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Abstract. A full wave description of a thin wire structure,
that includes mutual interactions and radiation, can be ob-
tained in closed form with the so-called Transmission Line
Super Theory or a refined variant of this method that utilises
perturbation theory. In either procedure, a set of mixed po-
tential integral equations is solved for the currents that prop-
agate along a wire. With the perturbation approach, no itera-
tion is required to approximate the initial current distribution
on the wire. This procedure will be applied to solve multi-
wire problems. The theory will be derived and computed re-
sults will be shown to be in good agreement with method of
moment computations.

1 Introduction

The solution to electromagnetic compatibility problems be-
comes more challenging if a large number of electronic de-
vices or modules of a system is placed in a confined space.
Mutual interactions and especially mutual coupling between
wires connecting individual modules might occur, which can
lead to malfunctions and undesired system conditions. In or-
der to circumvent erratic system performance, an accurate
estimation of the coupling parameters is necessary.

The Transmission Line Super Theory (TLST) is an iter-
ative procedure (Nitsch et al., 2009), where the wire pa-
rameters like the inductance and capacitance per unit length
are first determined under the assumption to be dependent
upon position only. Frequency dependence is accounted for
in the subsequent iterations. With these parameters, a sys-
tem of ordinary differential equations of first order with vari-
able coefficients is established and solved for the unknown
currents with the aid of a matrizant, but the solution of the
resulting system of equations is computationally extensive.

A perturbation approach for the TLST was formulated in
Nitsch and Tkachenko (2010).

In the perturbation method, the currents to be deter-
mined are initially approximated with values calculated us-
ing the conventional transmission line theory. These cur-
rents are subsequently employed to compute the parameters
of the wire structure using mixed potential integral equa-
tions (MPIE). The parameters are then used in a system of
ordinary differential equations similar to the TLST to as-
certain the currents on the wires. In contrast to the TLST,
it is not necessary in the perturbation method to determine
the wire parameters in a first iteration, which therefore re-
quires less computation time. The theoretical formulation of
the perturbation approach in Nitsch and Tkachenko (2010)
provides the basis for this investigation. The procedure will
be derived and applied to the solution of multi-wire prob-
lems. Section 2 facilitates essential background theory. The
TLST is described in Sect. 3 where a detailed derivation of
the perturbation theory is given in Sect. 3.2. Simulated re-
sults are shown in Sect. 4 which are validated by comparison
with method of moment computations.

2 Background theory

The TLST is based on the solution of the Helmholtz equa-
tions

1A+ k2A=−µJ s (1)

and

1φ+ k2φ =−
%

ε
. (2)

for the magnetic vector potential A and the electric scalar
potential φ. J s denotes an impressed current density and % a
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charge density. The wave number k is given by

k = ω
√
µε. (3)

where µ is the permeability and ε the permittivity of the
medium. For sources above a perfectly conducting ground
plane, the two potentials are determined by

A(r)=
µ

4π

∫ ∫ ∫
D

J s(r ′)
e−jk|r−r

′
|

|r − r ′|

+J s1(r
′
1)
e−jk|r−r

′
1|

|r − r ′1|
dτD (4)

and

φ(r)=
1

4πε

∫ ∫ ∫
D

%(r ′)
e−jk|r−r

′
|

|r − r ′|

− %(r ′1)
e−jk|r−r

′
1|

|r − r ′1|
dτD. (5)

r represents the vector to the field point, r ′ the vector to the
source point, r ′1 the vector to the image of the source point,
and J s1(r

′
1) the image current density. D is the source vol-

ume and dτD a volume element.
The electric field is given by the sum of the scattered field

and the exciting or incident field,

E(r)=Escat(r)+Einc(r). (6)

The scattered field is given by

Escat(r)=−jωA(r)− gradφ(r). (7)

The electric field and the potentials on the surface S of the
source volume are related through the boundary conditions

E(r) · et (r)
∣∣
S
=

1
~
J s(r) · et (r)

∣∣
S

= Escat(r) · et (r)
∣∣
S
+ Einc(r) · et (r)

∣∣∣
S

(8)

and
1
~
J s(r) · et (r)

∣∣
S
=−jωA(r) · et (r)

∣∣
S

− gradφ(r) · et (r)
∣∣∣
S
+ Einc(r) · et (r)

∣∣∣
S
. (9)

