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Abstract. In this work, we derive the dynamics of the lossy
DC pumped non-degenerate Josephson parametric amplifier
(DCPJPA). The main element in a DCPJPA is the super-
conducting Josephson junction. The DC bias generates the
AC Josephson current varying the nonlinear inductance of
the junction. By this way the Josephson junction acts as the
pump oscillator as well as the time varying reactance of
the parametric amplifier. In quantum-limited amplification,
losses and noise have an increased impact on the character-
istics of an amplifier. We outline the classical model of the
lossy DCPJPA and derive the available noise power spectral
densities. A classical treatment is not capable of including
properties like spontaneous emission which is mandatory in
case of amplification at the quantum limit. Thus, we derive
a quantum mechanical model of the lossy DCPJPA. Thermal
losses are modeled by the quantum Langevin approach, by
coupling the quantized system to a photon heat bath in ther-
modynamic equilibrium. The mode occupation in the bath
follows the Bose-Einstein statistics. Based on the second
quantization formalism, we derive the Heisenberg equations
of motion of both resonator modes. We assume the dynamics
of the system to follow the Markovian approximation, i.e. the
system only depends on its actual state and is memory-free.
We explicitly compute the time evolution of the contributions
to the signal mode energy and give numeric examples based
on different damping and coupling constants. Our analytic
results show, that this model is capable of including thermal
noise into the description of the DC pumped non-degenerate
Josephson parametric amplifier.

1 Introduction

Recent progress in fabrication of nanoelectronic devices and
low-temperature physics has increased the interest in super-
conducting quantum circuits. As Bardeen et al. (1957) out-

lined in the Bardeen Cooper Schrieffer (BCS) theory, super-
conductivity is based on the condensation of Cooper pairs.
London (1961) introduced a macroscopic theory by describ-
ing the superconducting phase by coherent matter waves,
which exhibits macroscopic quantum effects. Thus, fluctu-
ations are very small, making superconducting quantum cir-
cuits interesting for low noise devices. The basic element in
superconducting quantum circuits is the Josephson junction
predicted by Josephson (1962). The Josephson effect pre-
dicts the tunneling of Cooper pairs in two weakly coupled
superconductors. Weak coupling is achieved by a thin sep-
arating tunnel barrier (Anderson and Rowell, 1963; Russer
and Russer, 2011). Josephson junction based devices require
a theoretical treatment using quantum mechanics, as soon as
the energy of a considered signal becomes as low as a few
microwave energy quanta, i.e. photons, at very low temper-
atures of only a few Kelvin. Compared to a pure classical
treatment, a quantum formalism also considers effects due to
spontaneous emission as well as induced quantum noise by
coupling the system to a Langevin heat bath.

Parametric amplification plays an important role in several
physical phenomena and is also utilized for amplification of
electric signals. The parametric amplifier amplifies the oscil-
lating signal mode by coupling the mode to an idler mode
(Blackwell and Kotzebue, 1961; Mollow and Glauber, 1967;
Roy and Devoret, 2016). Strong coupling is achieved by an
oscillating non-linear coupling parameter. Radio-frequency
and microwave signals containing few quanta are weak com-
pared to the noise level of most detectors (Mollow and
Glauber, 1967). Recent experiments by Macklin et al. (2015)
show, that parametric amplification based on the Josephson
junction faces quantum-limited amplification. So far, Joseph-
son parametric amplifiers (JPA) have been treated classically
by Russer (1969) and Russer (1971). A quantum mechani-
cal model of the ideal JPA is derived by Russer and Russer
(2011), which is based on the model introduced by Louisell
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(1964). Josephson parametric amplifiers operating close to
the quantum limit also require a quantum mechanical treat-
ment of losses.

In this work, we analyze the DC pumped non-degenerate
Josephson parametric amplifier (DCPJPA). Based on a clas-
sical description of the lossy DCPJPA, the current noise cor-
relation and the spectral power densities are derived. As the
classical model is not capable of describing all observable
features of the quantum-limited amplification regime, as e.g.
spontaneous emission, there is the need of a quantum me-
chanical description of the DCPJPA. Thus, we derive a quan-
tum mechanical model of the circuit including noise and
losses. Losses are considered using the quantum Langevin
method, as outlined by Gardiner and Zoller (2010) and Roy
and Devoret (2016). The resonator circuits, i.e. the signal and
the idler circuit, are coupled to a heat bath, represented by
a photon gas in thermal equilibrium. The heat bath induces
fluctuations in the resonator modes and causes damping of
the signal energy. The time evolution of the signal energy and
the noise contributions are derived based on the Heisenberg
equations of motion. Simplification of the Josephson cou-
pling Hamiltonian is obtained by the rotating wave approx-
imation (RWA). Markovian dynamics neglecting memory-
effects are assumed, which induce white noise into the circuit
(Farias et al., 2009). We explicitly compute the time evolu-
tion of the energy contributions for different initial setting.
Our analytic results show, that the considered quantum me-
chanical model is capable of including thermal noise into the
description of the Josephson parametric amplifier. For low
damping, the signal energy is also amplified exponentially as
shown in previous publications by Russer and Russer (2012),
damping reduces the amplification of the energy contribu-
tions. Furthermore, we derive the quantum mechanical cur-
rent noise correlation resulting from the coupling to the heat
bath and link it to the classical conductance.

