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Abstract. This paper presents a modified interpolation algo-
rithm for signals with variable data rate from asynchronous
ADCs. The Adaptive weights Conjugate gradient Toeplitz
matrix (ACT) algorithm is extended to operate with a contin-
uous data stream. An additional preprocessing of data with
constant and linear sections and a weighted overlap of step-
by-step into spectral domain transformed signals improve the
reconstruction of the asycnhronous ADC signal. The interpo-
lation method can be used if asynchronous ADC data is fed
into synchronous digital signal processing.

1 Introduction

An approach to improve the energy efficiency of ADCs is
their asynchronous operation: The ADC is operated with a
variable clock depending on the characteristics of the input
signal. The average power consumption of the ADC and the
power required for RF data transmission is reduced with a
reduction of the average sample rate. Asynchronous ADCs
are potentially applicable in stand-alone sensor nodes, bio-
medicine (Yuan and Lam, 2013) or energy management.

The drawback of an asynchronous operation is the vari-
able data rate which needs to be synchronized to the clock
of the subsequent signal processing system by interpola-
tion. Several methods exist for interpolation; some operate
in time domain (Neubauer, 2003), others in frequency do-
main (Feichtinger et al., 1995). The interpolation algorithms
differ considerably in complexity and the quality of the re-
constructed signal.

The base for the presented interpolation algorithm is the
Adaptive weights Conjugate gradient Toeplitz matrix (ACT)
algorithm. It operates in the frequency domain and has the
drawback of much higher computational effort than interpo-
lation in the time domain, but it converges much faster than

other frequency domain based interpolation algorithms (Uni-
versity of California, 2016).

The simulation data is based on a tracking ADC (Fig. 1).
The output data rate is variable because it depends on the
input signal characteristics. The difference between the cur-
rent input signal and the output of the I-DAC controls the
ADC clock rate. If the difference gets larger the clock rate
is increased. The resulting datastream output is used for the
interpolation.

This work is organized as follows: Sect. 2 briefly explains
the basic principle of the ACT algorithm, Sect. 3 describes
the extensions to the ACT algorithm, Sect. 4 presents simu-
lation results and Sect. 5 concludes the paper.

2 ACT-algorithm

The ACT algorithm requires high computational effort be-
cause it uses several mathematical methods (Feichtinger
et al., 1995). The first is the adaptive weights method
(Neubauer, 2003) in which the weights of the points are cal-
culated according to Eq. (1). This input weighting vector wj

is used to calculate the spectral transformation of the time of
the samples (Eq. 2). The parameter M denotes the number
of spectral lines of the input signal and results from the ratio
of the largest time distance between two sample points and
the shortest time distance between two sample points. The
amplitude values p(tj ) are transformed into spectral domain
using the weighting vector wj (Eq. 3).

wj =

(
tj+1− tj−1

)
2

; J ∈ {1,2, . . .,J } (1)

yk =

J∑
j=0

wj · e
−i2πktj ; k = 0,1, . . .,2M (2)
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Figure 1. Asynchronous tracking ADC as signal source for interpolation algorithm.

bk =

J∑
j=0

p
(
tj
)
·wj · e

−i2πktj ; |k| ≤M (3)

The next step in the ACT algorithm is the construction of
the Toeplitz matrix Tw (Eq. 4). The property of the Toepliz
matrix are constant values on each descending diagonal. Ad-
ditionally the values above the descending main diagonal are
complex conjugate of the values below the diagonal. These
properties make the calculations in the subsequent iterative
process very efficient (University of California, 2016).

Tw =


y0 y1 . . . y2M−1 y2M
y1 y0 . . . y2M−2 y2M−1

. . . . . .
. . . . . . . . .

y2M−1 y2M−2 . . . y0 y1
y2M y2M−1 . . . y1 y0

 (4)

The spectrum of weighted time values yk , the weighted spec-
trum of amplitude values bk and the toeplitz matrix are used
to solve Eq. (5) for the interpolated spectrum a. b is set
to bk . This equation will be solved iteratively with the help
of the conjugate gradient method (Eq. 6). In combination
with the Toeplitz matrix the system converges quickly and
after a maximum of 2M + 1 iteration loops the result is avail-
able. The initial parameters of the system are these: an−1= 0,
rn−1= bk and qn−1= bk .