Applying the thin wire approximation (Nitsch et al., 2009),
where the current is concentrated on the axis of the wire
which possesses a small radius a (Nitsch and Tkachenko,
2010), and substituting of Eqs. (4) and (5) into Eq. (9) leads
to

jω
µ

4π

L∫
0

GA(l, l
′)I s(l′)dl′+

1
4πε

∂

∂l

L∫
0

λ(l′)Gφ(l, l
′)dl′

−
1
C′c

∂

∂l
λ(l)+Z′I s(l)=Einc(r) · et (r), (10)

where I s represents the current in the wire and λ the line
charge density. GA and Gφ denote the Green’s functions for

the potentials, given by

GA(l, l
′)=

e−jk|r(l)−r
′(l′)|

|r(l)− r ′(l′)|
et (l) · et (l

′)

−
e−jk|r(l)−r

′
1(l
′)|

|r(l)− r ′1(l′)|
et (l) · et 1(l

′), (11)

Gφ(l, l
′)=

e−jk|r(l)−r
′(l′)|

|r(l)− r ′(l′)|
−
e−jk|r(l)−r

′
1(l
′)|

|r(l)− r ′1(l′)|
. (12)

In case of a lossy conductor in the thin wire approximation,
the tangential E-field becomes

1
~
J s(r) · et (r)

∣∣
S
= Z′I s(l), (13)

with the impedance per unit length

Z′ =−
Zc

2πa

I0(γ a)

I1(γ a)
(14)

evaluated on the surface of the wire (Nitsch and Tkachenko,
2006; Tesche et al., 1997). The characteristic impedance Zc
is

Zc =

√
jωµ

~ + jωε
. (15)

For a dielectrically coated wire an additional capacitance C′c
needs to be considered in Eq. (10), which is given by

C′c =
2πε

ln b
a

εc

εc− 1
. (16)

An alternative formulation to Eq. (10) can be established by
substituting Eq. (4) in Eq. (9), which yields

∂ φ

∂l
+ jω

µ

4π

L∫
0

GA(l, l
′)I s(l′)dl′+Z′I s(l)

=Einc(r) · et (r). (17)

Employing the continuity condition λ=− 1
jω
I s in conjunc-

tion with the thin wire approximation in Eq. (5) leads to

φ(l)+
1

jω4πε

L∫
0

Gφ(l, l
′)
∂I s(l′)

∂l′
dl′

−
1

jωC′c

∂I s(l)

∂l
= 0. (18)

The current on the wire can now be determined by either
solving Eq. (10) or by computing the solution to Eqs. (17)
and (18). This will be outlined for multi-wire problems in
Sect. 3.1 using transmission line theory based on Eq. (10),
and by applying perturbation theory to Eqs. (17) and (18) in
Sect. 3.2.
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Figure 1. Point on wire j and segment i as function of the global parameter l, shown for l = 0.8.

3 Full-wave transmission line theory

In order to solve multi-wire problems, a single parameter is
required to simultaneously reference points on all the wires.
This can be achieved with the mapping

lj = lLj with 0≤ l ≤ 1, (19)

on wire j of length Lj with j = 1, . . .,N , where N denotes
the number of wires. lj is a curve length parameter for wire
j that depends on the single global parameter l. Figure 1 de-
picts an example with N wires. Each wire is divided into a
number of segments. Arbitrarily curved wires are linearized,
so that each segment is straight. The number of segments on
a particular wire is as a result dependent on the curvature of
the wire. In terms of the curve length parameter lj , a seg-
ment i of wire j extends from aji to bji , as shown in the
figure for three different segments. The linearization leads to
a constant tangent vector on a segment. This simplifies the
integration considerably, so that Eq. (10) can be written as

jω
µ

4π

N∑
p=1

1∫
0

LjGA,jp(lLj , l
′Lp)I

s
p(l
′Lp)Lp dl′

+
1

4πε
∂

∂l

N∑
p=1

1∫
0

LpGφ,jp(lLj , l
′Lp)λpdl′

+
1
C′c

∂

∂l
λj (lLj )+Z

′

jLj I
s
j (lLj )

= LjE
inc
j · et,j (rj ). (20)

Equivalently, for Eqs. (17) and (18) it follows

∂ φ
j
(l)

