
Adv. Radio Sci., 15, 215–221, 2017
https://doi.org/10.5194/ars-15-215-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Higher-order sensitivity analysis of periodic 3-D eigenvalue
problems for electromagnetic field calculations
Philipp Jorkowski and Rolf Schuhmann
Technische Universität Berlin, FG Theoretische Elektrotechnik, EN-2, Einsteinufer 17, 10587 Berlin, Germany

Correspondence to: Philipp Jorkowski (philipp.jorkowski@tu-berlin.de)

Received: 22 December 2016 – Revised: 20 April 2017 – Accepted: 22 April 2017 – Published: 21 September 2017

Abstract. An algorithm to perform a higher-order sensitiv-
ity analysis for electromagnetic eigenvalue problems is pre-
sented. By computing the eigenvalue and eigenvector deriva-
tives, the Brillouin Diagram for periodic structures can be
calculated. The discrete model is described using the Finite
Integration Technique (FIT) with periodic boundaries, and
the sensitivity analysis is performed with respect to the phase
shift ϕ between the periodic boundaries.

For validation, a reference solution is calculated by solv-
ing multiple eigenvalue problems (EVP). Furthermore, the
eigenvalue derivatives are compared to reference values us-
ing finite difference (FD) formulas.

1 Introduction

Numerical algorithms for the solution of eigenvalue prob-
lems (EVP) have been known for many years. Different nu-
merical methods can be applied to find a discrete formulation
of this problem, including the Finite Integration Technique
(FIT) or the Finite Element method (FE) to only name two of
them (Weiland, 1996; Schuhmann and Weiland, 2006). The
focus of this paper is on parametric formulations, where the
algebraic formulation depends on some structural parame-
ter, and the eigenvalue dependency on this parameter shall
be calculated in an efficient way.

For the case of a periodic repeating structure, this parame-
ter can be the phase shift between two opposite boundaries of
the unit cell of the structure. Here, the parametric evaluation
of the frequency as eigenvalue leads to dispersion diagrams.
An early example of such an analysis can be found in the
context of linear accelerator structures in Weiland (1986). In
Bandlow (2011) and Bandlow et al. (2008), the calculation
of the Brillouin diagram for periodic metamaterials is real-

ized using a scattering matrix approach. An approach with
a Taylor approximation is shown in Klindworth and Schmidt
(2014) for band structures in photonic crystals. Also, for pho-
tonic crystals, the band structure is calculated using model
order reduction (MOR) in Scheiber et al. (2011). A sensi-
tivity analysis for a waveguide eigenvalue problem has fi-
nally also been demonstrated in Burschäpers et al. (2011),
here with permittivity values as parameters in the context of
a simple inverse problem.

In this paper, we present a sensitivity approach for a pe-
riodic eigenvalue problem. For the sensitivity, one is inter-
ested in the derivative of the eigenvalue and the eigenvector.
The first efficient method for the calculation of the eigenvec-
tor derivative, which can be adapted for large matrices, has
been published by Nelson (1976) and was extended for multi-
ple eigenvalues by Dailey (1989). We extend this method for
higher-order derivatives and apply it to periodic structures.

The paper is organized as follows: in Sect. 2 the discretiza-
tion method (FIT) and the formulation of the electromagnetic
eigenvalue problem with periodic boundaries are shortly re-
viewed. Section 3 describes the theory of the eigenvalue
derivatives, followed by some details of our implementation.
Some comments on the required matrix derivatives are given
in Sect. 4, and finally, an application example is presented in
Sect. 5.

2 Periodic boundaries in FIT

We choose the FIT to describe the discrete eigenvalue prob-

lem. The state variables are the grid voltages
_
e and

_

h, de-
fined as line integrals of the electrical field and the magnetic
field along the edges of the primary and the dual Grid G, G̃,
respectively. Additionally, the grid fluxes and b occur as
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surface integrals of the electric and magnetic flux densities
on the primary and dual facets, respectively.

