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Abstract. In this contribution we compare the back-
projection algorithm with our recently developed modified
range migration algorithm for 3-D terahertz imaging using
sparse multistatic line arrays. A 2-D planar sampling scheme
is generated using the array’s aperture in combination with an
orthogonal synthetic aperture obtained through linear move-
ment of the object under test. A stepped frequency contin-
uous wave signal modulation is used for range focusing.
Comparisons of the focusing quality show that results us-
ing the modified range migration algorithm reflect these of
the back-projection algorithm except for some degradation
along the array’s axis due to the operation in the array’s
near-field. Nevertheless the highest computational efficiency
is obtained from the modified range migration algorithm,
which is better than the numerically optimized version of
the back-projection algorithm. Measurements have been per-
formed by using an imaging system operating in the W fre-
quency band to verify the theoretical results.

1 Introduction

The use of the effective aperture of a sparse multistatic ar-
ray reduces the number of required transmitters (Tx) and
receivers (Rx) and preservers the array’s imaging quality
(Lockwood et al., 1996). Hence, this approach is widely
spread in the fields of radar and ultrasonic imaging (Wies-
beck and Sit, 2014; Thomenius, 1996). The principle idea of
the effective aperture concept is to illuminate the target ob-
ject with an array of transmitters (Tx-array) and record back-
scattered radiation using an array of receivers (Rx-array).

The Tx-array and the Rx-array are designed in a way that
the convolution of their apertures results in a dense effective
aperture. In a subsequent step digital beam forming (DBF)
algorithms are applied to the recorded data for 3-D image
reconstruction of the target object. Furthermore, the use of
DBF techniques does not pose any constraints on the kind of
aperture sampling. So one can replace a physical array by an
equivalent synthetic one, or combine both or even generate a
sampling aperture that corresponds to the object shape. This
approach has been adopted in different system designs. In
Zhuge and Yarovoy (2011) for instance, the authors reported
on the development of an imaging system at a center fre-
quency of ca. 11 GHz, which generates a 2-D sampling aper-
ture through combining a sparse multistatic line array with a
synthetic aperture generated by the movement of the array.
However, in Ahmed et al. (2011) the authors used a 2-D pla-
nar array for 3-D imaging at a center frequency of 76 GHz.
In the field of terahertz imaging there is also a growing inter-
est for using sparse arrays, since imaging using quasi-optics
in combination with scanning stages doesn’t fulfill real-time
operation requirements and focal-plane arrays (FPAs) pose a
trade-off between the system’s field of view and the resolu-
tion (Friederich et al., 2011). Hence, a major concern about
such systems is the acceleration of data acquisition processes
as well as faster image generation.

In order to achieve real-time operation, computational ef-
ficient DBF algorithms are mandatory. The range migration
algorithm (RMA) is a very computational efficient algorithm
since it is mainly implemented using the fast Fourier trans-
form (FFT) algorithm. It is widely used for synthetic aper-
ture radar (SAR) imaging and is established for monostatic
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Figure 1. Schematic of a generic imaging setup using the effective
aperture concept in combination with a synthetic aperture.

and bistatic configurations (Soumekh, 1991; Lopez-Sanchez
and Fortuny-Guasch, 2000). Under the assumption of a fully
populated multistatic array an implementation of the RMA
is presented in Zhuge and Yarovoy (2011). However, the use
of sparse arrays hinders a direct implementation of the RMA
because of the violation of the Nyquist sampling criterion
along the sampling aperture.

In this contribution we compare a modified RMA with the
back-projection (BP) algorithm and the fast-factorized back-
projection (FFBP) algorithm by taking the focusing quality
and the asymptotic computing complexity as criteria.

This paper is organized as follows. In Sect. 2 we formulate
the imaging problem. The imaging algorithms are briefly de-
scribed in Sect. 3. Required sampling criteria and resulting
resolution are discussed in Sect. 4. The algorithms are com-
pared in Sect. 5. In Sect. 6 terahertz image reconstructions
using the mentioned algorithms from measurement data are
presented. Conclusions are drawn in Sect. 7.

