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Abstract. This work introduces two methods which extend
the non-convex minimization problem arising in phaseless
(NF) far-field (FF) transformations. With the new extensions,
knowledge about phase differences between measurement
points can be incorporated into the minimization problem.
The additional information helps to avoid stationary points
of the minimization cost functional which would otherwise
compromise the result of the near-field far-field transforma-
tion. The methods are incorporated into the Fast Irregular
Antenna Field Transformation Algorithm (FIAFTA), ana-
lyzed and compared. Their effectiveness is shown by trans-
forming synthetic near-field data sets with partial knowledge
of phase differences to the far-field.

1 Introduction

With the rapid development in communication technology,
also the demands for antennas and antenna measurement
technologies increase. In antenna measurements, one of the
main interests is to determine the antenna radiation pattern
in the far-field (FF) of the antenna under test (AUT). If
straightforward measurements in the AUT FF are not feasi-
ble, for example when the FF distance exceeds the measure-
ment chamber dimensions, then the measurements can be ob-
tained in the near-field (NF) of the AUT and afterwards the
AUT FF pattern can be determined by NF to FF transforma-
tion (NFFFT). In general, magnitude and phase information
are required in the NF measurements in order to determine
the FF. However, phase measurements become complicated
in the very high frequency regime or might also be omitted
when utilizing cheap scalar measurement equipment. Phase-

less NFFFTs, which require only magnitude data, are needed
for the development of leading-edge antenna technologies.
The phaseless NFFFT problem is directly related to the more
general problem of phase retrieval, which has numerous ap-
plications in optics, radiology, and various physical disci-
plines (Waldspurger et al., 2015; Fienup, 1982; Wu et al.,
2005). Since the measurements in phase retrieval scenarios
(i.e. the radiation from an antenna for example) arise in a well
defined physical environment, there exists a relationship be-
tween the magnitude of the measurements and its phase. Due
to the non linear nature of this relationship, the phase can not
easily be retrieved from magnitude only measurements.
First successful attempts in retrieving the phase of magni-
tude only data are found in Gerchberg (1972). The initial al-
gorithm has been further developed throughout the years (for
example in Fienup, 1982) and the topic is still under heavy
research. In the last decade, one has often tried to retrieve the
phase via non-convex minimization (Netrapalli et al., 2013;
Candes et al., 2015; Zhang and Liang, 2016) or by a convex
relaxation of the non-convex formulation (Waldspurger et al.,
2015; Yurtsever et al., 2015; Candes et al., 2013; Bauschke
et al., 2002). Because of their high numerical complexity,
convex relaxations are suitable for small and medium sized
problems only. Non-convex minimizations suffer from sta-
tionary points of the cost functional. Convergence guaran-
tees have been established for the non-convex minimization
in Candes et al. (2015); Zhang and Liang (2016) and Ne-
trapalli et al. (2013). However, the convergence criteria hold
only, if enough measurements can be obtained, which fol-
low certain probability distributions. It remains unclear, how
such measurements can be obtained in a NF antenna mea-
surement scenario. Interferometric methods have been used
to obtain phase differences from magnitude only measure-
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ments in Costanzo et al. (2005). There, the measured phase
differences have been set up along a chain from one element
to the other, thus being very inflexible in the measurement
setup.

This article aims at representing arbitrary known phase
differences in terms of additional goals for the minimiza-
tion problem. Phase differences can be obtained from magni-
tude only measurements of certain linear combinations as in
Costanzo et al. (2005) or by the assumption that a global ref-
erence phase will be stable for at least two successive mea-
surements. Finding a global minimum to a cost functional
involving both, magnitudes and phase differences, is equiva-
lent to determining the near field up to a global phase shift.
By introducing the phase knowledge in terms of minimiza-
tion goals and not setting phase differences to a fixed value,
we allow for solutions which give an overall best approxima-
tion for the phase differences and the magnitudes, thus being
less prone to measurement errors.

