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Abstract. An analytical approach to analyze the diffraction

of an arbitrarily directed complex-source beam (CSB) by

an acoustically soft or hard semi-infinite circular cone is

presented. The beam is generated by assigning a complex-

valued location to a point source; its waist and direction are

defined by the real and imaginary parts of the source coordi-

nate, respectively. The corresponding scalar boundary-value

problem is solved by a spherical-multipole analysis. The so-

lution requires the calculation of associated Legendre func-

tions of the first kind for complex-valued arguments which

turns out to be a non-trivial task. Beside a numerical analysis

of the corresponding algorithms we present numerical results

for the total near- and scattered far-fields.

1 Introduction

A certain class of analytical solutions of the Helmholtz equa-

tion provides the basis of developing and improving asymp-

totic and hybrid methods such as the Geometrical Theory

of Diffraction (GTD) or the Uniform Theory of Diffraction

(UTD). Particularly, the scattering of electromagnetic waves

by certain geometrical details such as tips, edges, corners,

and curved surfaces are of importance. In that context the

acoustic and electromagnetic scattering and diffraction of a

plane wave by a semi-infinite circular cone has been investi-

gated frequently (Bowman et al., 1987). By using a spherical-

multipole eigenfunction expansion of the cone for the total

field and a free-space type multipole expansion of the scat-

tered field, in Klinkenbusch (2007), Kijowski and Klinken-

busch (2011) solutions were derived which, however, suf-

fered from a missing convergence of the finally obtained

multipole series. Rather than using an incident full plane

wave the new approach in Katsav et al. (2012), Brüns and

Klinkenbusch (2013) started from a complex-source beam

(CSB) as the incident field. One main advantage of this

method is the ability to probe just the section of interest,

for instance the area near to the cone’s tip. Furthermore,

the convergence problems mentioned above are avoided us-

ing a CSB. While Katsav et al. (2012), Brüns and Klinken-

busch (2013) investigated the scattering and diffraction of a

CSB pointed directly towards the tip of the circular cone the

present contribution deals with the more general case of an

arbitrarily directed CSB illuminating any desired part of the

cone.

2 Formulation of the problem and spherical-multipole

expansion

Consider an acoustically soft (index “s” in the following) or

hard (index “h”) circular semi-infinite cone located symmet-

rically around the negative z axis as depicted in Fig. 1. The

tip is located in the origin, while the surface is described by

the half outer opening angle ϑ0. At a time-factor e +jωt , for

a unit point source located at rc the phasor of the normal-

ized time-harmonic scalar field 8(r) has to satisfy the scalar

Helmholtz equation

18(r)+ κ28(r)=−δ(r − rc). (1)

Here κ = 2π/λ represents the wavenumber at a wave length

λ. In case of an acoustically soft or hard cone the field has to

fulfill the Dirichlet condition

8s(r)|ϑ=ϑ0
= 0 (2)
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Figure 1. Semi-infinite circular cone illuminated by an arbitrarily

oriented complex-source beam.

or the Neumann condition

∂8h(r)

∂ϑ
|ϑ=ϑ0

= 0, (3)

respectively. In spherical coordinates r,ϑ,ϕ with the z axis

as the polar axis, the standard (Bernoulli) separation ansatz

with separation constants στ (στ + 1) and m2 leads to

8τ (r,ϑ,ϕ)= zστ (κr)Y
m
στ
(ϑ,ϕ) (4)

where τ ∈ {s,h} and zστ (κr) and Ymστ (ϑ,ϕ) are spherical

Bessel functions and normalized surface spherical harmon-

ics, respectively. The spherical Bessel functions of order στ
are related to the ordinary Bessel functions Z

στ+
1
2
(κr) of or-

der στ +
1
2

by

zστ (κr)=

√
π

2κr
Z
στ+

1
2
(κr) (5)

while the surface spherical harmonics of order m and degree

στ are represented by

Ymστ (ϑ,ϕ)=N
m
στ
Pmστ (cosϑ)ejmϕ . (6)

Here Pmστ (cosϑ) is an associated Legendre function of the

first kind while Nm
στ

is a normalization constant chosen such

that

ϑ0∫
0

2π∫
0

∣∣Ymστ (ϑ,ϕ)∣∣2 sinϑdϑdϕ = 1. (7)

Finally, the normalized total field consists of a linear super-

position of all elemental solutions of the scalar Helmholtz

Eq. (1) which satisfy the boundary conditions. It can be

represented by means of the spherical-multipole expansion

(Bowman et al., 1987)

8τ (r,rc)=

− jκ
∑
στ ,m

jστ (κr)h
(2)
στ
(κrc)Y

m
στ
(ϑ,ϕ)Ymστ

−
(ϑc,ϕc)

if |r| ≤ |rc|

− jκ
∑
στ ,m

jστ (κrc)h
(2)
στ
(κr)Ymστ (ϑc,ϕc)Y

m
στ

−
(ϑ,ϕ)

if |r|> |rc| (8)

where Ymστ
− is defined as

Ymστ
−
(ϑ,ϕ)=Nm

στ
Pmστ (cosϑ) e−jmϕ . (9)

Note that the common definition in the literature is Ymστ
−
=

Ymστ
∗ (∗ denotes the complex conjugation) which, however,

is generally valid only in case of a real-valued argument ϑ .