From this, we can transform Maxwell’s equations, without
currents and space charges, into a set of matrix-vector equa-
tions, the so-called Maxwell’s Grid Equations in frequency
domain:

C
_
e =−jωMµ

_

h CT
_

h = jωMε
_
e (1a)

S̃ = 0 S b = 0 (1b)

The matrices C and S represent the discrete curl and diver-
gence operator, respectively, S̃ is the dual divergence matrix.
In a Cartesian grid with np grid nodes, the matrix C is of size
3np × 3np. Using the first and second equation in Eq. (1a)
leads to the discrete curl-curl eigenvalue equation, while the
first equation in Eq. (1b) represents the electric divergence-
free condition. For the material, we use the linear relations

=Mε
_
e and b =Mµ

_

h, where the matrices Mε and Mµ are
diagonal and have the size 3np, such as the variables. Finally,
ω denotes the angular frequency and j the imaginary unit.

2.1 Periodic boundaries

From these basic equations, we can define a periodic bound-
ary condition using the Floquet condition as described e.g.
in Weiland (1986). This can be done in all three coordinate
directions, for the sake of simplicity we restrict here the peri-
odic boundary to the z direction. Then, for

_
e 1 and

_
e 2 at the

lower and the upper boundary in the z direction, respectively,
we have

_
e 1 =

_
e 2 exp(jϕ) with the phase shift ϕ. Thus, the

tangential electric components on one side of the mesh are no
independent degrees of freedom anymore and can be elimi-
nated in the formulation, leading to a new vector

_
e red with

reduced dimension.
Formally, a sparse matrix Lϕ with

_
e = Lϕ

_
e red, as de-

scribed in Schuhmann (2002) or Bandlow (2011), is de-
fined to provide this transformation. It only contains 0, 1 and
exp(jϕ) entries and maps all grid voltages on themselves ex-
cept for those at the upper z boundary, which are copied from
the opposite side, multiplied by the phase shift exp(jϕ). Ad-
ditionally, the permittivity matrix (including averaged per-
mittivity values ε as well as the sizes of primary edges and
dual facets) has to be slightly changed in order to compensate
the possible difference between the permittivity of the maped
primary edges and dual faces and the original primary edges
and dual faces. The new matrix is called Mε,per.

Finally, the system matrices for the discrete eigenvalue for-
mulation read:

Accp =M−1
ε, perL

H
ϕCTM−1

µ CLϕ, (2a)

Agdp =−LH
ϕ S̃TDN S̃LϕMε, per. (2b)

The matrix Accp directly corresponds to the standard curl-
curl formulation for electric eigenvalue problems, applied

to the setup with periodic boundaries. It is well-known that
this formulation contains a large number of zero eigenvalues,
so-called static modes, corresponding to charges on all non-
metallic mesh nodes. To avoid these static modes, it is a stan-
dard procedure to use the grad-div-matrix Agdp as an addi-
tional operator. Due to the exact relation S̃CT = 0 it does not
affect the searched dynamic modes, but all static solutions
are shifted to non-zero eigenfrequencies within the spectrum.
In order to adjust the magnitude of both expressions the ma-
trix Agdp contains a scaling matrix DN which is described in
detail in Schmitt et al. (1994) and Weiland (1985).

The shifted eigenmodes of the total matrix appear as un-
physical, so-called ghost modes and have to be identified in
the final results using an a-posteriori divergence check.

As a consequence, the matrix of the final EVP has full
rank. In Sect. 3.2 we show, why a full rank matrix is needed.
Furthermore, this makes it easier to compute the fundamental
modes or in general the modes with lowest (non-zero) fre-
quencies. For the calculation of the lowest eigenvalue exist
powerful algorithms. Combining the two matrices leads to
the eigenvalue problemAccp+Agdp︸ ︷︷ ︸

=Ap

−ω2I

_
e = 0, (3)

where I denotes the unity matrix. It should be noted that this
formulation using FIT yields a simple EVP due to the invert-
ibility of the permittivity matrix Mε, per (unlike a correspond-
ing formulation using FE, where a generalized eigenvalue
problem results). Furthermore, the matrix from Eq. (3) can
be symmetrized by the similarity transformation Ap, sym =

M1/2
ε, perApM−1/2

ε, per. Therefore, only real eigenvalues are ob-
tained. This can be justified by the fact that a loss-free struc-
ture is considered.