2 Formulation of the imaging problem

A schematic of the exemplary imaging scenario is depicted
in Fig. 1. Along the y axis a line array of NT transmitters il-
luminates the measurement scene. The transmitters are oper-
ated sequentially. A line array of NR receivers records back-
scattered radiation from the scene. The Tx-array and Rx-
array are placed on the same distance Zo from the center of
the volume to be imaged (for the sake of clarity they are il-
lustrated separately). The coordinates of the transmitters and
receivers are then given by rT = (0,uT, Zo) and rR = (0,uR,
Zo), respectively. The elements of each array are uniformly
distributed along the y axis. Both arrays are combined to gen-
erate an equivalent effective aperture. Under far-field condi-
tions the resulting effective aperture is the convolution of the
apertures of the Tx-array and the Rx-array (Lockwood et al.,
1996). Hence the resulting number of effective sampling ele-

ments isNE =NT×NR. The main idea of this approach is to
design the aperture of one array, here the Tx-array, in a sparse
fashion of the required effective aperture and to design the
other array, here respectively the Rx-array, in a denser fash-
ion so that its aperture is used as an interpolation function.
Thus, the element spacing in the effective aperture is equal to
the Rx-array element spacing dR. To generate a uniform ef-
fective aperture, the element spacing in the Tx-array should
be dT =NR× dR. The coordinates of an effective aperture
element are given by,

xE = 0,
yE = uT+ uR = u,

zE = Zo. (1)

The overall extent of the effective aperture is given by LE =

(NE−1)×dR. The target object is translated along the x axis,
thus mechanically creating a synthetic aperture orthogonally
to the array’s aperture. The translation along the x axis is
described by the vector rv = (v,0,0). The signal measured
at the effective aperture position u and the synthetic aperture
position v is given by,

S(u,v,k)=

∫
V

o(r)e−jkrmu(v,uT,uR,r)dV. (2)

Where o(r) is the object reflectivity function, V is the illu-
minated volume and k = ω/c is the wavenumber composed
of the temporal radial frequency ω and the vacuum speed
of light c. Amplitude variations due to antenna patterns and
wave propagation attenuation of the volume elements (vox-
els) specifying the object are included in o(r). rmu is the path
of the electromagnetic waves travelling from an arbitrary Tx
to a an arbitrary voxel located at r = (x,y,z) and back to an
arbitrary Rx ,

rmu(v,uT,uR,r)=

√
(v− x)2+ (uT− y)2+ (Zo− z)2

+

√
(v− x)2+ (uR− y)2+ (Zo− z)2. (3)

The aspect angle between a voxel and an effective aperture
element is denoted by θy . Through combining the effective
aperture of the physical multistatic line array and the syn-
thetic aperture generated by the movement of the object we
generate a 2-D sampling aperture containing NE×NS sam-
pling positions with NS the number of the synthetic aper-
ture sampling positions. The required NS is estimated using
the spectral support along the synthetic aperture as shown
in Sect. 4. Range focusing is obtained using a stepped fre-
quency continuous wave (SFCW) modulation with NF fre-
quency points. The goal of an imaging algorithm is to re-
trieve the object function o(r). A common method to solve
this problem is to use a spatial variant Matched-Filter (Pas-
torino, 2010),

o(r)=
∑
u

∑
v

∑
k

S(u,v,k)ejkrmu(v,uT,uR,r), (4)
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where now u comprises all NE measurement positions, v
all NS synthetic aperture positions and k all NF SFCW fre-
quency points. The reconstruction of 3-D images using a di-
rect implementation of Eq. (4) has a high computational load,
which makes it unsuitable for time critical imaging appli-
cations. By setting M =NE =NS =NF, the reconstruction
of N3 voxels using a direct implementation of Eq. (4) has
a computational burden of O(N3M3). The computational
costs of the implementation of Eq. (4) can be reduced using
the following algorithms.