The quantum mechanical treatment of a lossy DCPJPA
can be very useful when it comes to detecting e.g. single
microwave photons, where one is interested in the quantum
noise added by the amplification process. Standard solid-
state based amplifiers cannot be used at such low energies,
because of their relatively high thermal noise, compared to
superconducting parametric amplifiers. This could enable in-
teresting applications in superconducting quantum comput-
ing, where single radio-frequency or microwave photons in-
teract with qubits, themselves consisting of Josephson ele-
ments. The theoretical treatment of noise brought in by the
environment is crucial for the realization and operation of
superconducting quantum circuit based systems.

However, there are still a lot of things left open in the
following discussions. First of all, the Josephson junction
is considered ideal in the following, i.e. it is modeled as an
ideal tunnel junction, without any effective dissipation mech-
anisms (Kirtley et al., 1988). Furthermore, a Markovian as-
sumption is made on the heat bath coupling mechanism in
the signal and idler modes of the considered amplifier sys-

tem, i.e. the coupling of the system and the heat bath only
depends on the current state.

2 The Josephson Effect

Bardeen et al. (1957) provided the theory, that superconduc-
tivity originates from the pairing of electrons with opposite
spin and wave vector to Cooper pairs. The superconducting
ground state can be described by a macroscopic matter wave
function given by Feynman et al. (1965). The Josephson
effect is observed in two weakly coupled superconductors,
seperated by a thin tunnel barrier (Josephson, 1962; Russer
and Russer, 2011). The superconducting tunneling current
iJ(t) is described by the first Josephson equation given by

iJ(t)= Ic sinϕ(t), (1)

where Ic is the critical Josephson current and ϕ(t) is the
quantum phase difference between both superconductors.
The second Josephson equation relates the quantum phase
difference ϕ to the applied voltage over the Josephson junc-
tion v(t) by

∂ϕ

∂t
=

2π
80
v(t), (2)

with the magnetic flux quantum

80 =
h

2e
≈ 2.0678× 10−15 Vs, (3)

with the elementary charge e and the Planck’s constant h. A
DC voltage V0 applied to the junction gives rise to an AC
current oscillating with the Josephson frequency

f0 =
2eV0

h
= 483.6 ·V0

GHz
mV

, (4)

with the elementary charge e and the Planck’s constant h. In-
troducing the magnetic flux 8(t) as the integral of the volt-
age v(t) over time, the energy wJ(t) stored in a Josephson
junction is given by

wJ(8(t))=WJ

[
1− cos

2π8(t)
80

]
, (5)

with the maximum Josephson energy WJ =80IJ/2π . Thus,
the ideal Josephson junction is non-dissipative. The energy
can be considered as stored in the non-linear, lossless time-
variable Josephson inductance LS(t) defined by

LS(t)=
80

2πIc cos(ϕ(t))
. (6)

Different from other inductors, it is possible to apply a DC
voltage to the Josephson junction. Although the flux 8(t)
and with it the quantum phase difference ϕ(t) are going to
infinity with time when a DC voltage is applied, according
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Figure 1. Equivalent circuit of the lossy DCPJPA.

to Eq. (5) the energy wJ(t) stored in a Josephson junction re-
mains bounded. When a DC voltage is applied to the Joseph-
son junction L−1

S (t) varies sinusoidally with time. Hence,
the Josephson junction can be used as the required non-
linear time-variable susceptance for parametric amplification
as shown by Russer (1969) and Russer (1971).

3 Classical Model of the Lossy Josephson Parametric
Amplifier

In this section, we outline the classical model of the lossy
DCPJPA described by Russer (1969). The negative resistance
three-frequency DCPJPA consists of a DC pumped Joseph-
son junction oscillating with a frequency f0 according to
Eq. (4), coupled to two resonator modes with resonant fre-
quencies f10 and f20 such that f10+ f20 = f0 is fulfilled.
Coupling a signal with frequency f1 ≈ f10 into the signal cir-
cuit by mixing in the Josephson junction in the idler circuit a
signal at frequency f2 is excited fulfilling f1+ f2 = f0.