3 Eigenvalue sensitivity

We start with the right (or left) Eigenvalue problem (EVP)

(A− λI)x = 0 or yH (A− λI)= 0, (4)

where A and I are the system matrix and unity matrix, respec-
tively. Like in Nelson (1976) we choose the normalization
such that the left eigenvector yH and the right eigenvector x

fulfill the relation yHx = 1.

3.1 Derivative of the eigenvalue problem

The right EVP from Eq. (4) can be differentiated with respect
to a parameter p

∂

∂p
{(A− λI)x = 0} ⇒

(
A′− λ′I

)
x+ (A− λI)x′ = 0, (5)
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Figure 1. Flowchart of the algorithm.

where λ′ and A′ denote the derivatives of the eigenvalue λ
and the matrix A with respect to p, respectively. Multiplying
Eq. (5) by the left Eigenvector leads to:

yH
(
A′− λ′I

)
x+ yH (A− λI)︸ ︷︷ ︸

=0

x′ = 0 ⇔ λ′ = yHA′x (6)

To generalize the derivative of the eigenvalue, we differ-
entiate n times w.r.t. the paramater p:

∂n

∂pn
{(A− λI)x = 0} ⇒

n∑
k=0

(
n
k

)(
A(n−k)− λ(n−k)I

)
x(k) = 0. (7)

In full analogy to the first derivative, this formula can be
multiplied by the left eigenvector in order to eliminate the
term with the highest order derivative of the eigenvector,
which does not have to be calculated. Note, that all previous
derivatives of the eigenvector are necessary. After reordering
to the highest order derivative of the eigenvalue, it reads

λ(n) = yHA(n)x+
n−1∑
k=1

(
n
k

)
yH

(
A(n−k)− λ(n−k)I

)
x(k), (8)

which is the algebraic equation to calculate the eigenvalue
derivative.

3.2 Derivative of the eigenvectors

As mentioned above, the previous derivatives of the eigen-
vector are necessary. Reordering Eq. (5) w.r.t. the eigenvector
derivative leads to:

(A− λI)︸ ︷︷ ︸
=B

x′ =−
(
A′− λ′I

)
x︸ ︷︷ ︸

=f 1

(9)

This step can be repeated recursively to obtain the nth or-
der derivative of the eigenvector from the nth order eigen-
value and the (n− 1)th order eigenvector derivative. To ob-
tain the linear system we need to solve Eq. (7) and reorder it
w.r.t. the highest order derivative of the eigenvector

(A− λI)x(n) =−
n−1∑
k=0

(n
k

)(
A(n−k)− λ(n−k)I

)
x(k)︸ ︷︷ ︸

=f n−1

. (10)

Note that all these equations are linear systems with rank
defect, e.g. A in Eq. (9) has rank n, but B has rank n− 1 (or

less, depending on the multiplicity of λ). A strategy to cope
with that rank defect is already described in Nelson (1976)
for single eigenvalues and Dailey (1989) for multiple eigen-
values.

3.3 Implementation

Due to the need of the previous derivatives of the eigenvalues
and eigenvectors for the following eigenvalue derivative, we
obtain a recursive algorithm. Figure 1 shows the schematic
procedure to calculate the dispersion diagram of the unit cell
of a periodic structure. The first step is to set the phase shift
ϕ0, the expansion point in the dispersion diagram. From this,
the matrices for the eigenvalue problem can be created.

After solving this eigenvalue problem, a divergence check
needs to be performed in order to find the ghost modes which
are caused by the Agdp matrix. For the non-ghost modes, we
can compute the derivatives of the eigenvalues recursively.
We start with Eq. (8) to calculate the first derivative of the
eigenvalue and continue with the derivative for the eigen-
vector if higher-order derivative are desired. The derivative
for the eigenvector is calculated by solving Eq. (10). After
the derivative of the eigenvector is known, the higher-order
derivative of the eigenvalue can be calculated from Eq. (8).
One can repeat this procedure until the desired derivative of
the eigenvalue has been found. Next, the dispersion diagram
can be evaluated using a Taylor expansion around the expan-
sion point ϕ0.

For the nth order derivative of the eigenvalue, this requires
to solve one EVP (formulation 4 with the matrix from Eq. 3),
(n− 1) linear systems (Eq. 10, and n algebraic Eq. 8). The
third row in Table 1 shows the number of operations needed
to calculate the dispersion diagram.