3 Imaging algorithms

3.1 The BP algorithm

Assuming that the measured signal stems from a set of point
sources distributed within a volume to be inspected, this al-
gorithm projects the measurement data back to their sources.
Details on the algorithm can be found in Ulander et al.
(2003). Here only the main implementation steps are men-
tioned. Starting from a SFCW signal the first step is to inverse
Fourier transform the measurement data along the frequency
axis

S(u,v,ρ)= F−1
k {S(u,v,k)} . (5)

Where ρ is the range variable and numerically performed
using the FFT. In this way the data are range focused. The
image is reconstructed by estimating the reflectivity of each
voxel through linear interpolating the range focused data ac-
cording to its relative coordinates to the sampling aperture,

õ(r)=
∑
u

∑
v

S(u,v,ρ = |r − a|) , (6)

with a = (v,u,Zo) at NE positions u and NS positions v.

3.2 The FFBP algorithm

This is a numerically optimized implementation of the BP
algorithm. The optimization is based on reducing the com-
putational costs of the summation in Eq. (6). Through itera-
tively dividing the total volume in sub-volumes and assigning
samples from adjacent aperture positions to the centers of the
sub-volumes the total number of summations in Eq. (6) is re-
duced. The performance of this algorithm is governed by a
so called factorization factor n, which denotes the number of
adjacent aperture positions taken to form a single new aper-
ture position. A more detailed description can be found in
Ulander et al. (2003).

3.3 The modified RMA

From Eq. (4) we see that o(r) is estimated through 3-D con-
volution in the aperture coordinates (uT,uR,v), which can
be implemented in the wavenumber-domain using a complex

multiplication. This is the basic idea of the RMA. However
the thinning of the Tx-array violates the Nyquist sampling
criterion along the axis of the Tx-array and leads to alias-
ing in the wavenumber-domain. This can be modified to be
suitable for imaging with sparse arrays. In the following the
main steps of the modified RMA are summarized. Since in
the array’s near-field the effective aperture approach is ap-
proximately valid due the spherical phase front, a phase com-
pensation factor is obtained by calculating the difference be-
tween the measured phase and the intended far-field phase in
the volume center. Then the measured signal is Fourier trans-
formed along the sampling aperture,

S(kx,ky,k)= F(u,v){S(u,v,k)}. (7)

The next step is a regridding of S(kx,ky,k) known as the
Stolt interpolation (Cafforio et al., 1991),

S(kx,ky,k)→ S(kx,ky,kz) (8)

with

kz =

√(
k+

√
k2− k2

y

)2
− k2

x . (9)

This can be obtained by evaluating the Fourier transform in
Eq. (7) using the method of stationary phase, which is dis-
cussed in more detail in Appendix A. A first estimate of the
reflectivity function is obtained by inverse Fourier transform-
ing the 3-D spectrum with respect to kx and ky ,

õ1(r)= F−1
kx ,ky
{S(kx,ky,kz)}. (10)

The last step is to correct the range curvature in the first esti-
mation due to near-field operation,

õ(r)= F−1
kz

{
õ1(x,y,kz)e

−j
kz
2

√
x2+y2+Z2

o

}
. (11)

4 Sampling constraints and resolution

For a correct reconstruction of the object sampling con-
straints in the space domain have to be fulfilled. These con-
straints and the expected spatial resolution are discussed in
the following paragraphs. For an extended discussion we re-
fer to Soumekh (1994).

4.1 Spatial sampling with a physical aperture

The spacing dR is determined with the knowledge of the spa-
tial frequency (wavenumber) support�y of the recorded sig-
nal with respect to y,

dR ≤
2π

2�y
=

π

(ky,max− ky,min)
. (12)

Where ky,max and ky,min are the extrema of the y component
ky of the wavenumber k and are given by,

ky,max = k sin(θy,max) (13)
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ky,min = k sin(θy,min). (14)

For a symmetric imaging setup ky,max =−ky,min,

dR ≤
π

2k sin(θy,max)
. (15)

The expected spatial resolution along the y axis is also a
function of the spatial frequency support �y . The bandwidth
of the spatial spectral support depends on the relative posi-
tion of a voxel to the array. For the center of the object the
spatial resolution is given by

δy =
2π
�y

(16)

=

π

√
L2

E+ 4Z2
o

kLE
.

