Discretization analysis of bifurcation based nonlinear amplifiers
Abstract. Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov–Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov–Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge–Kutta methods transform the truncated normalform equation of the Andronov–Hopf bifurcation into the normalform equation of the Neimark–Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.
A rescaled normalform equation of the Neimark–Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov–Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark–Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.