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Abstract. In a multi-sensor radar for the estimation of the tar-
gets motion states, more than one module of transmitter and
receiver are utilized to estimate the positions and velocities
of targets, also known as motion states. By applying the com-
pressed sensing (CS) reconstruction algorithms, the surveil-
lance space needs to be discretized. The effect of the addi-
tive errors due to the discretization are studied in this paper.
The errors are considered as an additive noise in the well-
known under-determined CS problem. By employing prop-
erties of these errors, analytical models for its average and
variance are derived. Numerous simulations are carried out
to verify the analytical model empirically. Furthermore, the
probability density functions of discretization errors are es-
timated. The analytical model is useful for the optimization
of the performance, the efficiency and the success rate in CS
reconstruction for radar as well as many other applications.

1 Introduction

A multi-sensor radar system contains more than one module
of transmitter and receiver. These modules are usually posi-
tioned separately to increase the spatial diversity, the cover-
age or both. A multi-sensor radar system might be config-
ured in mono-static, bi-static or multi-static, also known as
multiple input mutiple output (MIMO) radar (Skolnik, 1962).
The estimation of the positions and velocities of moving tar-
gets, also known as motion states, in the surveillance space
is a typical use-case of these radars. A more particular ap-
plication of these radars is to prevent collisions among ob-
jects in the surveillance space by estimating the motion states
in relatively short intervals (Azodi et al., 2013, 2015). For
the data fusion and the processing, there are various possi-

bilities, especially among the algorithms in the framework
of compressed sensing (CS). Compressed sensing is under-
stood as a set of information and estimation algorithms for
compressible signal processing (Candes et al., 2006; Candès,
2006; Donoho, 2006; Baraniuk, 2007). Despite the Shannon-
Nyquist theorem, which asserts a high sampling rate, CS es-
timation algorithms reconstruct a signal from far fewer sam-
ples. CS algorithms have been applied to multi-sensor radar
systems, medical imaging, remote sensing, and many other
signal recovery problems in recent years (Duarte and Eldar,
2011).

Sparse representation and finding the solution of the sparse
vector s in the under-determined problem

d =9s (1)

are the primary objectives of CS signal recovery algorithms.
In Eq. (1), 9 and d are the so-called sensing matrix and the
measurement vector, respectively. Basically, Eq. (1) repre-
sents an under-determined set of linear equations, where con-
tributions of noise and other errors are neglected. In realis-
tic data processing, the measured vector is slightly perturbed
due to unavoidable measurement system noise and model-
ing errors, e.g., due to truncation, rounding, or discretization.
The perturbation in such cases is often modeled as a Gaussian
distributed random signal. Therefore, the problem in Eq. (1)
turns into

d =9s+ e , (2)

where e represents the additive random signal. Modified ver-
sions of the CS reconstruction algorithms, e.g., basis pursuit
de-noising (BPDN), are capable of solving the noisy problem
in Eq. (2) as well (Chen et al., 2001).
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The recovery of the sparse vector from the CS under-
determined systems is successful if a number of conditions
are met. Since any under-determined problem exhibits an in-
finite number of solutions, these conditions are necessary to
make sure that the reconstructed solution is the correct one.
One of the prevailing conditions is sparsity of the unknown
vector s. Other conditions postulate certain properties of the
sensing matrix 9 like coherence, restricted isometry prop-
erty (RIP), or the null-space property (NSP). These condi-
tions and their interrelation with the sparsity of s are well
elaborated in Foucart and Rauhut (2013), Eldar and Kutyniok
(2012) and Donoho (2006).

Recently, CS algorithms have also been utilized for the de-
tection of point-like targets in multi-sensor or multiple-input
multiple-output (MIMO) radar systems, where a sufficient
number of transmitters and receivers observe the surveil-
lance space (Eldar et al., 2010; Ender, 2013; Anitori et al.,
2013). Typically in these radar systems, number and motion
states, initial positions and velocities, of the targets are the
unknowns. Compared with conventional methods, CS may
achieve identical detection performance with a reduced num-
ber of sensors. It may also provide higher resolution and ac-
curacy (Donoho and Tanner, 2010; Herman and Strohmer,
2009; Lehmann et al., 2006). Nevertheless, a few additional
assumptions are required so that such problems become com-
patible with the CS recovery methods. Apart from the already
mentioned sparsity of the scene, these are exact phase syn-
chronization between transceivers, electromagnetic far-field
condition, non-relativistic movements, constant radar cross
section (RCS) during one observation and considering tar-
gets as point-like scatterers with their motion states at the
centers of the grid cells. These assumptions, except the last
one, are mostly valid for high-frequency radar systems, par-
ticularly for target motion estimation where indeed only few
targets exist in the entire vacant surveillance space (Fishler
et al., 2006; Haimovich et al., 2008). Also, the approxima-
tion of extended targets by an ensemble of point-like scatter-
ers is often possible in the high-frequency regime (Hurst and
Mittra, 1987).