4.2 Spatial sampling with a synthetic aperture

Along the x axis the translation movement is used to gen-
erate a synthetic aperture in this direction. Sampling con-
straints are also derived from the spatial frequency �x of the
recorded signal with respect to x. The maximum step size is
then given by

dv ≤
2π

2�x
=

π

4k sin(θ3 dB/2)
. (17)

Where the half-power beamwidth of a Tx /Rx antenna is de-
noted by θ3 dB. Using a synthetic aperture we can ensure a
constant spatial spectral bandwidth for all parts of the object.
The expected spatial resolution in this direction is given by

δx =
π

2k sin(θ3 dB/2)
. (18)

4.3 Frequency sampling and range resolution

The range resolution is determined by the signal modulation
bandwidth B. For free space wave propagation it is given by

δr ≤
c

2B
. (19)

Since we use a SFCW waveform, a maximum temporal fre-
quency step size 1f is required in order to avoid range ambi-
guities. For a required range unambiguity Run,

1f ≤
c

2Run
. (20)

5 Comparison of the algorithms

5.1 Focusing quality

Firstly, we compare the focusing quality of the BP algorithm,
FFBP algorithm and the RMA using numerical simulations.

Figure 2. 3-D image reconstruction using the BP algorithm. (a) xy-
section at z= Zo. (b) yz-section at x = 0.

Figure 3. 3-D image reconstruction using the FFBP algorithm.
(a) xy-section at z= Zo. (b) yz-section at x = 0.

Assuming that the required spatial resolution is 4 mm, ac-
cording to Eqs. (12) and (16), an effective aperture of 50 cm
is required at an imaging range of Zo = 60cm. The spacing
between the receiver elements has to be at most 2 mm in or-
der to avoid aliasing. Hence we assume a Rx-array with 10
elements spaced by 2 mm and a Tx-array containing 25 Tx
with an element spacing of 2 cm to obtain the required ef-
fective aperture. The corresponding number of effective ele-
ments is 250 elements. We also assume a synthetic aperture
of 25 cm. According to Eq. (17) the sampling step along the
synthetic aperture has to be at most 1 mm. We use an SFCW
waveform with 300 frequency steps from 75 to 110 GHz. We
simulate the signal from a 3-D grid of ideal point reflectors
with a uniform spacing of 5 cm using Eq. (2) and reconstruct
it using the proposed RMA, the BP algorithm and the FFBP
algorithm.

The implementation of the two latter algorithms requires
the definition of a discrete 3-D rectangular volume, which
covers the expected extent of the target. The distances be-
tween each two points of the volume is set to half of the ex-
pected resolution along each dimension. Two perpendicular
sections from the image reconstruction obtained using the
BP algorithm are depicted in Fig. 2. Figure 2a shows an xy-
section of the volume, which describes the estimated object
reflectivity at a constant depth z= Zo. This section shows a
successful focusing of the data along the x axis and the y axis
with respect to the expected resolution. The section depicted
in Fig. 2b is a yz-section obtained at x = 0 and demonstrates
the focusing quality along the z axis. The corresponding xy-
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Figure 4. 3-D image reconstruction using the modified RMA algo-
rithm. (a) xy-section at z= Zo. (b) yz-section at x = 0.

Figure 5. Focusing quality comparison of the modified RMA with
the BP and FFBP algorithms.

section and yz-section, which result from the FFBP algo-
rithm with a factorization factor of n= 2 are shown in Fig. 3a
and b, respectively. They also demonstrate the successful 3-
D focusing using this algorithm. Finally the same sections,
which result from the proposed RMA are provided in Fig. 4
to illustrate its 3-D focusing quality.

