire array (θs = 0) of NA = 48 dipoles: depen-
dence of adaptive ROM on center frequency fc for constant
bandwidth of B = 2 GHz.
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(b) ROM dimension versus
bandwidth.

Figure 11: Dependence of adaptive ROM on bandwidth B for
single excited radiator at center of 48 dipoles; fc = 4 GHz.

6.3 Spatial Distribution of Excitations

Whenever the levels of sidelobes are of importance, excita-
tions of tapered amplitude are employed. In the examples405

above, however, it was assumed that the excitations of the
dipoles were of constant magnitude and linear phase shift.
The authors believe that, despite its simplicity, this wave
form is well chosen because it strongly excites wave-like
fields along the z direction and allows to vary the spatial pe-410

riodicity in the z direction from infinity to the actual wave-
length at the highest operating frequency; see (28).

To complement our numerical tests, we investigate the fre-
quency response as a function of bandwidth for a spatially
impulse-like excitation, a single driven dipole at the center of415

an array of 48 dipoles, with fc = 4 GHz. Fig. 11 illustrates the
convergence behavior for different bandwidths in the range
0.5 – 2 GHz: There are no plateaus, and iteration counts are
moderate. The nearfield plots of Fig. 12 suggest the following
qualitative explanation: The dipoles adjacent to the driven420

element direct the fields in the z direction. However, since

(a) Frequency: 2 GHz.

(b) Frequency: 4 GHz.

Figure 12: Magnitude of electric field on boundary of FE do-
main for single excited radiator at center of 48 dipoles.

their ports provide nearly matched terminations, they also ab-
sorb a great amount of energy. In consequence, the fields are
strongly damped, so that the amplitudes of many wave-like
modes along the z direction become very weak. Since the425

MOR process is driven by the system response, such modes
are disregarded.

7 Conclusions and Outlook

The numerical studies presented in this paper have shown
that projection-based MOR converges even for linear arrays430

of large electrical size (144 λ at 6 GHz). Depending on exci-
tation, the convergence curves may exhibit a pronounced pre-
asymptotic region which depends on steering angle, electric
length of the model domain, and bandwidth; the worst case
occurs in the end-fire direction, |θs| = π

2 rad.435

The proposed mathematical model has proved to predict
the width of the plateau very well. It also allows to replace the
adaptive, error-driven selection of MOR expansion frequen-
cies, which is intrinsically sequential, in the pre-asymptotic
region by a well-defined number of equally spaced points.440

Not only does this remove the computational burden of error
estimation; it is also perfectly suited for parallelization. Note
that, in practice, the impact of the plateau on overall perfor-
mance may be much higher than in the examples given in
this paper: The MOR termination criterion of 10−6 was cho-445

sen very low to demonstrate numerical robustness and lack of
stagnation. In many real-world applications, residual norms
in the order of 10−2 . . .10−3 will suffice. Thus the asymptotic
region will be much shorter whereas the plateau width will
stay the same.450

In the case of planar arrays, the authors conjecture
from (34) that the plateau width will be in the order of
(BL|cosθs|/c0)2. More detailed studies are the subject of on-
going research.

Figure 10. End-fire array (θs = 0) of NA = 48 dipoles: dependence

of adaptive ROM on center frequency fc for constant bandwidth of

B = 2 GHz.

To test this hypothesis, we consider an end-fire array of 48

dipoles, center frequency 4 GHz, and bandwidth 4 GHz. Ac-

cording to Eq. (36), 13 equidistant expansion frequencies are

required to prevent a plateau from occurring. We initialize the

ROM basis with the solutions at neq equidistant frequency

points before starting the adaptive MOR process. Figure 9a

shows convergence curves for different choices of neq. For

neq <Mmin, a plateau occurs, and its width is approximately

Nmin− neq. At neq =Mmin, the onset of exponential conver-

gence is immediate, which confirms that the corresponding

ROM space contains all critical information.

To demonstrate the advantages of adaptive MOR in the

asymptotic region, Fig. 9b gives a comparison to a series of

ROMs that always use equidistant expansion points: the con-

vergence rate of the adaptive method is significantly higher.

6.2 Varying center frequency

The proposed model also implies that the width of the plateau

will be independent of the center frequency fc.
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Figure 10: End-fire array (θs = 0) of NA = 48 dipoles: depen-
dence of adaptive ROM on center frequency fc for constant
bandwidth of B = 2 GHz.
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Figure 11: Dependence of adaptive ROM on bandwidth B for
single excited radiator at center of 48 dipoles; fc = 4 GHz.