The equivalent circuit of the DCPJPA is shown in Fig. 1.
The inductor L1 and the capacitor C1 constitute the signal
resonator with resonant frequency f10, L2 and C2 represent
the idler resonator mode with resonant frequency f20. Clas-
sically, losses are modeled by conductances G1 and G2. The
thermal noise generated by the conductances G1 and G2 is
represented by the equivalent noise current sources in1(t) and
in2(t) and is1(t) is the signal current source.

The relation between signal, idler and pump frequency is
crucial for the device characteristics. The general energy re-
lations of the circuit shown in Fig. 1 are derived by Russer
(1971). If the junction is biased by a DC voltage V0 such that
f0 = f10+ f20, the signal, idler and pump energies obey the
Manley-Rowe relation, derived by Manley and Rowe (1956),
including an additional DC term according to Russer (1971)

P1

f1
=
P2

f2
=−

P0

f1+ f2
. (7)

This energy relation indicates the possibility of non-
degenerate DC-pumped parametric amplification. Other
choices of the relation between the different mode frequen-
cies and the pump frequency can result in other operational
modes such as a degenerate parametric amplifier or an up-
converter (Russer and Russer, 2011). Since the power flow
at f1 and f2 has opposite direction of the DC power flow at
f0, the Josephson junction impedance at f1 and f2 exhibits a
negative real part, i.e. the magnitude of the reflection factor
is greater than 1. In this case the DCPJPA acts as a negative-
resistance reflection amplifier at f1. When the signal is cou-
pled out at f2 an additional power gain f2/f1 is obtained.

For the lossy DCPJPA the classical equations of motion
are given by

dQ1(t)

dt
=
81(t)

L1
−G1

Q1(t)

C1
+ is1(t)+ in1(t) (8a)

+ Ic sin(ω0t)+
2eIc

}
(81(t)+82(t))cos(ω0t) ,

dQ2(t)

dt
=
82(t)

L2
−G2

Q2(t)

C2
+ in2(t) (8b)

+ Ic sin(ω0t)+
2eIc

}
(81(t)+82(t))cos(ω0t) ,

d81(t)

dt
=−

Q1(t)

C1
, (8c)

d82(t)

dt
=−

Q2(t)

C2
. (8d)

The angular frequency ω0 = 2πf0 is determined via Eq. (4)
by the applied DC voltage V0.

The conductances G1 and G2 yield a decay of the sig-
nals in the signal- and idler circuits. The thermal excitation
does not decay, since it is regenerated due to the dissipation-
fluctuation theorem (de Groot and Mazur, 1969, p. 151) by
thermal fluctuations in the conductances. Considering the
thermal noise sources in1(t) and in2(t) as classical Langevin
noise sources, see (Haus, 2000, p. 143), they exhibit the cor-
relation functions c11(τ ) and c22(τ ), respectively

c11(τ )≡
〈
in1(t)in1(t

′)
〉
=

4kBT
G1

δ(t − t ′), (9a)

c22(τ )≡
〈
in2(t)in2(t

′)
〉
=

4kBT
G2

δ(t − t ′), (9b)

where 〈. . .〉 denotes the ensemble average, kB is the Boltz-
mann constant and T is the absolute temperature of the lossy
resonator.

The parametric amplification of the DCPJPA according
to Fig. 1 is treated in detail in Russer (1969). There the
maximum available power gains gp11max and gp22max of the
negative resistance parametric amplifier operated at frequen-
cies f1 and f2, respectively, the maximum available power
gains gp21max of the up-converter and gp12max of the down-
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converter are obtained following Russer (1969) as

gp11max = gp22max =
4

(1− η)2
, (10a)

gp12max =
f1

f2

4η
(1− η)2

, (10b)

gp21max =
f2

f1

4η
(1− η)2

, (10c)

with

η =
e2I 2

c

h2f1f2G1G2
. (11)

To achieve high gain η has to be close to 1. If η reaches 1,
the parametric amplifier becomes unstable. We assumed sin-
gle conductances G1 and G2 in the signal and idler circuits,
respectively. Splitting the G1 into a generator conductance,
a loss conductance and a load conductance reduces the gain,
see Russer (1969) and Blackwell and Kotzebue (1961).

The Fourier transform of Eqs. (9a) and (9b) yields the au-
tocorrelation spectra of the noise current sources

C11(ω)=
2kBT
πG1

, (12a)

C22(ω)=
2kBT
πG2

. (12b)

The available noise power spectral densities of G1 and G2,
respectively are

CPna =
1

2π
kBT . (13)

with Eqs. (10a) to (10c) this yields the spectral power densi-
ties CPn1 and CPn2 in the signal and idler circuits,

CPn1(ω)=
2
π

[
1

(1− η)2
+
f1

f2

1η
(1− η)2

]
kBT , (14a)

CPn2(ω)=
2
π

[
1

(1− η)2
+
f2

f1

1η
(1− η)2

]
kBT . (14b)

In the classical limit the idler noise contribution to the noise
in the signal circuit is down-converted by a factor f1/f2.