For a quantitative assessment of the imaging quality, we
take a closer look at the focusing along the y axis and x axis
of each algorithm. The upper part of Fig. 5 shows three
y profiles of the estimated reflectivity function at x = 0 and
z= Zo. The profiles resulting from the BP and FFBP agree
very well. The 3 dB-width of the main lobes yield a width of
ca. 4 mm. The side lobes level is ca. −14 dB due to the rect-
angular shape of the aperture. The width of the main lobes
of the profile resulting from the RMA fulfill the expected
resolution, yet with increasing y-coordinate the RMA main
lobes yield a slight shift accompanied by a broadening. An
increase of the side lobes level of the RMA by ca. 3 dB is
also observable. The x-profiles of the algorithms at y = 0 and
z= Zo are depicted in the lower part of Fig. 5. Along with
the x axis the 3 dB-width of the main lobe of the three al-
gorithms agree very well. All algorithms achieve the desired
resolution of 4 mm. Along this axis the RMA yield solely a

Figure 6. Reconstruction time comparison of the modified RMA
with the BP and FFBP algorithms.

slight shift with increasing x coordinate. The behavior of the
RMA is expected, due to the approximately validness of the
effective aperture approach in the near-field of the array. It is
worth mentioning, that although the synthetic aperture is as
large as half of the effective aperture, both achieve the same
spatial resolution. This is due to the spectral support of the
synthetic aperture, which is two times higher than the one of
the effective aperture, compare Eqs. (16) and (18).

5.2 Computational complexity

Secondly, we compare the computing costs of the three dis-
cussed algorithms. Using the asymptotic computational com-
plexity of the implementation steps of each algorithm we can
estimate its computational burden. For the RMA the highest
computational burden is caused by the 3-D Stolt interpola-
tion. Since this is implemented using a complex 3-D linear
interpolation, its asymptotic operation count Cp is

Cp =O(M3). (21)

Additionally we use in this algorithm 5 complex FFT opera-
tions with a total asymptotic operation count Cfft of,

Cfft =O
(

5M
2

log2(M)

)
. (22)

Hence the asymptotic computing complexity of the RMA is,

CRMA =O(Cfft+Cp)

=O
(

5M
2

log2(M)+M
3
)
. (23)

The computational burden of the BP algorithm is estimated
from Eqs. (5) and (6),

CBP =O
(
N3M2

+
M

2
log2(M)

)
. (24)
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Figure 7. Multistatic sparse line array composed of 12 Tx and 12
Rx .

For an aperture factorization factor n the computational load
of the FFBP algorithm is given as function of the computa-
tional load of the BP algorithm (Ulander et al., 2003),

CFFBP =O
(
nlogn(M)

M
CBP

)
=O

(
nlogn(M)

(
N3M +

1
2

log2(M)

))
. (25)

For large volumes
(
N3M � 1

2 log2(M)
)

,

CFFBP ≈O
(
nlogn(M)N

3M
)
. (26)

Comparing the FFBP with the RMA we obtain a computa-
tional saving in the order of

CFFBP

CRMA
=O

(
nlogn(M)N

3M
5M
2 log2(M)+M

3

)

=O
(

nlogn(M)N
3

5
2 log2(M)+M

2

)
. (27)

By setting N =M we obtain the computational saving as
function of amount of measurement samples,

CFFBP

CRMA
=O

(
nlogn(M)M

)
. (28)

Furthermore, we have compared the performance of the men-
tioned algorithms on a commercial i7 CPU with 3.5 GHz and
16 GB of RAM. The scientific Python modules (van der Walt
et al., 2011) have been used for the implementation of the
algorithms. Using numerical simulation we investigate the
dependency of the reconstruction time on the amount of vox-
els to be reconstructed for each algorithm. The results are
depicted in Fig. 6. The x axis of Fig. 6 represents the total

Figure 8. A-sandwich GFRP with a Rohacell core with a size
of (20 cm× 10 cm× 0.5 cm): (a) Photograph of the sample.
(b) Schematic and distribution of defects.

number of the image voxels (N3). As expected the highest
reconstruction duration is caused by the BP algorithm. This
increases rapidly with increasing number of voxels. A sig-
nificant improvement is obtained using the FFBP algorithm.
For instance, the reconstruction of 100 Kilovoxels becomes
four times faster. However, the modified RMA yields the best
computational performance. The 100 Kilovoxels have been
reconstructed 22 times faster than the FFBP algorithm and 90
times faster than the BP algorithm. Significantly faster recon-
struction times can be obtained by parallelizing the imple-
mentation of the algorithms as reported in Baccouche et al.
(2017), where the mentioned algorithms are executed on a
graphics processing unit.