The article is structured as follows. Section 2 briefly re-
visits the phaseless NFFFT presented in Schnattinger et al.
(2014), which is similar to the analysis of the Wirtinger Flow
minimizations in Candes et al. (2015) and Zhang and Liang
(2016). In Sect. 3, two extensions for the cost functional are
presented which introduce phase knowledge to the minimiza-
tion problem. These implementations are formally analyzed
in Sect. 4 for their behavior. Finally Sect. 5 shows numerical
evidence for the effectiveness of the proposed methods.

2 Formulation of the phaseless field transformation

The task of an NFFFT is to determine the electromagnetic
FFs of an antenna from a number of NF measurements. It
can be solved as an inverse problem by finding equivalent
sources in the AUT volume or on the surface of the AUT
volume. The equivalent sources are chosen such that they re-
produce the measured NF values. The FF is thereafter easily
obtained from the found equivalent currents. Starting from a
discrete set of basis functions for the sources (e.g. RWG basis
functions in Rao et al., 1982), one obtains a linear equation
system

b= Az, (1)

where b € CM is the vector of M complex NF measurements,
z € CV contains the N coefficients for the equivalent source
basis functions and A € CM*¥ is the system matrix in which
the entry A,,, describes the influence of the nth basis func-
tion on the mth measurement. The minimum mean square
error solution of the normal equation system

z=A%b 2)

with the pseudo-inverse A yields the coefficients for the dis-
crete set of equivalent source basis functions for the compu-
tation of the corresponding FF. If the dimensions are high,
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it becomes computationally expensive to calculate the sys-
tem matrix A explicitly. Then, iterative methods can be uti-
lized to determine the solution of Eq. (2), which only require
the evaluation of the matrix vector products Ax and Atx’,
where AH denotes the Hermitian transpose of A. In this work
the matrix vector products are evaluated efficiently with the
Fast Irregular Antenna Field Transformation Algorithm (FI-
AFTA) described in Eibert et al. (2015), Schmidt et al. (2008)
and Eibert and Schmidt (2009). Due to the hierarchical field
representation, the matrix vector products can be evaluated
with a computational complexity of O (N log N).

By combining the phase retrieval algorithm with FIAFTA,
the phaseless NFFFT described here inherits all the positive
properties of FIAFTA such as the possibility to work with
arbitrary irregular and regular measurement grids, full probe
correction for arbitrary probes, and a very flexible source rep-
resentation with modal field expansions as well as magnetic
and/or electric surface currents on a triangular mesh repre-
senting the geometry of the AUT.

When the phases of the measurements in b are unknown,
we want to find a solution of

|b| = |Az], 3)
or equivalently
|b]°? = |Az|*?, 4)

where |-| denotes the elementwise absolute value operator
and the exponent (- )°Z denotes that the power of 2 is applied
on each element of the vector. Since Eq. (4) is a non lin-
ear equation, we try to solve the corresponding minimization
problem

: o2 02 2
min H|b| —||Az| )
zeCN 2
or equivalently
2
min ||b*ob — (A2)* 0 (A2)| , 6
min (A2)" o (A2) (©)
2

where o denotes the Hadamard product, B =b* o b is the
vector of the squared magnitudes of the elements of b and
(Az)* o (Az) yields the squared magnitudes of Az. For
the rest of this paper we will call y = Az virtual mea-
surements and B the goal vector. The cost functional f =
|B —(A2)*o (Az)}i in Eq. (6) can be identified as a squared
sum of individual differences between the virtual measure-
ments y = Az and the elements of the goal vector S.

3 Extension for phase differences

The main idea of this work is to extend the goal vector 8
by values, which bring information about phase differences
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into the problem. In other words, given we know the phase
difference ¢;; = ¢; — ¢; between the measurements b; and
bj, how can we define a cost functional, which yields the
correct phase differences, after its minimization?