The main effort of this numerical algorithm arises from
the number of linear equations which have to be solved in
order to obtain the eigenvector derivative. From the formulas
in Eqs. (9) and (10) one can see that all these equations share
the same system matrix, which thus has to be factorized (LU
decomposition) only once. Also, the new method is the more
efficient compared to the other methods, the less different
modes are considered.

3.4 Model order reduction

As mentioned in the previous section, the main numerical
effort results from solving a high number of linear systems or
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Table 1. Operations performed for each method: n is the order of the maximum order of eigenvalue derivatives, and k is the number of modes
to be considered.

Method Number of EVPs (for k modes) Number of linear equations Number of LU decompositions

Reference 20 – –
Finite differences n+ 1 – –
New method 1 (n− 1)× k k

performing the matrix decomposition. In order to avoid this
numerical cost a MOR for the solution of the linear system
in Eq. (10) is performed.

Therefore we assume two n×p matrices V and W such
that a matrix A of dimension n× n is approximated by
WÃVH with a p×p matrix Ã with p� n. Accordingly, the
vector x is approximated by the vector Vx̃ where x̃ has the
length p.

Ã=WHAV x = Vx̃ (11)

For numerical stability the matrices are chosen such that
V=W and VHV= I. The matrices V and W are built by an
Lanczos algorithm, which is for example described in Lanc-
zos (1950) or in Saad (2000). After the projection matrices
for the lefthandside of Eq. (9) are known, the reduced vector
x̃n is calculated by

B̃x̃n = VHf n−1 with B̃=WT (A− λI)V. (12)

The accuracy which can be achieved with this MOR ap-
proach depends on the dimension of its subspace. If the so-
lution is not yet satisfactory, it can be used as starting vector
for an iterative solver to increase the accuracy of the solution
of Eq. (10). An Conjugate Gradient (CG) solver is used to
increase the accuracy of the solution. A describtion for the
CG solver can be found in Saad (2000) or Shewchuk (1994).

4 Derivative of the matrix

To calculate Eqs. (8) and (10) it is necessary to know the
derivative of the matrix Ap. Obviously, this matrix derivative
can be calculated analytically and easily implemented. From
Eq. (2a) we obtain for the Accp matrix

∂nAccp

∂ϕn

=



jn
[
−M−1

ε LHϕdCT M−1
µ CLϕ +M−1

ε LHϕ CT M−1
µ CLϕd

]
if n is odd,

jn(−1)
[
−M−1

ε LHϕdCTM−1
µ CLϕ

+2M−1
ε LHϕdCT M−1

µ CLϕd −M−1
ε LHϕ CT M−1

µ CLϕd
]

if n is even,

(13)

and analogously for the Agdp matrix

∂nAgdp

∂ϕn

=



jn
[
−LHϕd S̃DNSLϕMε +LHϕ S̃DNSLϕdMε

]
if n is odd,

jn(−1)
[
−LHϕd S̃DNSLϕMε

+2LHϕd S̃DNSLϕdMε −LHϕ S̃DNSLϕdMε

]
if n is even,

(14)

The matrix Lϕd denotes the Lϕ-operator without the 1-
entries and present the derivative with respect to ϕ (without
the factor j or −j for the hermitian case).

Note, that this derivative of the matrices is with respect
to the parameter ϕ which only takes place in the Lϕ matrix.
The algorithm presented in Sect. 3.3 allows more parameter
dependencies than the one which is reflected in these formu-
las. When changing the parameter, only the derivative of the
matrix needs to be exchanged. Also, note here, that since a
divergence check is performed, such that λ only depends on
Accp, the derivative of the Agdp matrix is not necessary in the-
ory. But ignoring the Agdp matrix results in numerical errors.
Alternatively, the eigenvalue needs to be recalculated after
the divergence check using only Accp, with an extra effort, to
prevent this numerical error.

5 Results

To test the algorithm, a periodic model from the CST-library
(CST, 2016) is considered. This model has 46 787 grid
points, resulting in n≈ 140000 degrees of freedom in the
eigenvalue equation. Figure 2 shows the simulation setup.
The matrices are exported to Matlab (MathWorks, 2015),
where the algorithm has been implemented. For the full dis-
persion diagram, we solve the eigenvalue problem multiple
times, to obtain a reference curve. Additionally, in order to
validate the derivatives, a finite differences (FD) approxima-
tion with respect to the parameter dependency is used, apply-
ing a number of separate solutions of the eigenvalue problem
with slightly modified parameter ϕ.