However, a rather fine grid might be required to warrant
the last assumption. Otherwise, it is not justified to assume
that the motion states are located at the centers of grid cells.
A very fine grid results in a highly coherent sensing matrix
which not only causes more computational complexity, but
also increases the ambiguity in the reconstruction process. In
radar applications, such as collision avoidance radars (Azodi
et al., 2014; Wächter et al., 2014), assuming a very fine dis-
cretization is not even practical as out-bound targets1 con-
siderably enlarge the solution domain. Targets, whose true
motion states lie offside the grid points of the discretized so-
lution domain, are commonly referred to as off-grid targets

1Assuming a boundary in the scene which encompasses the
radar sensors, the out-bound targets are those which are located out-
side this boundary.

(Tan and Nehorai, 2014; Nielsen et al., 2012; Tang et al.,
2012; Gurbuz et al., 2013). It is beneficial to analyze the im-
pact of off-grid targets on the CS recovery process and to
modify it, accordingly. This impact is studied by analytically
modeling it as errors added to the principal CS problem (1)
in this work. The main purpose is to find an implicit and pa-
rameterized model of these errors. Since such errors are not
limited to off-grid targets of radar applications and are seen in
various CS problems, the term “discretization error” is used
in this work as it reflects the source of errors in a more gen-
eral and universal way than off-grid targets effect.

The majority of previous works do not render a rigorous
distinction between system noise and discretization errors.
Both are summarized in a single Gaussian random signal
model at the right-hand side of Eq. (2), although they have
different sources and might have different impacts on the
problem. This work discriminates between these perturba-
tion sources and studies the particular impact of discretiza-
tion errors on CS reconstruction algorithms. In this view, the
realistic CS problem is represented by

d =9s+ es+ ed , (3)

where es and ed are system noise and discretization errors,
respectively. Also, Eq. (3) implies that, even in a fictitious
noise-free system, where measurements are carried out with
unlimited accuracy, the discretization errors ed still remains
and cannot be ignored.

The formation of the CS under-determined problem is ex-
plained in Sect. 2. An analytical model of the received echo
is considered based on geometrical optics. Utilizing the sig-
nal model in Sect. 2, the approximated discretization er-
rors are calculated in Sect. 3 for two-dimensional geome-
tries. The methods and models of this work are not limited
to two-dimensional problems and can be extended to three-
dimensional configurations. The proposed model is tested by
and verified against an extensive number of computer simu-
lations. The results of these numerical experiments are gath-
ered in Sect. 4. Section 5 finalizes the paper with some con-
clusion remarks.

2 Single carrier continuous wave signal model

A typical 2-D scene for target motion estimation using radar
sensors is illustrated in Fig. 1. A small number of targets
(marked by stars) move in the surveillance area of a Doppler
radar system with N mono-static sensors. The wavelength
of the transmitted signal as compared to the physical dimen-
sions is considered short enough to apply the asymptotic ap-
proximations in the calculation of the received signal and to
model it analytically.

In a single frequency continuous wave (CW) radar system,
each sensor transmits the signal

wn(t)= exp {j 2π fc t + θn} , (4)
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where fc and θn are the carrier frequency and initial phase of
the transmitted signal. The received echo from the targets at
the nth sensor is

dn (t)=

P∑
p=1

ap exp
{
j 2π fc (t − τp,n)+ θn

}
+ es(t) , (5)

where es(t) is a random signal with zero-mean Gaussian dis-
tribution N (0,σ ) to represent the system noise. Each coeffi-
cient ap represents the amplitude of the echo received from
the pth target. These include the system response, free space
path loss, and the target’s RCS. Also, τp,n is the effective
round-trip delay between the nth module and the pth target.
Having the nth module at rn = rxnx̂+rynŷ and the pth target
at

rp = (rxp + vxpt)x̂+ (ryp + vypt)ŷ , (6)

the round-trip delay is

τp,n =
2
c0

(
(rxp − rxn+ vxpt)

2
+ (ryp − ryn+ vypt)

2
) 1

2
. (7)

The carrier exp{j 2π fc t + θn} in Eq. (5) is removed after
down-conversion and subsequent analog-to-digital conver-
sion (ADC). Sampling generates the data series

dn[i] =

P∑
p=1

ap χp,n[i] + ẽs[i] , (8)

where ẽs(t) is the colored baseband noise and

χp,n[i] = exp
{
−j 4π

fc

c0

(
(rxp − rxn+ vxpiT )

2

+(ryp − ryn+ vypiT )
2
) 1

2
}

(9)

where c0 is the vacuum speed of light and T is the sampling
interval.