3.1 Magnitude of linear combinations of two
measurements

The (squared) magnitude of a linear combination of the two
complex numbers b; and b; carries information about the
phase difference between these two numbers as can be seen
from

|bi +b,|> = 11>+ b |* + 21641 |bj | cos (¢) - (7

The phase difference ¢;; =¢; —¢; between the complex
measurements b; and b; can uniquely be determined from
four magnitudes, namely |b;|, |b;|¢, |b; —i—bj] and |b,- + jbj|
for example as in Costanzo and Di Massa (2001). These four
linear combinations are not the only possibility to specify
the phase differences in terms of magnitudes. Almost any tu-
ple of magnitudes of four different linear combinations of
the complex numbers b; and b; will define the phase differ-
ence between these two numbers uniquely. The rare tuples
which are not suitable to reconstruct the phases can easily
be avoided by a careful choice of the linear combinations to
be measured. A natural choice for an additional row inside
the norm of the cost functional is to use the magnitude of
a linear combination of two already existing measurements.
The goal value ), 1 for this linear combination magnitude
can be obtained from additional measurements with special
probes as in Costanzo et al. (2005) or can easily be computed
from known magnitudes and phase differences analogous to
Eq. (7). Formally, the cost functional in Eq. (6) can be ex-
tended for the newly introduced information by

/ 22
f =f+‘,3N+1_|)’i+)’j| ‘

2
= f+ B |14zl + 1421, [ ®)
with the new goal
Bn+1 = |bi +bj|2. &)

The additional term introduces an additional penalty for any
deviations in the magnitudes of the considered linear combi-
nation which in turn can be interpreted as an additional phase
constraint according to Eq. (7).

In general, any linear combination of arbitrary measure-
ments can be attached, by extending the cost functional in a
similar manner as before. One obtains

212
f’=f+‘,31v+1 — |1y + oy ‘ (10)
with the new goal

2
BN+l = |Ol1bi +(X2bj| . (11)
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Also an arbitrary number of additional linear combinations
can be considered by simply adding more terms like Eq. (10).

Due to the flexibility of the formulation in this chapter, in
principle magnitudes of any probe or linear combination of
probes can be incorporated into the minimization, without
the need of determining phase differences explicitly. How-
ever, if the phase differences are known, the magnitudes of
any linear combination can be calculated and incorporated as
presented.

3.2 Complex conjugated multiplication

The phase of a product of a complex number b; and the com-
plex conjugate of another complex number 5% is equal to the
phase difference ¢;; = ¢; — ¢; between them:

bib% = |bi| |bj|e/ %7, (12)

If the phase difference between two measurements is known,
this information can be incorporated into Eq. (6) with us-
age of this multiplication identity. Consider the extended cost
functional

2
f/:f‘i“ﬁN—H _YiY7‘

2
= f+ By —[AzhlAz] (3
with the new goal
By+1 = bib’. (14)

The newly introduced additional term in the cost functional
adds a penalty for any deviation of the product y; y’,‘.‘ from its
goal and can be interpreted as an additional phase constraint
according to Eq. (12).

Similar to the linear combinations it is possible, to extend
the cost functional for the complex conjugated multiplication
by more than one term, by simply attaching more terms in the
presented scheme. It is also possible, to combine linear com-
binations and complex conjugated multiplication costs in a
single cost functional by attaching both of the corresponding
cost functional types.

Notice that the extended goal vector 8’ contains complex
values for the complex conjugated multiplication terms as
opposed to real and positive numbers only in the case of mag-
nitudes. This makes the evaluation of the Jacobian, which is
needed for many minimization procedures, more difficult.

4 Analysis of the extended cost functionals

In this section the behavior of the newly introduced cost func-
tionals will be analyzed. To this end, consider the four cost
functionals

i

fi=8 =D+l (s)
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. 2]
fo= B2 = v = iwil[ (16)
f3=ri+ /2 17)
2
fo= B =i (1)
with the goal terms
B1= |bi +b; 2, (19)
Br = |bi — jb; [, (20)
Ba = bib*. 1)

The variables y; and y; denote the ith and jth virtual mea-
surement and b; and b; for the corresponding (hypothetical)
true complex measurements. In general, the virtual measure-
ments y; deviate from the goals b; in magnitude and phase,
ie.