We obtain the semiclassical approach for the quantum
noise when replacing

kBT →
hf

1− exp hf
kT

. (15)

Inserting this into Eqs. (14a) and (14b) yields

CPn1(ω)=
2hf1

π(1− η)2

[
1

1− exp hf1
kT

+
η

1− exp hf2
kT

]
, (16a)

CPn2(ω)=
2hf2

π(1− η)2

[
1

1− exp hf2
kT

+
η

1− exp hf1
kT

]
. (16b)

In the limit hf � kT these equations yield Eqs. (14a) and
(14b) whereas in the limit hf � kT we obtain

CPn1(ω)= 2
1+ η

π(1− η)2
hf1, (17a)

CPn2(ω)= 2
1+ η

π(1− η)2
hf2. (17b)

4 Quantum Mechanical Model of the Lossy Josephson
Parametric Amplifier

In this section, we outline the quantum mechanical model of
the lossy DCPJPA described by Russer and Russer (2011)
and Jirauschek and Russer (2012).

Here, we have used a second order Taylor expansion for
the energy stored in the nonlinear Josephson inductance. We
expressed the equations of motion in terms of signal and idler
charges and fluxes, since they form a set of conjugate vari-
ables which will be useful later, when stating the quantum
mechanical Hamiltonian.

In a quantum mechanical model dissipation and fluctu-
ations which are modeled in the classical model by the
loss conductances G1 and G2 and the related noise current
sources in1 and in2 are modeled by coupling the conservative
quantum system formed by the capacitors, inductors and the
Josephson junction to a so-called heat bath. This heat bath is
a many-electron system of electrons in thermal equilibrium.
The losses originate from the transfer of energy to this many-
electron system where the transferred energy is randomized.
Vice-versa fluctuations from the heat bath are coupled into
the resonant circuits as outlined by Walls and Milburn (2007)
and Gardiner and Zoller (2010).

The total Hamiltonian of the lossy DCPJPA is given by

H=HLC+HJJ +HB+HC, (18)

where the unperturbed Hamiltonian HLC represents the ideal
lossless LC resonant circuits, the operator HJJ describes the
energy of the DC biased Josephson junction, HB represents
the heat bath describing a photon field in thermodynamic
equilibrium and HC gives the coupling between the LC res-
onators and the heat bath. We apply the second quantization
formalism outlined by Dirac (1927) and Fock (1932). We in-
troduced the annihilation operator ai and the creation opera-
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tor a†
i given by

ai =

√
1

2}ωiLi
8i + i

√
ωiLi

2}
Qi, (19a)

a†
i =

√
1

2}ωiLi
8i − i

√
ωiLi

2}
Qi, (19b)

where }= h/(2π) is the reduced Planck constant, and 8i

and Qi are the flux and charge operators, respectively, of
the ith LC circuit. The flux and charge operators fulfill the
canonical commutation relation[
8i,Qj

]
= i}δij , (20)

which gives the bosonic commutation relation[
ai,a†

j

]
= δij . (21)

With Eqs. (19a) and (19b) the system Hamiltionans are
given by

HLC = }ω1

(
a†

1a1+
1
2

)
+ }ω2

(
a†

2a2+
1
2

)
, (22)

HJJ =WJ

{
1− cos[ω0t + λ1(a1+ a†

1)+ λ2(a2+ a†
2)]
}
, (23)

where the dimensionless parameter λi of the ith LC circuit
coupled by the Josephson junction is defined by

λi =

√
2α

πZF0Zi
. (24)

Here, α is the Sommerfeld’s constant given by

α =
e2

2cε0h
≈

1
137.036

. (25)

ε0 is the vacuum permittivity, c is the speed of light, Zi =√
Ci/Li is the characteristic impedance of the i-th LC cir-

cuit, and ZF0 is the free-space wave impedance.
The rotating wave approximation (RWA) is commonly

used in analytical treatments of quantum optical systems. Ac-
cording to Walls and Milburn (2007), the system perspec-
tive is changed into a rotating frame. Rapidly rotating terms
are neglected, which delivers a valid approximation in case
of near resonance terms and low intensities (Wu and Yang,
2007). Applying the RWA for the DCPJPA yields

HNR
JJ ≈ γj

[
a†

1a†
2 exp(−iω0t)+ a1a2 exp(iω0t)

]
, (26)

where γj =WJλ1λ2 is the Josephson coupling parameter de-
scribing the coupling strength between both resonators.