Tw · a = b (5)

an = an−1+

〈
rn−1,qn−1

〉〈
Twqn−1,qn−1

〉 · qn−1

rn = rn−1−

〈
rn−1,qn−1

〉〈
Twqn−1,qn−1

〉 ·Twqn−1

qn = rn−

〈
rn,Twqn−1

〉〈
Twqn−1,qn−1

〉 · qn−1 (6)

Finally the interpolated spectrum ak is transformed back to
the time domain with Eq. (7) using an array t with equidistant
time steps of the interpolated signal.

p(t)=

M∑
k=−M

ak · e
i2πkt (7)

3 Extension to ACT algorithm

Frequency based interpolation can be used on signals of a fi-
nite period because the number of sample points for the DFT
is limited. To deal with a continuous data stream the data has
to be split into equally spaced sections. Every section can
now be interpolated for itself and the interpolated data stream
is constructed by connecting the interpolated sections.

3.1 Smooth transition between sections

By connecting the interpolated sections undesired steps in
amplitude can occur at the transitions of the sections. This
problem can be solved by overlapping the boundaries of the
sections by a certain amount of samples. Further improve-
ment is achieved by using a smoothing function on the over-
lapping areas. Here the hyperbolic tangent function as pro-
posed in Rädler (2016) is used. Advantages of this transition
function is scalability of slope and good convergence to final
values. The multiple derivative hyperbolic tangent is continu-
ous, which is advantageous in subsequent signal processing.

The smoothness of the merging of two sections is deter-
mined by σ . The higher the value of σ the smoother the
transition is. But with a higher σ the function needs more
samples for overlapping. Figure 2 shows the used smoothing
functions with a total overlap of 100 samples and different
grades of smoothness.

The merger of two sections using the smoothing function
is exemplified by Eq. (8). The parameter µ determines the
transition point between both sections.

pmerged(t)= p2(t) ·

(
1
2
+

1
2

tanh
(
t −µ

σ

))
+p1(t) ·

(
1−

(
1
2
+

1
2

tanh
(
t −µ

σ

)))
(8)
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Figure 2. Hyperbolic tangent function for smoothing transitions be-
tween sections of samples of data stream.

3.2 Amplitude shifting function

Another issue of interpolation is the boundary-value prob-
lem: The first value and the last value of a section should
have the same level. But this occurs either very rarely or not
at all for arbitrary input signals. This results in significant
interpolation errors at the section boundaries. The proposed
solution is a transformation of the input signal by a linear
function as described by Eq. (9) before the application of the
interpolation algorithm. The whole section of the signal is
shifted by the amplitude value of the first point of the signal
to zero. In addition a linear function is added so that the last
sample point is zero as well.

ptransform
(
tj
)
=p

(
tj
)
−ϑ ·

(
tj − t1

)
−p (t1)

with ϑ =
p (tJ )−p (t1)

tJ − t1
(9)

In Fig. 3 the linear function (gradient) is drawn in black. The
linear function is alined to the first and the last value of the
input signal (blue). The transformed signal (red) has its first
and last point on zero level. After interpolation in the fre-
quency domain the inverse transformation has to be applied
to retrieve the original signal.

3.3 Signals with sporadic constant sections

The interpolation algorithm should be suitable for all kind of
signal shapes. Critical points are signals with sporadic con-
stant sections, e.g. a square wave signal as shown in Fig. 4.
At the left side the interpolated signal (blue) does not repre-
sent the original signal (red). On the right side the edges are
interpolated well but large overshoots exist. The reason for
this difference between both interpolations is the cutoff fre-
quency�M of the input signal. The higher�M the higher the
frequencies; respectively more spectral lines M (Eq. 11) are
used for the interpolation. To change the number of spectral
lines M that are used for calculation the factor κ has to be
varied. Factor κ is used to calculate �M in Eq. (10).
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Figure 3. Transformation of input signal of one section to set first
and last data point to zero.