Let’s assume that every sensor collects L samples during
one observation. The total number ofN×L independent data
samples is concatenated in a column vector d according to

d =


d1[1], . . .,d1[L],

d2[1], . . .,d2[L],
...

dN [1], . . .,dN [L],


T

(10)

where the superscript T denotes the vector transpose. By
maintaining the concatenation order in Eq. (10), Eq. (8) is
rewritten in matrix form according to

d =Xa+ ẽs . (11)

Vector ẽs embodies the additive noise in each sample. The
amplitudes of the echoes are gathered in a = [a1. . .aP ]

T and

X =


χ1,1[1] χ2,1[1] . . . χP,1[1]
χ1,1[2] χ2,1[2] . . . χP,1[2]
...

... . . .
...

χ1,N [L] χ2,N [L] . . . χP,N [L]

 .

x

y

rn

r *

Cell center
Cell border
Mov. target
Sensor

vp
rp

Figure 1. Targets move in the surrounding space of a multi-sensor
radar system. The sensors and the targets are displayed by squares
and stars, respectively. The arrows illustrate relative velocities of
the targets. The dashed lines are the border of the cells. The centers
of the cells are depicted by circles.

Every column of X represents the received samples of a tar-
get following the same concatenation order as d. For exam-
ple, in explicit notation, the pth column of X is

χp =


χp,1[1], . . .,χp,1[L],
χp,2[1], . . .,χp,2[L],

...

χp,N [1], . . .,χp,N [L]


T

. (12)

Equation (11) is not yet in a suitable form, since the un-
knowns appear in both X and a. Furthermore, the size of
a is unknown as usually in a radar problem a priori knowl-
edge about the number of targets is not available. Hence, a
systematic solution algorithm cannot be proposed yet.

This is, where the CS methodology comes into play. It
transforms Eq. (11) into a solvable set of equations in the
form

d = Zs+ e . (13)

Each column of Z corresponds to one element from the dis-
cretized solution domain Sd. The solution domain is a set of
all considered target positions together with all permissible
velocities, also referred to as states. The matrix Z has, there-
fore, an extremely large number of columns as it includes one
column for each possible state. The vector s is the unknown
solution vector of Eq. (13). It maps the matrix Z to the prob-
lem in Eq. (11), i.e., the non-zero elements of s correspond
to the occupied states found in the measured data.

If, in Eq. (12), one perceives χp as a function of
rxp, ryp, vxp and vyp in the form χp = χ(rxp, ryp,vxp,vyp),
then the qth column of Z is

ζ q = χ(rxq , ryq , vxq , vyq) (14)

where rxq , ryq , vxq and vyq are just the qth state tuple.
Assuming that the particular detection and surveillance

problem allows for limited ranges of space and velocity, the
grid of the discretized solution domain is limited in extent.
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This a priori knowledge is relevant for arranging and solv-
ing Eq. (13). Short range radars and radar networks with
in-bound targets can be cited as exemplary applications. In
fact, the search for motion states within an unlimited vari-
ety may become highly ambiguous. With limited ranges the
discretized solution domain is a set of the form

Sd = {(rxq , ryq ,vxq ,vyq)| −R ≤ rxq , ryq ≤ R,

−V ≤ vxq ,vyq ≤ V,q = 1,2, . . .,Q} . (15)

Notice that the elements of the solution domain belong to R4

since they cover 2-D locations together with 2-D velocities.
With a sufficiently fine discretization of the solution domain,
the motion states of the targets are estimated by

sq =

{
ap if pth target is at qth bin,

0 otherwise.
(16)

For the rest of this work, it is assumed that ap is equal to
one for all targets and radar constellations. If only P tar-
gets exist in the scene, s is a P -sparse vector with the non-
zeros corresponding to the amplitudes of the existing targets.
Thus, Eq. (13) represents a CS problem based on the assump-
tion that P �Q andNL<Q. The vector s maps the sensing
matrix Z to the measured data. By definition, it is zero every-
where except for the corresponding elements due to the exist-
ing targets. Therefore, the termZs in Eq. (13) is the weighted
summation of the selected P columns of Z corresponding to
the non-zeros of s.