The energy of the ideal DCPJPA rises exponentially with
time, as derived by Walls and Milburn (2007), and Russer
and Russer (2011), describing a parametric oscillation rather
than a parametric amplification. Applying the Langevin

method we can treat losses of quantum mechanical systems
by coupling the system to a heat bath as proposed by Sar-
gent et al. (1974) and Gardiner and Collett (1985). A heat
bath is described by a large system of closely spaced har-
monic oscillators in thermodynamic equilibrium. In Fig. 1
the heat bath modes are represented by dashed modes inside
the frame. The Hamilton operators of the heat bath and the
coupling between the system and the bath are given by

HB =
∑
k

}ω̃k
(

b†
kbk +

1
2

)
, (27a)

HC =

2∑
i=1

∑
k

1
2

}κik
(

aib†
k +bka†

i

)
, (27b)

where bk is the bath operator with angular resonance fre-
quency ω̃k . The coefficients κik are of microscopic origin,
describing the coupling strength between the ith resonator
and the heat bath mode k. The Hamilton operator HC de-
scribes the so-called heat-bath, a large phonon system in ther-
mal equilibrium. Energy from our conservative system un-
der consideration (SUC) is coupled into the heat bath and
dissipated by distribution over the phonon system. By this
way the energy is randomized. Vice-versa, since the cou-
pling between the SUC and the heat bath is reciprocal and
obeys detailed balance, fluctuations are coupled from the
heat bath into the SUC. This is stated by the fluctuation–
dissipation theorem which applies both to classical and quan-
tum mechanical systems. Whereas in the classical considera-
tion in the previous chapter dissipation and fluctuations sim-
ply could be modeled phenomenologically applying a con-
ductance and an equivalent noise source, the quantum me-
chanical treatment requires a micro-physical model using the
quantum mechanical many-body system of the heat bath. In
Sect. 5, the relation between the coupling coefficients κik and
the classical circuit parameters is derived.

5 Quantum Langevin Equations

The time evolution of the system operators is computed in the
Heisenberg representation using the Heisenberg equations of
motion

d
dt

OH =
i
}

[HH,OH] , (28)

where OH is any arbitrary operator describing the system.
Using the Hamiltonian defined in Eq. (18), the Heisenberg
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equations of motion are given by

da1H

dt
=−iω1a1H− i

γj

}
a†

2He
−iω0t − i

∑
k

κ1k

2
bkH, (29a)

da2H

dt
=−iω2a2H− i

γj

}
a†

1He
−iω0t − i

∑
k

κ2k

2
bkH, (29b)

dbkH

dt
=−iω̃kbkH− i

2∑
i=1

κik

2
aiH. (29c)

Here, the bosonic commutator relations described by
Louisell (1964) and Sargent et al. (1974) are applied. As
we are only interested in the dynamics of the circuit opera-
tors, we eliminate the bath degrees of freedom by integrating
Eq. (29c). Hereby, we obtain

bkH(t)= bkH(0)e−iω̃k(t−t0)

− i
2∑
i=1

κik

2

t∫
t0

aiH(t ′)e−iω̃k(t−t ′)dt ′. (30)

Replacing the integration variable t − t ′ = τ yields

bkH(t)= bkH(0)e−iω̃k(t−t0)

− i
2∑
i=1

κik

2

t−t0∫
0

aiH(t − τ)e−iω̃kτdτ. (31)

The initial time t0 is set to zero without loss of generality.
Substituting Eq. (31) into Eq. (29a) gives

da1H(t)

dt
=−iω1a1H(t)− i

γj

}
a†

2H(t)e
−iω0t + f1(t)

−

∑
k

2∑
i=1

κ1k

2
κik

2

t∫
0

aiH(t − τ)e−iω̃kτdτ. (32)

In this equation we have introduced the Langevin noise op-
erator in terms of the initial bath operators

fi(t)=−i
∑
k

κik

2
bkH(0)e−iω̃k t . (33)

The operator fi(t) represents a stochastic term with white
noise and Gaussian properties as described in detail by Farias
et al. (2009). In the following, we denote bkH(0)= bkH. We
further simplify the equations of motion by changing to the
slowly varying operators defined by Sargent et al. (1974)

AiH(t)= eiωi taiH(t). (34)

Equation (32) is given in the slowly varying frame by

dA1H(t)

dt
=−i

γj

}
A†

2H(t)+ f1(t)eiω1t −

∑
k

2∑
i=1

κ1k

2
κik

2

×

t∫
0

AiH(t − τ)e−i(ω̃k−ωi )τ ei(ω1−ωi )tdτ. (35)

This equation can be simplified by applying the Markovian
approximation. As outlined by Farias et al. (2009), in the
Markovian approximation the system depends only on its
current state, thus we obtain

dA1H(t)

dt
≈−i

γj

}
A†

2H(t)+ f1(t)eiω1t −

∑
k

2∑
i=1

κ1k

2
κik

2

×AiH(t)
t∫

0

e−i(ω̃k−ωi )τ ei(ω1−ωi )tdτ. (36)