6.3 Spatial Distribution of Excitations

Whenever the levels of sidelobes are of importance, excita-
tions of tapered amplitude are employed. In the examples405

above, however, it was assumed that the excitations of the
dipoles were of constant magnitude and linear phase shift.
The authors believe that, despite its simplicity, this wave
form is well chosen because it strongly excites wave-like
fields along the z direction and allows to vary the spatial pe-410

riodicity in the z direction from infinity to the actual wave-
length at the highest operating frequency; see (28).

To complement our numerical tests, we investigate the fre-
quency response as a function of bandwidth for a spatially
impulse-like excitation, a single driven dipole at the center of415

an array of 48 dipoles, with fc = 4 GHz. Fig. 11 illustrates the
convergence behavior for different bandwidths in the range
0.5 – 2 GHz: There are no plateaus, and iteration counts are
moderate. The nearfield plots of Fig. 12 suggest the following
qualitative explanation: The dipoles adjacent to the driven420

element direct the fields in the z direction. However, since

(a) Frequency: 2 GHz.

(b) Frequency: 4 GHz.

Figure 12: Magnitude of electric field on boundary of FE do-
main for single excited radiator at center of 48 dipoles.

their ports provide nearly matched terminations, they also ab-
sorb a great amount of energy. In consequence, the fields are
strongly damped, so that the amplitudes of many wave-like
modes along the z direction become very weak. Since the425

MOR process is driven by the system response, such modes
are disregarded.

7 Conclusions and Outlook

The numerical studies presented in this paper have shown
that projection-based MOR converges even for linear arrays430

of large electrical size (144 λ at 6 GHz). Depending on exci-
tation, the convergence curves may exhibit a pronounced pre-
asymptotic region which depends on steering angle, electric
length of the model domain, and bandwidth; the worst case
occurs in the end-fire direction, |θs| = π

2 rad.435

The proposed mathematical model has proved to predict
the width of the plateau very well. It also allows to replace the
adaptive, error-driven selection of MOR expansion frequen-
cies, which is intrinsically sequential, in the pre-asymptotic
region by a well-defined number of equally spaced points.440

Not only does this remove the computational burden of error
estimation; it is also perfectly suited for parallelization. Note
that, in practice, the impact of the plateau on overall perfor-
mance may be much higher than in the examples given in
this paper: The MOR termination criterion of 10−6 was cho-445

sen very low to demonstrate numerical robustness and lack of
stagnation. In many real-world applications, residual norms
in the order of 10−2 . . .10−3 will suffice. Thus the asymptotic
region will be much shorter whereas the plateau width will
stay the same.450

In the case of planar arrays, the authors conjecture
from (34) that the plateau width will be in the order of
(BL|cosθs|/c0)2. More detailed studies are the subject of on-
going research.

Figure 11. Dependence of adaptive ROM on bandwidthB for single

excited radiator at center of 48 dipoles; fc = 4 GHz.

In our numerical test, we investigate an end-fire array of 48

dipoles and bandwidth 2 GHz. Equation 36 predicts a con-

stant plateau width of 13 iterations. Figure 10a gives con-

vergence curves for different center frequencies in the range

3–6 GHz, and Fig. 10a presents the corresponding ROM di-

mensions. It can be seen that the plateau width is constant, at

12 iterations.

6.3 Spatial distribution of excitations

Whenever the levels of sidelobes are of importance, excita-

tions of tapered amplitude are employed. In the examples

above, however, it was assumed that the excitations of the

dipoles were of constant magnitude and linear phase shift.

The authors believe that, despite its simplicity, this wave

form is well chosen because it strongly excites wave-like

fields along the z direction and allows to vary the spatial pe-

riodicity in the z direction from infinity to the actual wave-

length at the highest operating frequency; see Eq. (28).

To complement our numerical tests, we investigate the fre-

quency response as a function of bandwidth for a spatially

impulse-like excitation, a single driven dipole at the center

of an array of 48 dipoles, with fc = 4 GHz. Figure 11 il-

lustrates the convergence behavior for different bandwidths

in the range 0.5–2 GHz: there are no plateaus, and iteration

counts are moderate. The nearfield plots of Fig. 12 suggest

the following qualitative explanation: the dipoles adjacent to

the driven element direct the fields in the z direction. How-

ever, since their ports provide nearly matched terminations,

they also absorb a great amount of energy. In consequence,

the fields are strongly damped, so that the amplitudes of

many wave-like modes along the z direction become very

weak. Since the MOR process is driven by the system re-

sponse, such modes are disregarded.
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Figure 10: End-fire array (θs = 0) of NA = 48 dipoles: depen-
dence of adaptive ROM on center frequency fc for constant
bandwidth of B = 2 GHz.
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Figure 11: Dependence of adaptive ROM on bandwidth B for
single excited radiator at center of 48 dipoles; fc = 4 GHz.