In Eq. (13), e represents both, system noise and discretiza-
tion errors. For the rest of this work, the system noise is ig-
nored. Discretization errors as the remaining part of e are
introduced and studied in the next section. System noise may
be added to the proposed model as a Gaussian distributed
random variable for any future analysis.

3 Discretization errors model

As the target states may lay aside from the centers of the
grid cells, the received signal d is not necessarily equal to
the summation of the corresponding P columns in Z. As a
result, the CS reconstructed signal of a successful recovery
is not exactly equal to the measured echoes. This inevitable
difference exists even though the discretization is very fine.
The characterization of this error plays an important role for
the implementation of an efficient and robust recovery algo-
rithm. As the error is the result of modeling, improving sys-
tem parameters such as the antenna or the amplifier gains
do not help to suppress it. An extremely fine mesh may re-
duce the discretization errors but only at the cost of a more
complex recovery process. Therefore, the better solution is to
specifically characterize this error and to modify the recovery
algorithm accordingly.

For the characterization of discretization errors, it is as-
sumed that the vector d is measured with unlimited accu-
racy and the corresponding solution of the CS problem, i.e.,

the optimum solution, is known. The discretization errors are
the difference between the optimum solution sopt and the re-
ceived signal as

ed = d −Zs
opt . (17)

At this point, it is also assumed that there is only one tar-
get present in the scene. As Eq. (17) is linear and existence,
positions and velocities of the targets are independent, the
discretization errors of more than one target are simply the
summation of the discretization errors as in

ed =

P∑
p=1

edp , (18)

where edp is the discretization errors due to the pth tar-
get. It is expected that the optimum solution sopt corre-
sponds to the closest (r opt

x , r
opt
y ,v

opt
x ,v

opt
y ) in the discretized

solution domain to the target true position and velocity
(r tar
x , r tar

y ,v
tar
x ,v

tar
y ), which means

r tar
= ropt

+1r

= (r
opt
x + v

opt
x t + u11rx/2+ u31vx t/2)x̂

+ (r
opt
y + v

opt t
y u21ry/2+ u41vy t/2)ŷ (19)

where 1rx , 1ry , 1vx and 1vy are discretization steps in
rx , ry , vx and vy , respectively, and um for i = 1,2,3,4 are
random variables with uniform distributions

fUm(um)=

{
1/2 −1≤ um ≤ 1

0 otherwise ,
(20)

because every position and every velocity are assumed
equally likely. As no preference for the position of the sen-
sors is considered, the characteristics of the discretization er-
rors such as expected value or variance becomes indepen-
dent of the sensors. It is, therefore, sufficient to study the
discretization errors in a one-sensor scene. Under these cir-
cumstances, the discretization errors term turns into

ed[i] = exp
{
−j2πfcτ

tar}
− exp

{
−j2πfcτ

opt} . (21)

Assuming1τ = τ tar
−τ opt is the difference between the true

round-trip time of the target and its estimate, ed[i] is approx-
imated as

ed[i] = −j2πfc1τ exp
{
−j2πfcτ

opt}
+O(1τ 2) (22)

based on the Taylor expansion up to the first order and that
1τ � τ tar. Using a Taylor expansion to approximate 1r , it
is found that,

|ropt
+1r − rsen

| = |ropt
− rsen

| +
(ropt
− rsen) ·1r

|ropt− rsen|

+O(|1r|2) , (23)

where rsen indicates the position of the sensor in the scene.
Hence,

1τ ≈
2
c

(ropt
− rsen) ·1r

|ropt− rsen|
. (24)

Adv. Radio Sci., 15, 69–76, 2017 www.adv-radio-sci.net/15/69/2017/



H. Azodi et al.: Sparse representation discretization errors 73

Using the approximated differences, ed[i] becomes

ed ≈−j
4πfc

c0

(ropt
− rsen) ·1r

|ropt− rsen|

exp
{
−j

4πfc

c0
|ropt
− rsen

|

}
. (25)

This linear approximation is accurate as long as the dis-
cretization steps in both, space and velocity, are small
enough. However, in a typical Doppler-only configuration,
the size of the discretization steps in position can be even
larger than the wavelength. In these configurations, the ini-
tial phase error due to the position have to be removed so
that only the error due to the discretization of the velocity
remains.