�M must be set in relation to the minimum bandwidth
of the original signal. Therefore �M is calculated from the
maximum sample step size Tmax by introducing the factor κ
(Eq. 10). This factor has a range between 0 and 1. The
higher κ is, the better the interpolation of the slopes of a
square wave signal. The number of spectral lines for inter-
polation depends on �M (Eq. 11).

�M = κ ·
π

Tmax
; 0< κ < 1 (10)

M =

⌊
�M ·N · Tmin

π

⌋
+ 1 (11)

The reason for overshoots in the right part of Fig. 4 is the
small number of samples from the asynchronous ADC that is
used as input for interpolation. An ideal asynchronous ADC
produces samples only at transitions of rectangular wave-
form. The solution is to synthetically fill the constant sections
with additional samples. The sections that have to be filled
with additional samples before interpolation are detected by
the variation of the distance of two successive sample points
(Eq. 12). A change of the distance between two successive
time steps by a factor greater than τ (Eq. 12), resulting in
additional samples being introduced.(
tj+2− tj+1

)
> τ ·

(
tj+1− tj

)
(12)

The factor τ has to be chosen carefully so that the fill algo-
rithm will be activated during constant sections of a square
wave signal or arbitrary signal but not at low frequent sine
waves input. The activation depends on the sample rate algo-
rithm of the asynchronous ADC.

4 Results

A comparison of frequency based ACT interpolation and
time domain interpolation with linear and cubic splines is
demonstrated in Fig. 5. At the peak of the sinus signal the
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Figure 4. Result of interpolation of rectangular waveform with asynch. ADC samples only at transitions; low cutoff (κ = 0.3) and high cutoff
(κ = 0.8) frequency for interpolation.

Figure 5. Comparision of time domain and frequency domain based
interpolation (ACT) with original signal (red) and asynchronous
ADC output (x).

second derivative is at its maximum and the asynchronous
ADC produces the largest errors compared to original signal.
Therefore the peak of the sinus is well suited to demonstrate
the effectiveness of the interpolation algorithm. The origi-
nal sine wave (red) and the output of the asynchronous ADC
(1q = 0.01) are given as well. In fact the spline interpolated
function is exactly in line with sampled ADC data, but the
ACT interpolation result (black) fits best with the original
signal.

Figure 6 shows the interpolation of a triangle signal. The
falling and rising slopes are interpolated well, but the vertex
is flattened because of the reduced sample rate of the asyn-
chronous ADC before the vertex.

The effectiveness of synthetic insertion of additional sam-
ple points in a square wave signal is depicted in Fig. 7. The
reduced sample rate of the asynch. ADC at the rising slope of
the rectangular signal and the quantization levels produces an

ACT-algorithm (
i

Figure 6. Interpolated triangle waveform from asynch. ADC.

ACT-algorithm (

ACT-algorithm (
i

Figure 7. Interpolation of asynch. ADC samples with rect. wave-
form.

error that is larger than the interpolation error. The overshoots
due to interpolation are reduced to a minimum through the
filling of the constant sections. Ringing only exists at the be-
ginning and at the end of the section depending on the band-
width of the interpolation algorithm.