Since the solution has to be regular everywhere and to sat-

isfy the radiation condition, spherical Bessel functions of the

first kind jστ (κr) and spherical Hankel functions of the sec-

ond kind h
(2)
στ (κr) are employed. The boundary conditions

(2), (3) can be directly transferred to the associated Legendre

functions of the first kind

Pmσs
(cosϑ)|ϑ=ϑ0

= 0, (10)

∂Pmσh
(cosϑ)

∂ϑ
|ϑ=ϑ0

= 0, (11)

respectively. The eigenvalues σs,σh can be determined by

searching the zeros of Eqs. (10), (11) with a suitable nu-

merical procedure such as the bisection method. Because

the solutions are 2π periodic in ϕ, the m have to be inte-

gers (m= 0,±1,±2, . . .). Moreover, as shown in Katsav et

al. (2012) it holds that m2
≤ στ (στ + 1). Consequently there

are discrete pairs of eigenvalues for (σs,m) for the soft cone

and (σh,m) for the hard cone, respectively, as exemplarily

represented in Fig. 2.

In the following we shall evaluate the spherical-multipole

expansion of the cone (8) for a unit point source located at

a complex location. That will yield the field for the cone il-

luminated by a complex-source beam (CSB) as outlined in

Sect. 3. To give that CSB an arbitrary direction and thus to

probe any desired area of the cone requires the evaluation

of associated Legendre functions of the first kind of real-

valued orders but for complex arguments which are discussed

in Sect. 4. Corresponding numerical results are finally pre-

sented in Sect. 5.

3 Complex-source beam

The CSB offers the possibilty to describe a focussed beam

analytically. If a complex valued location rc = rw−jb is as-

signed to a point source a beam is generated whose reference
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Figure 2. Eigenvalue pairs (soft/Dirichlet and hard/Neumann) for a

cone with ϑ0 = 140◦.

point of the waist is defined by the real part rw and whose

direction is defined by the imaginary part of the source coor-

dinate b as shown in Fig. 1. It can be shown, that in a paraxial

approximation the CSB describes a Gaussian beam (Felsen,

1976; Orlob and Peschel, 2010). For a beam directed towards

the origin, i. e. the cone‘s tip, it has been shown that in spher-

ical components only their radial part rc is complex valued

while the angular parts ϑc, ϕc remain real valued (Katsav et

al., 2012). However, for an arbitrarily directed beam we have

complex values for ϑc, ϕc in the multipole expansion (8).

This requires the evaluation of the associated Legendre func-

tions of the first kind for a complex-valued argument cosϑc.

4 Computation of associated Legendre functions of the

first kind for a complex-valued argument

The associated Legendre functions of the first kind Pmσ (z) are

the regular solutions of the differential equation

(1− z2)
d2w

dz2
− 2z

dw

dz
+

(
σ(σ + 1)−

m2

1− z2

)
w = 0. (12)

Evaluating them in an efficient way may become a non-trivial

task in practice since the structure of the series that defines

the function creates many numerical issues such as cancel-

lation and round-off errors especially for certain ranges of

the parameters σ , m and z. The most common computation

algorithms feature the evaluation only for integer orders m,

integer degrees σ = n and real-valued arguments. For solv-

ing the boundary-value problem at hand (real-valued order

and complex-valued argument) we present three alternative

approaches.

The most obvious idea might be to apply a numerical

standard method for solving differential equations. The best

results taking into account accuracy and computation had

been achieved by using a fourth order Runge–Kutta method

(RK4).

As a second approach we applied the following integral

representation derived from the Schlaefli integral

Pσ (z)=
1

2π

∫
C

(1− s2)σ

2σ (s− z)σ+1
ds. (13)

Note that the closed contour C encircles the points s = z and

s = 1 counterclockwise. More details are found in (Whittaker

and Watson, 2004) page 307. Exploiting that for integer or-

dersm the associated Legendre functions of the first kind can

be derived from (ordinary) Legendre functions by

Pmσ (z)= (−1)m(1− z2)m/2
dm

dzm
Pσ (z) (14)

and with the substitution s = z+
√

1− z2 ejφ (0≤ φ ≤ 2π ),

Eq. (13) can be transformed to

Pmσ (z)= (−1)m
(σ + 1)(σ + 2). . .(σ +m)

2π
2π∫

0

(z+ j sinφ
√

1− z2)σ e−jmφ dφ. (15)

This definite integral has been solved by a standard quadra-

ture method.