∂l
+ jω

µ

4π
Lj

N∑
p=1

1∫
0

GA,jp(lLj , l
′Lp)Ip(l

′Lp)Lpdl′

+Z′jLj I
s
j (lLj )= LjE

inc
j · et (rj ) (21)

and

φ
j
(l)+

1
jω4πε

N∑
p=1

1∫
0

Gφ,jp(lLj , l
′Lp)

∂I sp(l
′)

∂l′
dl′

−
1

jωC′cLj

∂I sj (lLj )

∂l
= 0. (22)

Alternative parameterizations to Eq. (19) are possible (Nitsch
and Tkachenko, 2010), they lead to the same solutions but
with slightly different expressions for the entries of the pa-
rameter matrices.

3.1 Transmission Line Super Theory

In this section Eq. (20) is solved iteratively using Transmis-
sion Line Super Theory (Haase, 2005) with a frequency inde-
pendent current. Since a transmission line is characterized by
the parameters P , the unknown quantities have to be deter-
mined before computing the currents. By casting the MPIE
into matrix form, a position dependent differential equation
system of the form

d
dl

(
φ(l)

I (l)

)
+ jωP(l)

(
φ(l0)

I (l0)

)
=

(
φinc(l)

I inc(l)

)
(23)
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can be established. The parameters P will be determined it-
eratively, where Eq. (23) is solved using a product integral
(Gantmacher, 1960; Dollard and Friedman, 1984). Rewriting
Eq. (20) in this form leads to

(
jω1 1 ∂

∂l

) 1∫
0

(
KL(l, l

′,k) 0
0 KC(l, l

′,k)

)(
I (l′)

λ(l′)

)
dl′

+C′−1
c λ+Z ′I = 0 (24)

with

KL(l, l
′,k)=

µ

4π
diag

(
Lj
)
G
A
(l, l′,k), (25)

KC(l, l
′,k)=

1
4πε

G
φ
(l, l′,k). (26)

The wires are excited at their terminals, which are located
outside the source volume and the influence of external fields
is neglected. The matrices G

A
(l, l′,k) and G

φ
(l, l′,k) are

given by

G
A
(l, l′,k)=GA,jp(lLj , l

′Lp)Lp,

j = 1,2, . . .,N; p = 1,2, . . .,N (27)

and

G
φ
(l, l′,k)=Gφ,jp(lLj , l

′Lp, )

j = 1,2, . . .,N; p = 1,2, . . .,N. (28)

Each matrix has the dimension N ×N , where N represents
the number of wires. The impedance and capacitance matri-
ces have diagonal form and are given by

Z ′ = diag
(
Lj
)

diag
(
Z′j

)
, for j = 1, . . .,N, (29)

C′c = diag
(
Lj
)

diag
(
C′c,j

)
, for j = 1, . . .,N. (30)

Under the assumption that the line charge and current are
determined by the solution of a differential equation sys-
tem (23), the solution is of the form(
I (l′)

λ(l′)

)
= �̃

l′

l (−jωP)
(
I (l)

λ(l)

)
. (31)

�̃
l′

l denotes the propagator, which is also referred to as ma-
trizant. Employing Eq. (31) in Eq. (24) leads to

(
jω1 1 ∂

∂l

) 1∫
0

(
KL(l, l

′,k) 0
0 KC(l, l

′,k)

)
�̃
l′

l

(
I (l)

λ(l)

)
dl′

+C′−1
c λ+Z ′I = 0, (32)

which can be written as

(
jω1 1 ∂

∂l

)(R11(l,k)I (l)+R12(l,k)λ(l)

R21(l,k)I (l)+R22(l,k)λ(l)

)
+C′−1

c λ+Z ′I = 0 (33)

where the submatrices Rij contain the solutions of the in-
tegrals. Applying the product rule of differentiation, a more
compact expression in terms of current and charge can be
found if the equation of continuity is applied,(

R21 R22
1 0

)(
∂
∂l
I (l)

∂
∂l
λ(l)

)
+jω

(
R11+

1
jω

(
∂
∂l

R21+Z ′
)

R12+
1
jω

(
∂
∂l

R22+C′−1
c
)

0 1

)
(
I (l)
λ(l)

)
= 0. (34)

This can be rearranged as

∂

∂l

(
I (l)

λ(l)

)
+ jωP iq(l)

(
I (l)

λ(l)