For a sinusoidal asynchronous ADC input with a fre-
quency of 91 kHz the corresponding spectrum of the inter-
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Figure 8. Spectrum of an interpolated sine wave: f = 91 kHz, res-
olution n= 8 bit, sample rate of asynch. ADC variable between
2.8 and 25 MS s−1, interpolation bandwidth �G= 140 kHz, fre-
quency resolution 1f = 6.1 kHz.

polated signal is shown in Fig. 8. By reducing the interpo-
lation cutoff frequency �G to 140 kHz, a full scale resolu-
tion of 8 bits and a sample rate varying between a minimum
of 2.8 MS s−1 and a maximum of 50 MS s−1, an SNDR of
65 dB can be achieved, which is remarkable far above the
SNDR of 43 dB that would have been achieved with cubic
spline interpolation. The stepsize of the simulated Tracking
ADC is 1 or 2 LSB per clock cycle. The results can be inter-
preted as follows: An interpolation in the frequency domain
with interpolation cutoff frequency increases the signal res-
olution by oversampling. To achieve an optimal SNDR it is
important to know the signal waveform that has to be pro-
cessed. E.g. for a sinus the value of κ could be lower than for
a rectangular waveform.

Frequency based interpolation is well suited for filtering
of noise (Fig. 9). This can demonstrated by feeding a si-
nusoidal input with a noise ripple of 10 pW Hz−1 into the
asynch. ADC input. As the peak value of signal plus noise is
limited to 1 V the interpolated sinusoidal signal (blue) has a
smaller amplitude than the ideal one (black).

Table 1 gives an overview of the computation time and
mean deviations of the ACT algorithm in comparison to stan-
dard adaptive weights interpolation and Fourier series expan-
sion using the program Matlab. For a sinusoidal input the
ACT algorithm interpolates much faster than the other meth-
ods. The speed of interpolation depends on the number of
points given and the number of spectral lines used for cal-
culation. A square wave signal requires more computation
time than a sinusoidal signal. Fourier series expansion does
not converge in a reasonable time in the case of a square wave
signal. The length of the interpolated signal of the waveforms
given in Table 1 is 0.025 ms. This interpolation, performed
with Matlab, is not suitable for real-time processing at such

Table 1. Computation time and accuracy.

ACT Standard Fourier
algorithm adaptive series

algorithm expansion

Time sine 0.22 s 31.75 s 1771.13 s
Time rectangular 5.97 s 90.75 s “∞”
Mean deviation 26 nV 96 nV 96 nV
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Figure 9. Interpolation result (blue) of sinusoidal ADC input with
noise.

a high input sampling rate and signal bandwidth. But for low
data rate signals e.g. for biomedical applications or environ-
mental sensors, real-time processing may become feasible.

5 Conclusions

In this work the practical implementation of frequency do-
main interpolation of asynchronous ADC data using the ACT
algorithm (Feichtinger et al., 1995) is demonstrated. The
continuous data stream is split into sections for individual
interpolation in the frequency domain. The original ACT al-
gorithm is improved in three steps: firstly DC offset and
1st-order linear contribution are removed from the original
function. Secondly the individual interpolated sections are
reassembled using a smoothing function. Thirdly the prob-
lem of periods with reduced sample rate due to asynchronous
ADC sampling is eliminated by synthetic insertion of sam-
ples before interpolation.

The application of the presented interpolation algorithm
requires only a few inputs: The highest sample rate of the
ADC and the frequency used for reconstruction. To achieve
an optimal interpolation result additional parameters should
be known: These are the actual signal frequency and wave-
form, required for adjustment of the length of the individual
sections for interpolation, and the bandwidth of the signal ad-
justed by factor κ . The ratio κ of the bandwidth of the inter-
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polation algorithm related to the frequency resolution control
the amplitude resolution and ratio of noise suppression.

Both the synthetic insertion of samples in the data stream,
the optimal segmentation of data stream before spectral in-
terpolation, as well as the optimal adjustment of interpola-
tion bandwidth in relation to the minimum ADC sample rate
and signal bandwidth, depend on the algorithm of the asyn-
chronous ADC. A feedback from signal processing analyz-
ing the interpolated signal waveform to the control of inter-
polation algorithm parameters have the potential for further
improvements of interpolation of asynchronous ADC data.

Data availability. Tracking ADC simulation results used to get in-
terpolation results of Figs. 4, 5, 8 and 9 are available in the Supple-
ment.

The Supplement related to this article is available online
at https://doi.org/10.5194/ars-15-163-2017-supplement.
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