The third approach was performed utilizing Ferrer‘s func-

tion

Pmσ (z)= (−1)m
0(σ +m+ 1)

2m0(σ −m+ 1)
(1− z2)m/2

1

0(m+ 1)

2F1(σ +m+ 1,m− σ ;m+ 1;
1

2
−

1

2
z), (16)

that is, a representation of the associated Legendre function

of the first kind by means of the Gaussian hypergeometric

function

2F1(a,b;c;z
′)=

∞∑
k=0

(a)k(b)k

(c)k

z′
k

k!
. (17)

Here, (a)k is representing the Pochhammer symbol defined

for k = 0,1,2, . . . by

(a)k =
0(a+ k)

0(a)
(18)

with 0 being the Gamma function.

While the problem gets shifted towards computing

2F1(a,b;c;z
′), an algorithm was found based on the re-

currence relation of the Gamma function 0(x+ 1)= x0(x)

which leads to

Fk+1 =
(a+ k)(b+ k)

c+ k

z′

k+ 1
Fk (19)

where Fk represents the kth term of the sum in Eq. (17) (Pear-

son, 2009).
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Figure 3. Comparison between three computation methods for Pmσ (z) with m= 3, σ = 8.3843 and =(z)= 0.0602.

Figure 4. Diffraction of a complex-source beam by an acoustically

soft circular cone with an outer half opening angle ϑ0 = 140◦: Real

part of the total near field in the region r < 10λ in the xz plane. The

complex-valued source coordinate is given by rc = (3,0,−2)λ−

j (−7,0,0)λ.

Figure 5. Radiation pattern of the total far field; for the other data

see Fig. 4.

5 Results

5.1 Numerical results for the associated Legendre

functions for complex-valued arguments

Figure 3 shows a comparison between the results of the three

used methods by computing |Pmσ (z)| as a function of the real

part at a constant imaginary part of z. While the hypergeo-

metric representation by Ferrer and the purely numerical so-

lution (RK4) deliver nearly similar results, the integral repre-

sentation was found to become inaccurate nearby the bound-

aries. However, for evaluating |Pmσ (z)| at higher values of

σ and m the RK4-method becomes unstable to an extent

that even by choosing a denser meshing number the error

could not be controlled. For instance, evaluating the associ-

ated Legendre function for ϑ = 1.462− j0.243, σ = 51.847

and m= 36, the RK4 method needed 3.6627 s at a mesh

number of 5000 and a rel. error of 4.3266, and 36.3594 s at

a mesh number of 500 000 and a rel. error of 4.3321× 10−4.

For the same parameters, the evaluation of the hypergeomet-

ric representation was done in 0.0069 s on the same computer

at a rel. error of 1.2486× 10−6. As a reference solution we

used the MATLAB routine hypergeom which took 0.7610 s.

In conclusion, for our set of parameters including eigen-

values of both σ and m up to 50, the hypergeometric repre-

sentation by Ferrer stands out as the most suitable approach.

5.2 Numerical evaluation of the near- and far fields

Figure 4 represents the diffracted (total) field for an incident

CSB with a waist at rw = (3,0,−2)λ (right side to the tip,

travelling in the −x̂ direction). We clearly observe the re-

flected field and the shadowing effect of the cone. The radi-

ation pattern of the total radiated far field, i. e., the scattered

field plus the outwardly traveling part of the incident (CSB)

field, for the same case is shown in Fig. 5.

Finally, in Fig. 6 (same configuration as before but differ-

ent viewing angle) we see that beside the main lobe of the

incident field there appear side lobes which are due to an in-

terference between the incident and scattered fields.

6 Conclusions

The scattering of an arbitrarily oriented CSB by an acousti-

cally soft or hard semi-infinite circular cone has been anal-

ysed using a spherical-multipole expansion. Among three

different algorithms to compute the associated Legendre
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Figure 6. Radiation pattern of the total far field; same configuration

but different viewing angle as in Fig. 5.

functions of the first kind for complex arguments that one

based on Ferrer‘s hypergeometric representation was found

to be most suitable. Convergent results of the total near and

far fields have been obtained for arbitrary circular cones and

directions of incidence. Future work will extend the applica-

tion of this approach to other geometries, e.g. elliptic cones.
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