6.3 Spatial Distribution of Excitations

Whenever the levels of sidelobes are of importance, excita-
tions of tapered amplitude are employed. In the examples405

above, however, it was assumed that the excitations of the
dipoles were of constant magnitude and linear phase shift.
The authors believe that, despite its simplicity, this wave
form is well chosen because it strongly excites wave-like
fields along the z direction and allows to vary the spatial pe-410

riodicity in the z direction from infinity to the actual wave-
length at the highest operating frequency; see (28).

To complement our numerical tests, we investigate the fre-
quency response as a function of bandwidth for a spatially
impulse-like excitation, a single driven dipole at the center of415

an array of 48 dipoles, with fc = 4 GHz. Fig. 11 illustrates the
convergence behavior for different bandwidths in the range
0.5 – 2 GHz: There are no plateaus, and iteration counts are
moderate. The nearfield plots of Fig. 12 suggest the following
qualitative explanation: The dipoles adjacent to the driven420

element direct the fields in the z direction. However, since

(a) Frequency: 2 GHz.

(b) Frequency: 4 GHz.

Figure 12: Magnitude of electric field on boundary of FE do-
main for single excited radiator at center of 48 dipoles.

their ports provide nearly matched terminations, they also ab-
sorb a great amount of energy. In consequence, the fields are
strongly damped, so that the amplitudes of many wave-like
modes along the z direction become very weak. Since the425

MOR process is driven by the system response, such modes
are disregarded.

7 Conclusions and Outlook

The numerical studies presented in this paper have shown
that projection-based MOR converges even for linear arrays430

of large electrical size (144 λ at 6 GHz). Depending on exci-
tation, the convergence curves may exhibit a pronounced pre-
asymptotic region which depends on steering angle, electric
length of the model domain, and bandwidth; the worst case
occurs in the end-fire direction, |θs| = π

2 rad.435

The proposed mathematical model has proved to predict
the width of the plateau very well. It also allows to replace the
adaptive, error-driven selection of MOR expansion frequen-
cies, which is intrinsically sequential, in the pre-asymptotic
region by a well-defined number of equally spaced points.440

Not only does this remove the computational burden of error
estimation; it is also perfectly suited for parallelization. Note
that, in practice, the impact of the plateau on overall perfor-
mance may be much higher than in the examples given in
this paper: The MOR termination criterion of 10−6 was cho-445

sen very low to demonstrate numerical robustness and lack of
stagnation. In many real-world applications, residual norms
in the order of 10−2 . . .10−3 will suffice. Thus the asymptotic
region will be much shorter whereas the plateau width will
stay the same.450

In the case of planar arrays, the authors conjecture
from (34) that the plateau width will be in the order of
(BL|cosθs|/c0)2. More detailed studies are the subject of on-
going research.

Figure 12. Magnitude of electric field on boundary of FE domain

for single excited radiator at center of 48 dipoles.

7 Conclusions and outlook

The numerical studies presented in this paper have shown

that projection-based MOR converges even for linear arrays

of large electrical size (144λ at 6 GHz). Depending on excita-

tion, the convergence curves may exhibit a pronounced pre-

asymptotic region which depends on steering angle, electric

length of the model domain, and bandwidth; the worst case

occurs in the end-fire direction, |θs| =
π
2

rad.

The proposed mathematical model has proved to predict

the width of the plateau very well. It also allows to replace the

adaptive, error-driven selection of MOR expansion frequen-

cies, which is intrinsically sequential, in the pre-asymptotic

region by a well-defined number of equally spaced points.

Not only does this remove the computational burden of error

estimation; it is also perfectly suited for parallelization. Note

that, in practice, the impact of the plateau on overall perfor-

mance may be much higher than in the examples given in

this paper: The MOR termination criterion of 10−6 was cho-

sen very low to demonstrate numerical robustness and lack of

stagnation. In many real-world applications, residual norms

in the order of 10−2. . .10−3 will suffice. Thus the asymptotic

region will be much shorter whereas the plateau width will

stay the same.
In the case of planar arrays, the authors conjecture from

Eq. (34) that the plateau width will be in the order of
(BL|cosθs|/c0)

2. More detailed studies are the subject of
ongoing research.
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