We use according to Sargent et al. (1974)

t∫
0

dτ exp[−i(�−ω)τ ] = πδ(�−ω)−P
(

i
�−ω

)
, (37)

with the Cauchy principal part P . Assuming a dense distri-
bution of heat bath modes in the frequency spectrum, we can
replace the summation over the modes by an integral over the
density of states

∑
k

→

∞∫
0

dωD(ω) . (38)

In case of the DCPJPA, we assume a photon heat bath in
thermal equilibrium described by the density of states

D(ω)=
Vω2

π2c3 , (39)

with the volume of the heat bath V . Applying this relation to
Eq. (36) we obtain the rate equations

dA1H(t)

dt
=−

1
2
γ̃11A1H(t)− i

γj

}
A†

2H(t)+ g1(t)

−
1
2
γ̃21A2H(t)ei(ω1−ω2)t , (40a)

dA2H(t)

dt
=−

1
2
γ̃22A2H(t)− i

γj

}
A†

1H(t)+ g2(t)

−
1
2
γ̃12A1H(t)ei(ω2−ω1)t , (40b)

with the noise operator gi in the slowly varying frame defined
by

gi = fieiωt . (41)
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Hereby, we introduced the damping matrix γ̃ij given by

γ̃ =
π

2

[
κ2

1 (ω1)D(ω1) κ1 (ω1)κ2 (ω1)D(ω1)

κ1 (ω2)κ2 (ω2)D(ω2) κ2
2 (ω2)D(ω2)

]
. (42)

If the noise operators gi are uncorrelated, we can drop the
off-diagonal damping terms γ̃ij . Experimentally, the diag-
onal damping terms γ̃ii are observable by measuring the
linewidth of the resonance curve of the ith LC resonator. Fol-
lowing Russer and Kaertner (1990), an input signal bin

S (t) can
be introduced in the rate equations with the coupling factor

γS =
1

RSC
, (43)

with RS as the impedance of the transmission line, from
which the signal is coupled to the LC resonant mode.

We obtain the rate equations of the photon annihilation and
creation operators

dA1H(t)

dt
=−

1
2
γ̃11A1H(t)− i

γj

}
A†

2H(t)+ g1(t)

+
√
γSbin

S (t), (44a)

dA†
1H(t)

dt
=−

1
2
γ̃ ∗11A†

1H(t)+ i
γ ∗j

}
A2H(t)+ g†

1(t)

+
√
γSbin†

S (t), (44b)
dA2H(t)

dt
=−

1
2
γ̃22A2H(t)− i

γj

}
A†

1H(t)+ g2(t), (44c)

dA†
2H(t)

dt
=−

1
2
γ̃ ∗22A†

2H(t)+ i
γ ∗j

}
A1H(t)+ g†

2(t). (44d)

Following Russer and Kaertner (1990), the output field oper-
ator can be obtained by

bout
S (t)=

√
γSA1H(t)−bin

S (t) . (45)

In this work, we consider the input signal as an initial oc-
cupation of the signal mode and derive the dynamics of the
internal amplifier mode A1H. According to Eq. (45), the out-
put signal operator bout

S only depends on the signal mode op-
erator A1H for a known input bin

S . Thus, an increase of the
expectation value in the signal operator A1H or equivalently
in the signal mode energy is required in order to amplify the
input signal.

Solving Eqs. (44a)–(44d), not considering the input signal
operator bin

S yields

A1H(t)= ξ11(t)A1H(0)+ ξ12(t)A†
2H(0) (46)

+

∑
k

κ1kbkH
[
−α+(ω̃k)+α−(ω̃k)

]
ei(ω1−ω̃k)t

+

∑
k

κ1kbkH

[
α+(ω̃k)e−

γ t
4 −α−(ω̃k)e

γ t
4

]
e−

t
4 (γ̃11+γ̃

∗

22)

+

∑
k

κ∗2kb
†
kH
[
−β+(ω̃k)+β−(ω̃k)

]
e−i(ω2−ω̃k)t

+

∑
k

κ∗2kb
†
kH

[
β+(ω̃k)e

−
γ t
4 −β−(ω̃k)e

γ t
4

]
e−

t
4 (γ̃11+γ̃

∗

22),

with

ξ11(t)=

[
cosh

(
tγ

4

)
+

(
γ̃ ∗22− γ̃11

)
η

sinh
(
tγ

4

)]
× e−

t
4 (γ̃11+γ̃

∗

22), (47a)

ξ12(t)=−
4γj i
γ}

sinh
(
tγ

4

)
e−

t
4 (γ̃11+γ̃

∗

22), (47b)