vi = cibie! 8, (22)

with ¢; € RT is the magnitude factor by which the virtual
measurement y; deviates from the goal b; and A¢; € [0, 2]
is the phase difference between b; and y;, i.e. Zy; = Lb; +
Ag;. As discussed previously, only the magnitudes of b; and
b; and the linear combinations or the phase difference be-
tween them might be known (i.e. the absolute phase of b; and
b is unknown). Since only the phase difference between the
virtual measurements y; and y; is relevant, we can identify
the term

be = Ap; — A (23)

as the error term in the phase difference between y; and y;.
Remember that ¢ ;; = ¢; —¢; is the phase difference between
the goals b; and b;, while A¢; and A¢; are the phase devi-
ations of the virtual measurements from the goals b; and b;
respectively, i.e. if the virtual measurements have the same
global phase shift to the actual measurements b; and b; (i.e.
A¢; = A¢j), the error term ¢, for the phase difference is
zero. The cost functionals f; and f> correspond to linear
combinations considered in Sect. 3.1 and the cost functional
f3 is the sum of the cost functionals f; and f>. The cost func-
tional f4 corresponds to a complex conjugated multiplication
presented in Sect. 3.2.

Figure 1 shows the values of f] to f4 dependent on the
phase deviation ¢ = A¢; — A¢; in case that the virtual mea-
surements y; and y; have the same magnitudes as th cor-
respondent goals b; and b;. The values for b; = e/%° and
b; =2.3¢/% have been chosen arbitrarily to yield cost func-
tionals which plainly show the different behaviors. It can
be seen that all four cost functionals have a minimum for
¢ = 0°. However, the cost functionals f; and f> also show
a false minimum for another ¢, 7 0°. For the case of no mag-
nitude deviations, i.e. ¢; = ¢; = 1, the cost functional f3 is a
scaled version of the cost functional fy.
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Figure 1. Cost functionals for phase error only. For this example the
goal values have been chosen to be b; = ¢/ and b;j =23 /0.
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Figure 2. Cost functionals with phase and magnitude error. For this
example, additionally to the phase deviation, a multiplicative am-
plitude deviation of ¢; = 2.3 and ¢; = 1.3 is assumed.

In the minimization process, while the minimization has
not terminated yet, in general there will be phase deviations
¢e #0 as well as magnitude deviations ¢; # c; # 1. Fig-
ure 2 shows the values of the cost functionals dependent on
the phase deviation ¢, for virtual measurements which de-
viate from the goals in phase as well as in magnitude, viz.
¢; =2.3 and ¢; = 1.3. The false minima for f; and f> are
more distinct than in Fig. 1 and the cost functionals f; and
J> can return zero and thus reach their global minimum even
though neither magnitudes nor the phase difference matches
the goals. The cost functionals f3 and f; have a minimum
for a single value of ¢, only, i.e. they do not suffer from false
minima.
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For an analysis, the cost functionals f; to f4 can be ex-
pressed in terms of their magnitude and phase deviation. For
the cost functional f; we have

2
ﬁ%&—m+wﬂ

CibiejA¢i + CjbjejA¢j

2|2
=‘|bz‘+bj|2— ‘

[ (1= )+ o, (1-3)

. . 2
+21bi] [bj| Re fer? — cyped @itatman |
2 2 2 2
=‘|bi| (l—ci)+|bj| (l—cj)
. . 2
+2|b;| \bj|Re{e]¢ﬁ —clczef(d’f'i”)f)}‘ . (24)

Accordingly, for the cost functional f, we have

2
2 Z‘ﬁz —|i _jyj|2‘

. . 2 2
:‘|bi b2 = |eibiel 89 — jejbreld0i ‘
2
=[P (1-¢2) + s (1-¢2)
j i 2
+21bil ’bj|1m{€j¢” _C]CQEJ(¢ji+¢E)}‘ . 25)

The cost functionals f; and f> deviate from each other
only by evaluating the real and imaginary part of e/®ii —
cicj el (9jitde) respectively. Thus, they suffer from the same
kind of undesired behavior. For any given magnitude devia-
tion ¢; and ¢}, both cost functionals have two minima for two
different values of ¢, (there are two numbers on the unit cir-
cle which have the same imaginary or real part respectively).
The desired behavior would be that the cost functionals have
a single minimum for ¢ = 0 only. The occurring false mini-
mum reflects the fact that a single linear combination magni-
tude does not uniquely define the phase difference between
the two complex numbers b; and b;. Note, that two distinct
minima might occur for each of the cost functionals f; and
f> even, when the magnitudes |y;| = |b;| and |yj| = |bj| are
equal to the desired magnitudes, i.e. c; =c3 = 1.