6 Measurement results

We experimentally investigated the imaging performance of
the algorithms using measurement data from the imaging
system presented in Baccouche et al. (2015), which combines
a sparse line array with a band-conveyor for 3-D tera-hertz
imaging as sketched in Fig. 1. This system operates in the
W -band and provides a modulation bandwidth of 35 GHz.
As Fig. 7 shows, the multistatic sparse line arrays used in
this system contains 12 transmitters, which are linearly dis-
tributed along the y axis. Standard-gain horn antennas are
used for the transmitters as well as for the receivers. The
transmitters are sequentially operated using a switching ma-
trix. The Rx-array contains also 12 elements. For the ease of
realization, the elements of the Rx-array are grouped in two
sub-arrays of 6 elements and placed slightly shifted to each
other on both sides of the Tx-array with an offset of 4.5 cm.
Measurement data are obtained using the full system band-
width from 75 to 110 GHz and an effective aperture of 144
sampling positions with an effective spacing of 5 mm. This
effective elements spacing, which is imposed by the mechan-
ical dimensions of the used components, violates the Nyquist
sampling criterion according to Eq. (15). Hence an increase
of the grating lobes level is expected. For the sake of clar-
ity, in the ideal case, the violation of the Nyquist sampling
criterion within the sampling aperture is compensated by the
effective aperture approach.
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Figure 9. 3-D terahertz image reconstruction of the GFRP sam-
ple: (a), (c) and (e) yz-section, xz-section and xy-section using BP,
respectively. (b), (d) and (f) yz-section, xz-section and xy-section
using modified RMA, respectively.

As measurement sample we used an A-sandwich
(20 cm× 10 cm× 0.5 cm) made of glass fiber reinforced
plastic (GFRP) with a Rohacell core, depicted in Fig. 8a.
The sample was prepared with different insertions at differ-
ent locations with varying depths on the top of the Rohacell
core. Figure 8b shows a schematic of the sample with the
different insertions and defects, which are made of adhesive,
teflon and polyethylene (PE). Furthermore, a step wedge was
formed at the top of the sample through removing surface
layers. The step size is less than 1 mm. The corner of the
sample was marked with an aluminum quadrant. The imag-
ing range is ca. 65 cm. Figure 9 shows different 2-D layers
from the 3-D image reconstruction of the sample using the
BP algorithm as a reference (Fig. 9a, c and e) and the mod-
ified RMA (Fig. 9b, d and f). By comparing Fig. 9e and f,
the same amount of defects at this layer can be recognized
using both algorithms even if the modified RMA yields the
expected degradation with respect to the array’s axis (y axis).
Figure 9c and d shows that the modified RMA is also sensi-
tive to the tiny thickness variations of the sample as well as
the BP algorithm. The upper and the lower layers of the sam-

ple are resolved by both algorithms (Fig. 9a and b). These
two figures show also the expected increase of grating lobes
along the array’s axis, yet confirming that the modified RMA
approximates well the focusing quality of the BP algorithm.

7 Conclusions

We have compared the back-projection algorithm (BP)
and its numerical optimized implementation, the fast-
factorization back-projection (FFBP) algorithm, with a mod-
ified range migration algorithm (RMA) for 3-D terahertz
imaging using a sparse multistatic line array in combination
with a synthetic aperture. As criteria for comparison we took
the focusing quality and the computational complexity. We
have shown that the computational costs can be significantly
reduced using the FFBP algorithm with competitive imaging
quality to the BP algorithm. On the other side the modified
RMA yields the highest computational efficiency at the costs
of a minor focusing degradation along the array’s axis due to
the operation in the array’s near-field. We used an undersam-
pled sparse multistatic line array to inspect the inner structure
of a glass fibre reinforced plastics (GFRP) sample in the fre-
quency range 75 to 110 GHz. Using the modified RMA we
can recognize the same relevant features within the sample as
by using the BP algorithm with dramatically reduced compu-
tational effort.