)
=

(
0
0

)
, (35)

which is a differential equation system for current and
line charge. The parameter matrix P iq(l,k) follows from
Eqs. (34) and (35),

P iq(l,k)=

(
R21 R22

1 0

)−1

(
R11+

1
jω

(
∂
∂l

R21+Z ′
)

R12+
1
jω

(
∂
∂l

R22+C′−1
c
)

0 1

)
. (36)

The submatrices Rij matrices are unknown and have to be
determined in order to obtain the parameters of the transmis-
sion line system. Assuming that the matrizant is known, the
integral over the Green’s functions can be solved and the sub-
matrices can be obtained from Eq. (32), and combined in a
matrix R of the form

R=
(

R11 R12
R21 R22

)

=

1∫
0

(
KL(l, l

′,k) 0
0 KC(l, l

′,k)

)
�̃
l′

l dl′. (37)

At this point the iteration is started. The identity matrix is
used as a first approximation for the matrizant. Assuming the
Green’s functions initially to be independent of frequency,
allows integrals to be solved analytically (Nitsch et al., 2009).
The initial values are then

R(0)
=

1∫
0

(
KL(l, l

′) 0
0 KC(l, l

′)

)∣∣∣∣
k=0

dl′. (38)

Based on these values, the parameters P(0)
iq (l) are calculated

using Eq. (36), from which an updated solution for current
and line charge is computed employing Eq. (35) and then
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recasted in a form of a matrizant as written in Eq. (31). The
next iteration is performed with the updated matrizant. The
iteration matrix at step n can now be compactly expressed as

R(n)
=



1∫
0

(
KL(l, l

′) 0
0 KC(l, l

′)

)∣∣∣∣
k=0

dl′,

n= 0

1∫
0

(
KL(l, l

′,k) 0
0 KC(l, l

′,k)

)
�̃
l′

0 (−jωP(n−1)
iq )dl′,

otherwise.

(39)

Usually, the first iteration already delivers accurate results
(Haase, 2005). In order to solve the differential equations,
boundary conditions are required for current and line charge,
which is a non-trivial problem for the charge. In order to cir-
cumvent this problem, a potential and current representation
is employed. From Eq. (33) it follows

φ =R21I +R22λ, (40)

from which parameters P? can be computed, (Haase, 2005),

P?
=

(
P?

11 P?
12

P?
21 P?

22

)
, (41)

where

P?
11 =

(
R12+

1
jω

C′c
−1
)

R−1
22

P?
12 =R11+

1
jω

(
Z ′−C′c

−1R−1
22 R21

)
−R12R

−1
22 R21

P?
21 =R−1

22

P?
22 =−R−1

22 R21

The iterative approach is based on the computation of R,
which is then used in Eq. (41). Solving the differential equa-
tion in potential-current representation leads to the desired
result (Rambousky et al., 2013; Rambousky, 2014). The it-
erative procedure is expensive in terms of computation time.
If a low frequency solution is desired, it is usually sufficient
to only use the starting values which then lead to position-
dependent parameters. No further iteration is required. R11
and R22 are calculated using Eq. (38) and then used in
Eq. (41), which leads to

P?(0)
=

(
1
jω

C′−1
c R−1

22 R11+
1
jω

Z ′

R−1
22 0

)
. (42)

An alternative and more efficient method is presented in
Sect. 3.2.

3.2 Solution using perturbation theory

The method is based on the direct approximation of the cur-
rent on a wire. The procedure will initially be described for
a single wire and afterwards be extended to multi-wire ar-
rangements. The wire is excited by applying delta sources at

one or both ends of the wire. This leads to two linear inde-
pendent solutions for the potential and the current,

φ(l)= C1φ1
(l)+C2φ2

(l) (43)

and

I (l)= C1I 1(l)+C2I 2(l), (44)

from which the system of ordinary differential equations
(ODEs)

∂

∂l

(
φ

I

)
+ jω

(
P 11(l) P 12(l)

P 21(l) P 22(l)

)(
φ

I

)
=

(
0
0

)
, (45)

can be established (Burg et al., 2013; Heuser, 1995). The
entries P ij are continuously differentiable functions for all
l ∈ [0,1]. Employing Eqs. (43) and (44) in Eq. (45), leads to

∂

∂l

(
φ

1
φ

2
I 1 I 2

)
+ jω

(
P 11(l) P 12(l)