α±(ω)=
i
γ

±γ − γ̃ ∗22+ γ̃11

γ̃11+ γ̃
∗

22± γ + 4i(ω1−ω)
, (47c)

β±(ω)= 4
γj

}γ
1

γ̃11+ γ̃
∗

22± γ − 4i(ω2−ω)
. (47d)

Here, we have introduced the effective driving parameter

γ =

√
(γ̃11− γ̃

∗

22)
2+ 16

|γj |
2

}2 . (48)

We can directly link the energy expectation value in the sig-
nal circuit to the expectation value of the number operator
nLC,1 by〈
ELC,1

〉
= }ω1

(〈
nLC,1

〉
+ 1

)
. (49)

In analogy to Sargent et al. (1974) the computed expectation
value of the number operator is described by

〈
nLC,1(t)

〉
=

〈
A†

1H(t)A1H(t)
〉

=
〈
nSignal(t)

〉
+〈nIdler(t)〉+ 〈nNoise(t)〉 . (50)

The signal photon number is given by〈
nSignal(t)

〉
= ξ∗11(t)ξ11(t)

〈
nSignal(0)

〉
. (51)

The photon number of the down-converted idler noise is de-
scribed by

〈nIdler(t)〉 = ξ
∗

12(t)ξ12(t) (〈nIdler(0)〉+ 1) , (52)
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and the noise photon number rising from the coupling of the
signal mode to the heat bath

〈nNoise(t)〉 = 2γ̃11n(ω1)|α(ω1)|
2
+ 2γ̃22 [n(ω2)+ 1] |β(ω2)|

2

+ γ̃22 [n(ω2)+ 1]
4
π

[
β(ω2)

(
e−

γ t
4 β+(ω2)− e

γ t
4 β−(ω2)

)
+

∣∣∣e− γ t4 β+(ω2)− e
γ t
4 β−(ω2)

∣∣∣2]e− t
4 (γ̃11+γ̃

∗

22)

+ γ̃11n(ω1)
4
π

{
R
[
α∗(ω1)

(
e−

γ t
4 α+(ω1)− e

γ t
4 α−(ω1)

)]
+

∣∣∣e− γ t4 α+(ω1)− e
γ t
4 α−(ω1)

∣∣∣2}e− t
4 (γ̃11+γ̃

∗

22). (53)

Hereby, we defined

α(ω̃)= α−(ω̃)−α+(ω̃), (54a)
β(ω̃)= β−(ω̃)−β+(ω̃). (54b)

Even if both the signal and the idler mode are unexcited ini-
tially, i.e.〈
nSignal(0)

〉
= 〈nIdler(0)〉 = 0, (55)

the signal mode receives quanta by means of spontaneous
emission resulting by Eq. (52). Both the down-converted
idler noise (Eq. 52) and the noise photons (Eq. 53) represent
noise contributions to the signal mode.

In order to obtain the current noise correlation, we need to
derive

c11(τ )=
〈
in1(t)in1(t

′)
〉
. (56)

The coupling of the LC circuit to the heat bath is a phe-
nomenological method to induce noise and damping into the
system, such that the noise currents are not obvious from
Eqs. (44a)–(44d). Therefore, we calculate the correlation of

c11(τ )=

〈
d
dt

Q1(t)
d
dt

Q1(t
′)

〉
, (57)

and only keep the components representing the induced
noise. Following Sargent et al. (1974), we use the expecta-
tion values〈
AiH(t)g†

i (t
′)
〉
=
γ̃ii

2
n(ωi), (58a)〈

A†
iH(t)gi(t

′)
〉
=
γ̃ii

2
n(ωi), (58b)〈

g†
i (t)gi(t

′)
〉
= γ̃iin(ωi)δ(t − t

′), (58c)〈
gi(t)g†

i (t
′)
〉
= γ̃ii [n(ωi)+ 1]δ(t − t ′), (58d)〈

g1(t)A†
2(t
′)
〉
=

〈
g†

1(t)A2(t
′)
〉
= 0. (58e)

The occupation number of the heat bath at initial time is
given by the Bose-Einstein statistics

n(ωk)=
〈
b†
kHbkH

〉
=

(
e}ωk/(kBT )− 1

)−1
. (59)

The resulting noise current correlation is given by

c11(τ )=
}

ω1L1
γ̃11

(
n(ω1)+

1
2

)
δ(t − t ′). (60)

One can see, that the coupling of the heat bath to the resonant
circuits models noise current resulting from Langevin noise
sources. The square-root of the damping constant γ1 gives the
coupling of the Langevin noise source to the circuit, while
n(ω1) is the occupation of the heat bath at resonance fre-
quency ω1. In contrast to the classical Langevin noise source,
even if no quanta occupy the heat bath mode with resonance
frequency ω1, noise is induced into the circuit. This is an
explicit consequence of the quantum mechanical treatment
including the vacuum field, approving the need of a quantum
mechanical description of the DCPJPA. Comparison of the
classical with the quantum mechanical correlation function
yields the relation

4
G1
↔
V κ2

1 (ω1)

L1π2c3 . (61)

The quantum mechanical coupling constant determines the
classical, observable conductance.