For the analysis of cost functional f3, we introduce the
auxiliary variable

A:|bi|2(1—c,.2)+|bj|2(1—c§). (26)

By identifying Eq. (24) as the squared magnitude of the real
part and Eq. (25) as the squared magnitude of the imaginary
part of the same complex number, f3 can be written as

B=h+1
. . 2
- ‘(1 +j)A+21bi]|b] (ef¢ﬂ - clcze1(¢fi+¢s)) ’

. . 2
= [+ ) Ae 1% 4211l b (1 = c1c267%)
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Figure 3. Mesh defining the RWG unknowns for transforming syn-
thetic data of a horn antenna.

= ‘B—2|bi| |bj}c,-c]-ej¢f ?

27

with the auxiliary term B = (1+ j)Ae /% +21|b;||b;|.
From the last row of Eq. (27) it is clear that the cost func-
tional f3 is minimal only for the single value of ¢, when
it equals the phase of B shifted by 180°. The cost functional
obtains its minimum for ¢; = ¢; = 1 and ¢ = 0, as intended,
however for general magnitude deviations ¢; # 1l and ¢; # 1,
the cost functional f3 may obtain its minimum at ¢, # 0.
Some tuples (ci, cj, ¢e) # (1,1,0) can also lead to f3 =0.
However, together with the minimization of the magnitudes
as described in Sect. 2, the cost functional has a unique global
minimum (up to a global phase) for y; and y;.
The cost functional f4 can be rewritten in the form
2
fa= ‘,34 - )’i)’;‘
2

bib;ﬁ- - bibjfcicj'ejd)6

2
2 .
= |b: 2|b; | ’1 —cicjelte|”

(28)

The cost functional f4 has a global minimum for¢; =¢; =1
and ¢ = 0. Also independent on the deviation between y;
and b; and y; and b;, the minimum for f3 occurs a ¢, = 0.
However the cost functional f3 can return zero also for any
combination of magnitude deviations ¢; = (1/c;) # 1. Thus
for a unique global minimum with ¢; =c; =1 and ¢ =0
the cost functional f3 has to be minimized together with the
magnitude cost functional from Sect. 2.

5 Numerical results

The effectiveness of the presented methods is shown by nu-
merical examples. The NF data has been generated synthet-
ically according to Schmidt et al. (2011) at 3 GHz. The be-
havior of a horn antenna has been simulated by 2232 dipoles
arranged on a surface enclosing a CAD model of a real horn
antenna depicted in Fig. 3. The horn antenna model aperture
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Figure 4. Location of the sample points.

is 227.40mm x 151.60 mm in size. The other side of the an-
tenna builds a transition to a rectangular waveguide of dimen-
sions 72.14 mm x 34.04 mm. The horn length is 350 mm and
the taper is a (1 — cos)-taper. The excitations for the dipoles
have been obtained approximately from a simulation in CST
MICROWAVE STUDIO 2016 (CST, 2016). For the NFFFT
the triangles on the same mesh has been used for RWG ba-
sis functions (Rao et al., 1982), i.e. the vector z in Eq. (1)
contains the coefficients of each RWG basis function.