Data availability. No data sets were used in this article.
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Appendix A: Fourier transform using the method of
stationary phase (MSP)

The relation given in Eq. (9) results from applying the MSP
to asymptotically evaluate the 2-D Fourier transform along
the measurement aperture,

F(kx,ky)=

∫
y

∫
x

ej8(x,y)dx dy , (A1)

with,

8(x,y)= k(r1+ r2)− kxx− kyy. (A2)

and

r1 =

√
x2+ y2+ (Zo− z)2

r2 =
√
x2+ (Zo− z)2.

The approximate solution of Eq. (A1) using the MSP is then,

F(kx,ky)≈ e
j8(x0,y0). (A3)

Where x0 and y0 are the phase stationary points. These can
be found by equating the first partial derivatives of 8(x,y)
to zero.

∂8(x,y)

∂x

∣∣∣∣
(x0,y0)

= 0 (A4)

∂8(x,y)

∂y

∣∣∣∣
(x0,y0)

= 0 (A5)

The first partial derivatives of 8(x,y) are,

8x(x,y)=
∂8(x,y)

∂x
= k

(
x

r1
+
x

r2

)
− kx (A6)

8y(x,y)=
∂8(x,y)

∂y
= k

y

r1
− ky . (A7)

We solve Eq. (A5) for y0,

k
y0√

x2+ y2
0 + (Zo− z)

2
− ky = 0 (A8)

y0 =±
ky√
k2− k2

y

√
x2+ (Zo− z)2. (A9)

Now we solve Eq. (A4) for x0,

x2
0

1+
1√

1+ y2
0

x2
0+(Zo−z)

2


2

=

(
kx

k

)2(
x2

0 + (Zo− z)
2
)
.

(A10)

By inserting the solution for y0 in Eq. (A10) we get,

x2
0

1+
1√

1+
k2
y

k2−k2
y


2

=

(
kx

k

)2(
x2

0 + (Zo− z)
2
)

(A11)

x0 =±
(Zo− z)kx

kz
, (A12)

with

kz =

√(
k+

√
k2− k2

y

)2
− k2

x . (A13)

To obtain the expression of y0, we insert x0 in Eq. (A9),

y0 =±
ky√
k2− k2

y

(
k+

√
k2− k2

y

)
kz

(Zo− z) . (A14)

Since (Zo > z) both first derivatives simultaneously vanish
only for the positive solutions. Now we insert Eqs. (A12) and
(A14) in Eq. (A2),

8(x0,y0)= k(Zo− z)

√√√√√√k2
x

k2
z

+

k2
y

(
k+

√
k2− k2

y

)2

k2
z

(
k2− k2

y

) + 1

+ k(Zo− z)

√
k2
x

k2
z

+ 1− kx

(
(Zo− z)kx

kz

)

− ky

ky
kz

(
k+

√
k2− k2

y

)
√
k2− k2

y

(Zo− z)

 . (A15)

After some mathematical rearrangements we obtain,

8(x0,y0)=
k2
(
k+

√
k2− k2

y

)
kz

√
k2− k2

y

(Zo− z) (A16)

+

k
(
k+

√
k2− k2

y

)
kz

(Zo− z)

−
k2
x

kz
(Zo− z)

−

k2
y

(
k+

√
k2− k2

y

)
kz

√
k2− k2

y

(Zo− z).

=


(
k+

√
k2− k2

y

)2

kz
−
k2
x

kz

(Zo− z)
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= kz(Zo− z) . (A17)

By inserting Eq. (A17) in Eq. (A3) we obtain,

F(kx,ky)≈ e
jkz(Zo−z). (A18)
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