6 Numerical Evaluation of the Dynamic Behavior

We give numerical examples on the dynamics of the expec-
tation value of the signal energy of the DCPJPA described
in Eqs. (51)–(53). For comparison with Russer and Russer
(2012), we set the frequency of the signal circuit to f1 =

2.5GHz and the idler frequency f2 = ω2/(2π)= 7GHz, and
T is chosen as the liquid helium temperature T = 4.2K.

Figure 2 shows the time evolution of all contribution to the
normalized signal mode energy for a high damping. Hereby,
we chose the damping constants γ̃11 = γ̃22 = 2π × 108 s−1

and a Josephson current of IJ = 0.5µA. The signal energy
decays directly, while the down-converted idler noise rises at
the beginning of the consideration. After 3ns the idler noise
energy decays with the same rate as the signal energy. The
noise contribution resulting from the coupling of the heat
bath to the signal mode rises all the time, but increases sig-
nificantly after 40ns. The lower bound of the total energy is
given by 1/2}ω1, due to the vacuum fluctuations in the signal
mode.

In Fig. 3 the energy terms are represented for a strong
driving. Strong driving is achieved, if γ exceeds the sum
of the damping constants γ̃11+ γ̃22. Here, the pumping by
the Josephson junction, indicated by γj , is strong enough
to overcome the damping. The regime can be controlled by
the Josephson current Ic. Compared to the settings in Fig. 2,
we chose the Josephson current as Ic = 2µA. All the energy
terms rise exponentially. The signal energy represents the
dominating energy contribution, while the down-converted
idler noise and the noise induced by the heat bath follow the
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Figure 2. Time evolution of the signal mode energies for strong
damping.

Figure 3. Time evolution of the signal mode energies for strong
driving.

signal energy with a delay in time. The energy terms are un-
bounded, thus the quantum Langevin equations are not ca-
pable of modeling any saturation effects in the signal mode.
For parametric amplification it is desirable to obtain a steady-
state solution. The derived formalism does not yield satura-
tion in the signal mode energy, but rather shows paramet-
ric oscillation. Considering Eq. (45), the expectation value
of the output field operator increases with rising internal sig-
nal mode A1H. Driving needs to overcome the dissipation in
order to amplify a given signal.

In Fig. 4, we show the temperature dependency of the
noise energy as a function of time. A Josephson current of
Ic = 1µA is assumed. Figure 4 clearly fulfills the expecta-

Figure 4. Temperature dependency of the noise energy.

tion, that the noise contribution to the signal mode rises with
temperature. Higher temperatures are neglected, as many su-
perconducting materials only contain their superconducting
phase below their critical temperature, which for many ma-
terials is in the range of liquid helium temperature.

Compared to the dynamics outlined in Russer and Russer
(2012), even for the strong driving configuration, the sig-
nal energy and the down-converted idler noise are strongly
damped. Furthermore, the model derived in Russer and
Russer (2012) did not show a decay of the signal energy for
strong a damping.

7 Conclusions

In this paper, we have investigated the Markovian dynamics
of the DC pumped non-degenerate Josephson parametric am-
plifier. We modeled losses in the DCPJPA using the quantum
Langevin approach. Hereby, the resonators, i.e. the signal cir-
cuit and the idler circuit, are coupled to a photon heat bath in
thermodynamic equilibrium. The DC pump voltage induces
an oscillating Josephson current, which is required for cou-
pling of the resonators. We outlined the classical and quan-
tum mechanical model of the lossy DCPJPA and derived the
Heisenberg equations of motion. Dissipated signal energy is
randomized in the heat bath, for large damping the heat bath
injects large noise into the circuit. The expectation value of
the signal and noise energies is derived and numerically eval-
uated for specific settings. Strong damping showed a signif-
icant decay of the signal energy and the rise of the noise
resulting by the coupling to the heat bath. Moreover, the
temperature dependency of the noise energy has been eval-
uated. The quantum Langevin approach induces dissipation
and noise into the dynamical behavior of the DCPJPA, but
does not cause saturation in the signal energy. Kaiser et al.
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(2017) give a phenomenological model, in which damping
is induced by a multi-photon coupling. Hereby, saturation
is reached, but still a theory directly including saturation is
desirable. Since many approximations have been used in or-
der to derive an analytic solution, the origin of the missing
saturation might be the Markovian assumption itself or the
leading order approximation of the cosine in the Josephson
Hamiltonian.
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