As measurement probes serve Hertzian dipoles. Two
probes at a time form a measurement pair which will be
evaluated for the phase differences. A pair consists of two,
horizontally separated dipoles spaced two wavelengths apart.
The measurement points, i.e. the centers of the dipole pairs,
are located on spirals on a spherical surface around the AUT.
Figure 4 shows the 1000 locations of the pair centers along
with a black cuboid denoting the location of the AUT. The
spiral sampling shown in Fig. 4 is more uniformly distributed
than the usual spherical sampling which has equidistant an-
gular steps in ¢ and ¢ direction. Since in general two in-
dependent polarizations are needed in NF measurements, the
same measurements have been obtained with rotated dipoles.
Thus we have 4000 measurements (not counting any linear
combinations) since at each measurement location two mea-
surements — one to the left and one to the right — have been
obtained with two polarizations. Any linear combination and
phase differences can be obtained from the complex valued
synthetic dipole outputs. In the following linear combina-
tions and phase differences have been considered only for
corresponding dipole pairs. Note, that the locations of dipoles
of neighboring pairs do not interfere in general, which means
that the absolute phases of the measurements at the individ-
ual dipoles cannot be determined by iterating through a chain
of known phase differences.
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Table 1. Minimization overview.

Cost No. of @ FF error max Time
iterations FF error

f 1285 —324dB —149dB 1.20 min

f+n 1075 —36.4dB —14.3dB 1.14 min

f+ 3 12960 —81.9dB —54.4dB 10.92min

f+fa 9493 —85.7dB —62.2dB 6.66 min

Four scenarios have been considered. In the first scenario,
the coefficients in z are retrieved from magnitude only mea-
surements as in Sect. 2. In the second scenario, additionally
to the magnitudes of the single dipole outputs, the magni-
tudes of the sum of the outputs of each dipole pair have been
considered according to Sect. 3.1 and Eq. (24). In the third
scenario also the magnitudes of the phase shifted sums have
been considered as in Eq. (27). Finally, in the fourth scenario
the phase knowledge has been included in terms of conju-
gated multiplication as described in Sect. 3.2 and in Eq. (28).
For all scenarios, the corresponding cost functional has been
minimized with a L-BFGS procedure (Nocedal and Wright,
2006), a memory limited version of the Broyden—Fletcher—
Goldfarb—Shanno algorithm (named after its inventors) in
the family of quasi-Newton methods (Nocedal and Wright,
2006). The algorithm terminates, once an insufficient rela-
tive decrease in the cost functional is observed. The initial
conditions have been chosen to be z; = 14 1 Vi for each
basis function in all scenarios. After the minimization has
finished, the FF is calculated from the retrieved sources in
z. Table 1 shows an overview over the four scenarios. The
different timings are mostly due to the different number of
iterations. All minimizations used roughly the same memory
of about 450 MB. For Table 1, the complete FF has been con-
sidered, not only the cuts which are shown in the following
subsections.

5.1 Magnitude only measurements via cost
functional f

The dashed blue line in Fig. 5 shows the cut of the copolar
E-field component in the E-plane of the retrieved FF from
magnitude only NFFFT. The orange solid line denotes the
ideal FF, which has been computed from the original source
dipoles. Both, the reference and the retrieved FF, are normal-
ized to their maximum respectively. The dotted purple line
shows the difference between both curves. The maximal er-
ror in the FF (relative to the maximum of any FF) is larger
than —20 dB. Figure 6 shows the magnitude of the cost func-
tional at each iteration, normalized to its initial value. The
termination criterion is met after 1285 iterations and the pro-
gression of the curve hints to the cost functional being stuck
in a local stationary point. Especially outside the main lobe,
the retrieved FF pattern does not match the reference. As
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Figure 5. Retrieved FF from magnitude only data, ¢ =90°.

8

g 0

.2

5

o=

2

% =20 =

$—

=

$t

L

=

g

= —40 - =

Q

f=1

2

b7 | I |

3 0 500 1000
Iterations

Figure 6. Progress of the minimization of the cost functional for
magnitude only data.

shown in Table 1, the maximum FF error is at —14.9 dB and
the average FF error is —32.4 dB.