P 21(l) P 22(l)

)(
φ

1
φ

2
I 1 I 2

)
=

(
0 0
0 0

)
. (46)

The coefficients P ij can now be determined as(
P 11(l) P 12(l)

P 21(l) P 22(l)

)
=−

1
jω

( ∂
∂l
φ

1
∂
∂l
φ

2
∂
∂l
I 1

∂
∂l
I 2

)(
φ

1
φ

2
I 1 I 2

)−1

, (47)

under the assumption that the Wronskian exists on the entire
domain, i.e. for 0≤ l ≤ 1. For a multi-wire problem with N
wires, Eq. (45) can be written as

∂

∂l

(
φ

I

)
+ jω

(
P11(l) P12(l)

P21(l) P22(l)

)(
φ

I

)
=

(
0
0

)
. (48)

The submatrices P ij are of dimensionN×N , so that the sys-
tem Eq. (48) is of dimension 2N × 2N . In order to compute
the coefficients, the derivatives of the currents are required.
These are initially approximated using the theory of travel-
ling waves,

I
(0)
1 = CI,1e

−jklL, (49)

I
(0)
2 = CI,2e

jklL. (50)

Equation (47) can be generalized for N wires as φ
1

φ
2

I
(0)
1 I

(0)
2

=
 Fφ,1 Fφ,2

diag
(
e−jklLj

)
diag

(
e jklLj

)


(
diag

(
CI,1

)
0

0 diag
(
CI,2

)) (51)
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with

Fφ,1 =


f
φ,1,11

f
φ,1,12

. . . f
φ,1,1N

f
φ,1,21

f
φ,1,22

. . . f
φ,1,2N

...
...

. . .
...

f
φ,1,N1

f
φ,1,N2

. . . f
φ,1,NN

 and

Fφ,2 =


f
φ,2,11

f
φ,2,12

. . . f
φ,2,1N

f
φ,2,21

f
φ,2,22

. . . f
φ,2,2N

...
...

. . .
...

f
φ,2,N1

f
φ,2,N2

. . . f
φ,2,NN

 , (52)

where the entries of the matrices are defined as

f
φ,m,jp

=
Lp

c

(−1)m−1

Cm,jp
+
(−1)m

cC′c
e(−1)mjklLj

=
(−1)m−1Lp

4πεc

Np∑
i=1

bi∫
ai

(
e−jk|rj (lLj )−r

′
pi (l
′Lp)|

|rj (lLj )− r ′pi(l′Lp)|

−
e−jk|rj (lLj )−r

′
1,pi (l

′Lp)|

|rj (lLj )− r ′1,pi(l′Lp)|

)
e(−1)mjkl′Lp dl′

+
(−1)m

cC′c
e(−1)mjklLj (53)

for j,p = 1,2, . . .,N . Np denotes the number of segments
on wire p, m= 1 corresponds to the forward travelling wave
and m= 2 to the backward travelling wave, whereas Cm,jp
refers to the local capacitance between wires j and p,

Cm,jp = 4πε

 Np∑
i=1

bi∫
ai

(
e−jk|rj (lLj )−r

′
pi (l
′Lp)|

|rj (lLj )− r ′pi(l′Lp)|

−
e−jk|rj (lLj )−r

′
1,pi (l

′Lp)|

|rj (lLj )− r ′1,pi(l′Lp)|

)
e(−1)mjkl′Lpdl′

)−1

. (54)

The matrix containing the derivatives can be established sim-
ilarly, ∂

∂l
φ

1
∂
∂l
φ

2

∂
∂l
I
(0)
1

∂
∂l
I
(0)
2

=
 G

φ,1 Gφ,2

−jkdiag
(
Lj e
−jklLj

)
jkdiag

(
Lj e

jklLj
)


(
diag

(
CI,1

)
0

0 diag
(
CI,2

)) , (55)

where the elements of the submatrices G
φ,1 and G

φ,2 are
given by

g
φ,m,jp

=−jωLm,jp −Z
′Lj e

(−1)mjklLj

=−jω
µ

4π
Lj

Np∑
i=1

bi∫
ai

(
e−jk|rj (lLj )−r

′
pi (l
′Lp)|

|rj (lLj )− r ′pi(l′Lp)|
et,j (lLj )

̹→ ∞

L3

L2

L1n

P0

P1 P2

P3

Figure 2. Single wire above ground plane.