3.1 Expected value of discretization errors

The expected value E{ed} of the discretization errors is an
important measure to study this random variable. By defini-
tion,

E{ed} =
1
Q

Q∑
q=1

∫ ∫ ∫ ∞∫
−∞

edqfU1,...,U4 (u1, . . .,u4)du1. . .du4 (26)

where q = 1,2, . . .,Q runs over the grid of the discretized
solution domain and

edq ≈−j2πfc1τq exp
{
−j2πfcτq

}
(27)

is the discretization errors at the qth cell. If the ums are sta-
tistically independent, the joint probability density function
(PDF) is

fU1,...,U4(u1, . . .,u4)= fU1(u1). . .fU4(u4)

=

{
1/16, −1� [u1, . . .,u4]

T
� 1

0, otherwise
(28)

where the symbol � means component-wise less than or
equal. Combining Eqs. (22) and (28) with Eq. (26) results
in

E{ed} =
−jπfc

8c0QL

L∑
i=1

Q∑
q=1

exp
{
−j 2π fc τq

}∫ ∫ ∫ 1∫
−1

1τq du1. . .du4

 .

(29)

In order to be able to find a feasible solution,1τq is assumed
to be an odd function of u1, u2, u3 and u4, the integration of
this function between symmetric boundaries is equal to zero.
So, it is derived that

E{ed} = 0 . (30)

This is an expected result and is also verified with the simu-
lations.

3.2 Variance of discretization errors

By definition, the variance of the discretization errors is

V{ed} = E
{
(ed− E{ed}) (ed− E{ed})

∗
}
, (31)

where the asterisk indicates complex conjugates. By insert-
ing E{ed} from Eq. (30) into Eq. (31), it becomes

V{ed} = E
{
ed e
∗

d
}
= 4π2f 2

c E{(1τ)2} . (32)

Hence,

V{ed} =
16π2f 2

c

c2
0QL

L∑
i=1

Q∑
q=1

∫ ∫ ∫ ∞∫
−∞

(
(ropt
− rsen) ·1r

|ropt− rsen|

)2

fU1,...,U4(u1, . . .,u4)du1. . .du4 . (33)

Having (ropt
− rsen)x and (ropt

− rsen)y , respectively, the x
and y components of (ropt

− rsen), Eq. (33) becomes

V{ed} =
4π2f 2

c

4c2
0QL

L∑
i=1

Q∑
q=1

∫ ∫ ∫ 1∫
−1(

(ropt
− rsen)x (u11rx + u3iT 1vx )+ (r

opt
− rsen)y (u21ry + u4iT 1vy )

)2
|ropt− rsen|2

×fU1,...,U4 (u1, . . .,u4)du1. . .du4 . (34)

For the calculation of the variance, it is important to note that

1∫
−1

1∫
−1

uiuj duiduj =

{
0 i 6= j,

2/3 i = j.

Therefore, the variance in Eq. (35) transforms into

V{ed} =
16π2f 2

c

9c2
0QL

L∑
i=1

Q∑
q=1

(ropt
− rsen)2x (1r

2
x + i

2T 21v2
x )+ (r

opt
− rsen)2y (1r

2
y + i

2T 21v2
y )

|ropt− rsen|2
. (35)

Assuming uniform discretization steps (Fig. 2), i.e.,
1rx =1ry =1rxy and 1vx =1vy =1vxy the variance
in Eq. (35) simplifies into

V{ed}=
16π2f 2

c

9c2
0QL

L∑
i=1

Q∑
q=1

(1r2
xy + i

2T 21v2
xy)

=
16π2f 2

c

9c2
0

(
1r2

xy +
1
6
(2L2
+ 3L+ 1)T 21v2

xy

)
(36)

The variance calculated in Eq. (36) is reduced by a grid re-
finement in position or velocity, as expected. Furthermore,
the variance reduces by a lower carrier frequency or a shorter
sampling time, theoretically. However, in many practical ap-
plications, this is not possible due to the system require-
ments and dimensions. With a larger carrier frequency, the
spatial gird cells become larger compared to the wavelength.
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Figure 2. Discretization in x and y. The discretization in velocity is
shown by vectors from the center of the spatial grid cell.

Table 1. Definitions and values of the variables used for empirical
assessments.