Figure 3 shows the dispersion curves for the first three
modes which have been calculated. It can clearly be seen
that the results of the new algorithm fit perfectly to the ones
of the FD approach. For this diagram, a fourth order Tay-
lor approximation has been chosen. The expansion point is
ϕ = π/2 and a very good agreement to the original curve is
obtained near the expansion point. As expected, the deviation
gets larger at points far away from the expansion point.
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Figure 2. Simulation setup with periodic boundaries at the front and
back plain.

Fully calculated diagram
Expansion point
Finite di®erences
Method from paper

Figure 3. The first three modes of the model with the fully calcu-
lated diagram (◦), reference from the FD approach (∇), and results
from the new algorithm (1.)

Also, note that the numerical error gets higher, the higher
the order of the approximated derivative is. This is due to the
recursiveness of the algorithm.

Figure 4 shows the same dispersion curve as in Fig. 3,
this time with the results of the new method with and with-
out solving Eq. (10) with MOR. Although the CG solver is
stopped after 1000 steps the curves are nearly identical near
to the expansion point ϕ0. Due to the natural deviation of the
Taylor approximation a more accurate solution is not neces-
sary.

The calculation time for a different amount of modes is
shown in Fig. 5 for each method. The calculation has been
done on a standard PC with an non-optimized Matlab imple-
mentation. As can be seen, the new method is most efficient
for a small amount of calculated modes. Using MOR with
the new method solves the problem of the high calculation
time for a higher amount of modes.
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Figure 4. The first three modes of the model with the fully calcu-
lated diagram (◦), the results from the new algorithm (1) and the
new algorithm with MOR (∇).
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Figure 5. The calculation time for the fully calculated diagram (∗),
reference from the FD approach (∇), results from the new algo-
rithm (1) and the new algorithm with MOR (◦) in dependence of
the amount of calculated modes.

Finally Fig. 6 shows the calculation time for different
amount of the grid points. The mesh resolution have been
varied in each direction. For the calculation of 4 modes the
total computation time varies considerably between the dif-
ferent methods. At least in this example, the new method
clearly outperforms the FD approach, especially when com-
bined with the MOR technique. The drawback is an only
small deviation far away from the expansion point.
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Figure 6. The calculation time for the fully calculated diagram (∗),
reference from the FD approach (∇), results from the new algorithm
(1) and the new algorithm with MOR (◦) in dependence of the grid
points.

6 Conclusions

The numerical simulation demonstrates the accuracy of the
algorithm to calculate the eigenvalue derivatives. The major
advantage is the reduced simulation effort compared to the
reference solutions using the FD method or a large number
of single eigenvalue computations. This effect gets larger if it
is possible to calculate the derivatives of the matrices analyt-
ically like in this example. Augmented by the expansion with
model order reduction, the new method is also very efficient
for a large amount of calculated eigenvalues.

Also, the presented method can be used for different pa-
rameter dependencies, where of course further implementa-
tion effort is needed to apply it e.g. to geometric parame-
ter variations. For problems where the parameter dependency
does not allow an analytical calculation of the matrix deriva-
tive, a small additional cost in computation time has to be
expected to calculate it numerically, e.g. using again FD.

Possible further research efforts will focus on sensitivities
with respect to multiple parameters. Also, there are some
ideas to reduce the number of required single solutions to
obtain accurate dispersion diagrams, e.g., one method with a
forward and backward check has been presented in Klind-
worth and Schmidt (2014). Another way to compute the
band structure is the solution of multiple EVPs at different
points with MOR, which has been presented in Scheiber et al.
(2011). Some of these points can be used as expansion points
ϕi for additional Taylor approximation to minimize the de-
viation away from the expansion point. Finally, the method
will benefit directly from all kind of improvements in the im-
plementation, especially concerning the solution of the basic
eigenvalue problem at the expansion point and the following

matrix inversions. Especially if higher-order derivatives are
required, it is also an important issue to find some measures
to control possible numerical errors.
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