·et,p(l
′Lp)−

e−jk|rj (lLj )−r
′
1,pi (l

′Lp)|

|rj (lLj )− r ′1,pi(l′Lp)|
et,j (lLj )

·et 1,pi(l
′Lp)

)
e(−1)mjkl′LpLpdl′−Z′Lj e(−1)mjklLj . (56)

The local inductance between wires j and p is denoted with
Lm,jp and given by

Lm,jp =
µ

4π
Lj

Np∑
i=1

bi∫
ai

(
e−jk|rj (lLj )−r

′
pi (l
′Lp)|

|rj (lLj )− r ′pi(l′Lp)|
et,j (lLj )

· et,p(l
′Lp)−

e−jk|rj (lLj )−r
′
1,pi (l

′Lp)|

|rj (lLj )− r ′1,pi(l′Lp)|
et,j (lLj )

· et 1,pi(l
′Lp)

)
e(−1)mjkl′LpLp dl′. (57)

The parameter matrix for the N wire problem can as a result
be written as

P(1)
11 (l,k) P(1)

12 (l,k)

P(1)
21 (l,k) P(1)

22 (l,k)

=
j

ω

 G
φ,1 G

φ,2

−jkdiag
(
Lj e
−jklLj

)
jkdiag

(
Lj e

jklLj
)


 Fφ,1 Fφ,2

diag
(
e−jklLj

)
diag

(
e jklLj

)
−1

. (58)

Rewriting the inverse of Eq. (58) following (Bernstein,
2009), allows the parameter matrix to be expressed as

P(1)
11 (l)=

1
jω

(
G
φ,1D

2
+−G

φ,2

)
(
Fφ,2−G

φ,1D
2
+

)−1
, (59)

P(1)
12 (l)=

1
jω

(
G
φ,1F

−1
φ,1Gφ,2−Fφ,2

)
(
D+−D−F−1

φ,1Fφ,2

)−1
, (60)

P(1)
21 (l)=−

2
c

diag
(
Lj
)
D+

(
Fφ,2−Fφ,1D2

+

)−1
, (61)
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Figure 3. Currents at the terminals.
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Figure 5. Currents at the terminals in the frequency range from 1 to 50 MHz.

P(1)
22 (l)=−

1
c

diag
(
Lj
)(

D−F−1
φ,1Fφ,2+D+

)
(
D+−D−F−1

φ,1Fφ,2

)−1
, (62)

where

D+ = diag
(
e jklLj

)
, D− = diag

(
e−jklLj

)
D−1
+ =D−, D−1

− =D+,

and

D2
+ = diag

(
e j2klLj

)
(63)

Eq. (45) can be solved employing a fourth order Runge-Kutta
algorithm (Steinmetz, 2006). This technique can also be ap-
plied to the N wire problem, i.e. Eq. (48). In contrast to
the iterative method in Sect. 3.1, the parameters are evalu-
ated without iteration. This considerably reduces the required
computation time without compromising the accuracy of the
computed results. The Transmission Line Super Theory that
is enhanced with the perturbation theory described in this
section will henceforth be referred to as TLST/PT.

Only a concentrated excitation has been considered so far.
Distributed sources can either be included for symmetric
configurations, like a circular loop (Nitsch and Tkachenko,
2005; Tkachenko and Nitsch, 2005), or by direct computa-
tion in the TLST. A combination of TLST and TLST/PT is
advantageous, since the TLST/PT enables the efficient com-
putation of the parameters. The source terms are iterated in

Figure 6. Two wire configuration.

the TLST and then transformed into potential-current repre-
sentation.

4 Simulated results

A single wire above a ground plane is considered as a first
example. Figure 2 displays the geometry of the wire which
consists of three segments.

The segments are of length Li , i = 1,2,3, where seg-
ment 1 and 3 are parallel to the normal of the ground plane.
The overall length L of the wire is given by the sum

∑3
i=1Li .