Variable Value Unit Description

T 4 ms sampling time
fc 24 GHz carrier frequency
xmin −1 m lower bound of x
xmax 1 m upper bound of x
ymin −1 m lower bound of y
ymax 1 m upper bound of y
vmin −0.25 m s−1 lower bound of v
vmax 0.25 m s−1 upper bound of v

Hence, the deviation from the centers of the cells, from which
the discretization errors are computed, becomes larger. For a
Doppler-only configuration, as of interest in this paper, the
size of the grid cells is typically larger than the wavelength
and, thus, the initial phase difference due to the position, ac-
cording to the term with1r2

xy in Eq. (36), would lead to very
larger errors, which are not in agreement with the utilized as-
sumption anymore. Therefore, the 1r2

xy term is not consid-
ered in our later evaluation of the error. In a practical radar
application, the initial phase difference can be determined
without discretization error, if an appropriate signal process-
ing procedure is adopted.

4 Empirical results of discretization errors

Apart from the analytical solution, a possible approach for
the characterization of the discretization errors is an empiri-
cal study. This can be a substitute method for applications in
which finding the analytical solution is not straightforward.

In the empirical method, the difference between the best
(or optimum) solution of the compressed sensing and the re-
ceived signal is found by executing a large number of random
constellations in a Monte Carlo experiment. It is important to

Figure 3. Variance of the discretization errors empirically computed
for 5× 105 targets in every constellation. The amplitudes of the re-
ceived signals from the targets are assumed to be one. The variance
is normalized to this amplitude and is reported in dB. The number
of steps in rx and ry and number of steps in vx and vy are Qr and
Qv , respectively, i.e., Qrx =Qry =Qr and Qvx =Qvy =Qv .
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= 6
= 94

= 124

Figure 4. PDF of 1fD computed for 4 scenarios. In this graph, Q
indicates the total number of grid cells. For example,Q= 34 means
there are 3 steps in each parameter and, hence, in total 81 cells exist.

note that the characterization of the discretization errors is no
more a radar problem. Thus, for a given target, it is possible
and also required to know the optimum solution as a priori
without running any reconstruction algorithm.

Simulations for this purpose are set up based on the data
of Table 1. Then, a target with an arbitrarily chosen initial
state, i.e., position and velocity, is considered in the scene.
The initial state is in accordance with the solution domain
limits. Based on the considered state, there is one cell among
all grid cells which describes the state of the target the best.
This is the reference cell for finding the discretization errors.
This experiment is carried out for a large number of target
states so that the discretization errors can be studied statisti-
cally.

Figure 3 illustrates the result of this experiment. For each
constellation, 5× 105 targets are simulated. There are 4 sen-
sors placed based on a uniform distribution in the scene. The
targets which are located in the very close vicinity of the
sensors cause unexpected errors. Therefore, these targets are
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not considered in the simulation results. As expected, the re-
sults show that the discretization errors will be reduced by
decreasing the discretization steps.

The discretization of the velocity leads to a difference be-
tween target’s true Doppler and its estimation, considered as
1fD = f

tar
D − f

opt
D , in which f tar

D and f opt
D are the target’s

true Doppler and the estimated Doppler, respectively. Having
the same configuration as above, in a further experiment, the
PDF of 1fD is estimated for 4 scenarios (Fig. 4). These sce-
narios vary with respect to the number of steps chosen to dis-
cretize the parameters. For each scenario, 5 sensors are used
to find the difference between the Doppler frequency created
by the 7.5× 105 targets in the scene and the estimated ones.
As shown in this figure, the average is very close to zero,
which verifies the derivation in Eq. (30). The variance is also
decreasing by increasing the number of discretization steps.

5 Conclusion

The discretization errors have been studied in this work as a
separate source of impairments in an ideal Compressed Sens-
ing problem. These errors, which occur due to discretization
of the solution domain, are a result of modeling and can-
not be suppressed by improving system attributes such as the
input power or the system gain. Also, in a noise-less sys-
tem, where measurements are carried out with infinite pre-
cision, these errors are still existing. The study showed that
recovery without considering these errors leads to false or
improper results. Including discretization errors helps to re-
duce the number of the iterations as well as the complexity of
the recovery process. The recovery robustness increases by
including these errors. The error was characterized analyti-
cally by taking the difference between the optimum solution
derived by compressed sensing reconstruction algorithm and
uniformly distributed targets in the solution domain. Further-
more, empirical results of the discretization errors obtained
from a large number of simulations have been presented.
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