5.2 Magnitudes of single measurements and of pair
sums via cost functional f + f;

For the second scenario, also the magnitudes of the complex
sum of the outputs of each dipole pair have been considered.
The E-plane cut of the retrieved copolar FF component can
be found in Fig. 7. The values in Table 1 suggest that there
hardly is any improvement compared to the magnitude only
minimization. Even though the retrieved FF in Fig. 7 seems
to show a better result than Fig. 5, especially outside the main
lobe, the error level is still very high and the minimization
again seems to be captured at a local stationary point which
is different from the one in the magnitude only minimization,
even though the initial guess has been the same. This agrees
with the analysis from Sect. 4, in which it was stated that
false minima may occur for the additional cost functional
parts in fj. Nevertheless, the usage of the magnitude of a
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Figure 8. Progress of the minimization of the cost functional for
magnitude data combined with one linear combination magnitude
per diploe pair.

linear combination has some effect since it leads to a termi-
nation at a different stationary point than the magnitude only
minimization. In some cases this may lead to a situation in
which local stationary points from the magnitude only data
are avoided. In this particular case, the minimization does not
progress anymore after 1075 iterations, as shown in Fig. 8.

5.3 Magnitudes of single measurements, of pair sums,
and of phase shifted pair sums via cost functional

f+/5

In the third scenario additionally to the magnitude only min-
imization objectives also the two (squared) magnitudes of
the linear combinations |b,- +b; |2 and |bl~ —Jjbj ’2 have been
considered for the dipole pairs. Figure 9 shows the retrieved
copolar FF in the E-plane. With a maximum FF error of
—54dB it can be concluded that the minimization process
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Figure 9. Retrieved FF from magnitudes and two linear combina-
tions data, ¢ =90°.

g

g 0

.

s

f=

2

=

2 —-50 -

—

it

=

=l

.S

S

s —100 |-

(-E —

b d | | |

S 0 5000 10000
Iterations

Figure 10. Progress of the minimization of the cost functional for
magnitude data combined with two orthogonal linear combination
magnitudes per dipole pair.

reached the minimum which corresponds to the correct near
fields. This observations supports the conclusions of Sect. 4.
The progression of the cost functional shown in Fig. 10 also
shows that the minimization did not reach its minimal value
before at least ten times the number of iterations of the first
two scenarios but also shows a steady decrease. This suggests
that all local stationary points have been avoided thanks to
the additional objectives for the linear combinations.

5.4 Magnitudes of single measurements and
conjugated multiplication between pairs via cost
functional f + f4

In the fourth scenario, parallel to the magnitude only goals,
the conjugated multiplications described in Sect. 3.2 have
been minimized for the dipole pairs. Figure 11 shows the
retrieved copolar FF pattern in the E-plane. Similar to the
previous scenario, the retrieved FF coincides with the ref-
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Figure 11. Retrieved FF from magnitudes and conjugated multipli-
cation data, ¢ = 90°.
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Figure 12. Progress of the minimization of the cost functional
for magnitudes combined with conjugated multiplication data per
dipole pair.

erence. As stated in Table 1, the maximum FF error is less
than —60 dB. The retrieved FF as well as the progression in
Fig. 12 suggest that any local stationary points have been
avoided and the correct NF has been retrieved.

6 Conclusions

The phaseless near-field (NF) far-field (FF) transformation
(NFFFT) can be extended to incorporate phase knowledge in
terms of phase differences between measurements and mag-
nitudes of linear combinations. The cost functional for the
non linear minimization is formally extended by additional
terms which penalize the difference between the virtual mea-
surements and the correspondent goals. The exact build-up of
these goals introduces the phase knowledge either in terms of
complex conjugated multiplication or in terms of linear com-
binations. It has been shown that both new cost functionals
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behave differently during the minimization procedure. When
the phase goals are chosen with care, the cost functional ex-
hibits a unique global minimum (up to a global phase) which
corresponds to the fully restored radiated NF. From this re-
stored NF, the FF can be computed easily with means of
standard NFFFT. For the cost functionals with a global min-
imum corresponding to the correct NF, the FF has been re-
trieved with a maximum error of up to —62dB. However,
even though an unique global minimum exists for the radi-
ated fields, the minimization may not converge to this mini-
mum due to the non linearity of the problem. In such a case,
the minimization runs into a local stationary point. Incorpo-
rating phase knowledge can help to avoid stationary points
in this case. This way, one can retrieve a barely distorted FF
without the need of full phase measurements.
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