Segment 1 and 2 are connected at point P1 and segment 2
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Figure 7. Currents at the terminals of wire 1.
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Figure 8. Currents at the terminals of wire 2.
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and 3 at point P2. The terminals are located at point P0 and
P3. These points determine the geometry of the wire, where
the position vector to a point Pν is denoted rν . In terms of
the global parameter l, 0≤ l ≤ 1, the position vector to any
point on the wire can be written as

r(l)=


r0+

l−L′0
L′1−L

′

0
(r1− r0), L′0 ≤ l < L

′

1

r1+
l−L′1
L′2−L

′

1
(r2− r1), L′1 ≤ l < L

′

2

r2+
l−L′2
L′3−L

′

2
(r3− r2), L′3 ≤ l ≤ L

′

2

(64)

with L′i =
∑i
k=1Lk/L, where L′0 = 0 and L′3 = 1. The po-

sition vector to a point on an arbitrarily shaped wire con-
sisting of n straight segments can be expressed in the same
way. The terminals at point P0 and P3 are referred to as ter-
minal 1 and terminal 2, respectively. Figure 3 displays the
computed currents at the terminals for a wire with segments
of length L1 = L3 = 0.5 m and L2 = 1.5 m, which implies
that segment 2 is parallel to the ground plane. The radius
a for the thin wire approximation equals 0.25 mm. Simula-
tions are performed in the frequency range from 1 MHz to
2 GHz, where the transmission line results are computed ap-
plying the TLST/PT described in Sect. 3.2. The real and the
imaginary parts of the currents at both terminals are in good
agreement with method of moment (MoM) results over the
entire frequency range which provides a first indication of the
accuracy of the computed results. The number of resonances
depends on the geometry of the wire and the frequency, since
an integer multiple of half of the wavelength must approxi-
mately be equal to the length of the wire. This leads to ap-
proximately 34 resonances, in good agreement with the sim-
ulated results for l = 0 in Fig. 3.

Figure 4 displays the off-diagonal parameters P12 and
P21. The parameters are dependent on the position and are
real-valued in the low frequency case. The graphs clearly
show that the imaginary part vanishes along the entire length
of the line. The parameters become complex-valued for
higher frequencies, where the imaginary part comprises radi-
ation losses. Results for the low frequency case which have
been computed using the starting values of the TLST are
shown in Fig. 5. The real and imaginary parts at both termi-
nals agree well with the TLST/PT results up to a frequency
of approximately 15 MHz.

As a second example, the currents in a two wire config-
uration in the form of two semicircles is investigated. Ana-
lytical solutions are known for a single circular loop (Nitsch
and Tkachenko, 2005; Tkachenko and Nitsch, 2005; Storer,
1956; Wu, 1962), and for multiple loops (King and Harrison,
1969), where the solutions are expressed in terms of Fourier
series. These solutions are limited to simple wire structures
and cannot easily be extended to arbitrary wire configura-
tions. The semicircles considered in this example are of ra-
dius R and are separated by a distance d , as shown in Fig. 6.
In order to apply the TLST/PT procedure, wire j is discre-
tised with nj elements, where in this case j is equal to 1 or 2.

The terminals of wire j are located at Pj,0 and Pj,n and are
referred to as terminal 1 and terminal 2 of wire j , respec-
tively. The four terminals define a rectangle of width 2R and
height d , and the two surfaces that are enclosed by the semi-
circles and the ground plane are both perpendicular to the
ground plane. Wire 1 is excited at terminal 1 with the same
unit voltage source as in the first example. All remaining ter-
minals are loaded with 50� resistors. Simulations are per-
formed with a semicircle radius R of 1 m, a wire radius a of
0.25 mm, a wire distance d of 0.5 m, and with n1 = n2 = 60
segments. Figure 7 shows the currents at the terminals of
wire 1 and Fig. 8 the currents at the terminals of wire 2.
Good agreement of the TLST/PT and the method of moment
results can be observed on all four terminals. This validates
the procedure and confirms the applicability of the transmis-
sion line procedure with perturbation approach to multi-wire
problems.

5 Conclusions

A refined variant of the Transmission Line Super Theory
that utilises perturbation theory, and which is referred to as
TLST/PT, has been derived and applied to determine currents
in thin wire structures. The perturbation approach enables
a direct and non-iterative approximation of the initial cur-
rent in a wire, which reduces the required computation time
without compromising the accuracy of the results. The pro-
cedure has been applied to compute the currents of a single
wire problem and of a two wire configuration. TLST/PT and
method of moment results have shown to be in good agree-
ment, which validates the procedure and verifies applicability
of the method to multi-wire problems.
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