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Abstract. In this paper, we investigate the propagation of
high-frequency current waves along a stochastic transmis-
sion line inside a rectangular cavity using as basis the model
of a transmission line with the symmetry of the resonator.
The stochastization of the line is created by a stochastically
arranged chain of loads. Using similar models one also can
take into account stochastic geometry of the line. Research
has shown a significant difference between the propagation
of the current wave along the transmission line with stochas-
tic loads in free space and in the resonator. In the first case,
the average square of the absolute value of the transmis-
sion coefficient exponentially tends to zero with increasing
length of the line due to interference phenomena for current
waves. In the second case, in the average, the current can
penetrate through the stochastic chain of the loads due to the
re-reflection of the signal from the walls of the resonator.

1 Introduction

Investigation of electromagnetic coupling to antennas and
transmission lines inside resonators – like objects as shielded
rooms, computer cases, aircraft fuselages, satellites, etc., is
a challenging task in modern electromagnetic compatibility.
The development of corresponding calculation methods is a
quite advanced mathematical problem. In reality the prob-
lem is even more complicated, because the exact geometrical
and electrical parameters of the transmission line, which de-
fine the coupling, are unknown in practical applications. As
result one can only talk about the probability of one or the
other parameters.

Numerical methods – like MoM, TLM, etc. – are usually
applied for the solution of this group of problems. But they

are applicable for specific cases only and are computation-
ally very intensive. In contrast to this, analytical and semi-
analytical methods are applicable on general cases, and allow
to make a fast analysis of the problem.

In this paper, we investigate the propagation of high-
frequency current waves along a stochastic transmission line
inside a rectangular cavity. Inside the resonator the wire is
conducted parallely to four walls of the resonator and con-
nects two other opposite walls. This system allows an ex-
act analytical solution by a spatial Fourier transformation
for any kind of excitation, including any finite number of
lumped sources and loads, which can be considered as con-
trolled voltage sources (Tkachenko et al., 2013a). In the case
of multiple loads the problem is reduced to the solution of a
linear algebraic system of N th order (N is the total num-
ber of sources and loads) (Tkachenko et al., 2014a). This
method is computationally effective, fast – it contains only
double mode sums- and allows to solve stochastic problems
with relative large statistical samples.

In the present research, the stochastization of the line
is created by the chain of randomly arranged lumped
impedances, which can have reactive as well ohmic compo-
nents. Such model was earlier investigated for the case of
free space (Tkachenko et al., 2013b). It was shown that cur-
rent waves cannot propagate through such chain of the loads
due to the wave interference effects. If the randomization of
the scatterers positions is large enough, the average square
of the absolute value of transmission coefficientD decreases
(exponentially) with increasing length of the chain or (and)
increasing parameter of stochastization. A probability den-
sity function (PDF) of this value also decreases exponentially
with increasing |D|2. Moreover, it was shown that – with
proper choice of parameters – this model describes lines with
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stochastic geometry (Tkachenko et al., 2016; Vick, 2014) in
the sense that the mean values of |D|2 and its PDF behave
in a similar way with frequency. The present research has
shown a significant difference between the propagation of the
current waves along the transmission line with stochastically
arranged loads in free space and inside a resonator. In the
resonator the current can penetrate through the stochastical
chain of the loads due to the re-reflection of the signal from
the walls. This means that the averaged square of the abso-
lute value of the transmission coefficient does not decrease
with increasing parameter of randomization of the chain, and
correspondingly the PDF has non-zero “tail” for a |D|2 value
of about one.

This paper is organized as follows: In Sect. 2 we shortly
describe the solution method for the transmission line with
symmetrical geometry and arbitrary number of lumped loads
obtained in earlier papers (Tkachenko et al., 2011, 2013a,
2014a). In Sect. 3 we investigate the statistical moments of
the transmission coefficient for the current wave through the
transmission line with a randomly arranged set of mainly in-
ductive lumped loads. This section is concluded by a compar-
ison of the results for the cases of the transmission line in free
space and the transmission line in the resonator. In Sect. 4 we
investigate the PDF for the square of the absolute value of the
transmission coefficient and will offer an analytical model to
describe this PDF. Section 5 concludes the paper.

2 Method of Symmetrical Lines inside Resonators
(MoSL)

2.1 Exact solution for the short circuited wire

First we consider a short-circuited transmission line with
symmetrical geometry inside the resonator with the side
lenghts a, b and h. The line is parallel to one axis of the
resonator and connects two opposite walls (see Fig. 1). Con-
sider an electrical field Eex(r) inside the box excited, e.g.,
by a radiating antenna, a penetration of external electromag-
netic waves through slots and apertures or by a lumped volt-
age source. This field excites in the wire an electrical cur-
rent I (ω,z), which, in turn, is the source of the scattered
field Esc(r), which is calculated by integration with the ten-

sor (dyad) Green’s function of the resonator G
E
(r,r1). For

the perfectly conducting thin wire the tangential component
of the total (exciting plus scattered) electrical field on the
boundary of the wire equals zero, yielding the Electrical
Field Integral Equation (EFIE) for the induced current:

L∫
0

G
E
zz (x0+ r0,y0,z,x0,y0,z1) I (z1)dz1+E

ex
z (z)= 0 (1)

Here G
E
zz is the zz component of the tensor Green’s function

(electrical current→ electrical field) for the rectangular res-

(a)

(b)

Figure 1. The normalized current along the symmetrical
TL with the following geometry. Parameters of resonator:
a= 1.5 m, b= 1.2 m, h= 0.9 m. Parameters of transmission line:
L=h= 0.9 m, hTL= x0= 9 cm, y0= 37 cm, r0= 1 mm, Z1= 0,
Z2=ZC= 311�.

onator, x0, y0 are the positions of the wire in the x, y plane,
r0 is the radius of the wire.

The quantity G
E
zz is given by:

GE
zz(r,r1)=

4η0

jkV

∞∑
m1 = 1
m2 = 1
m3 = 0

(2)

εm3 (k
2
− (kvz )

2)sin(kvxx1)sin(kvxx)sin(kvyy1)sin(kvyy)cos(kvz z1)cos(kvz z)

k2
v − k

2+ jδ

with the following definitions: V = abh is the volume of
the resonator, kvx =m1π/a, kvy =m2π/b, kvz =m3π/h, kv =√
(kvx)

2+ (kvy)
2+ (kvz )

2, η0 =
√
µ0/ε0, εm = 2− δm,0.

For the short-circuited wire (Z1 = Z2 = 0 in the Fig. 1) the
induced current satisfies the zero Neumann boundary condi-
tion:

∂I (z)/∂z|z=0 = ∂I (z)/∂z
∣∣
z=h
= 0 (3)

The EFIE for symmetrical thin-wires has the same symme-
try as an electrodynamic problem for the empty chamber:
translational symmetry with translational constant h. A cor-
responding representation of the translation group is given by
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the collection of cosine-functions {cos(m3πz/h)}. We de-
compose both the exciting field and unknown current with
respect to this orthogonal system of functions:

Eex
z (r)=

∞∑
m3=0

Eex
z (x,y,m3) · cos(m3πz/h), (4a)

I (z)=

∞∑
m3=0

I (m3) · cos(m3πz/h) (4b)

Then we substitute Eq. (4a, b) into Eq. (1) and take into ac-
count Eq. (2). After some transformative calculations, the
orthogonality of the cosine functions is used to obtain the
Fourier components of the current.

I (m3)=
Eex
z (x0,y0,m3)jk

η0((kvz )
2− k2) · S

(5)

Here the function S characterizes two – dimension scattering.
After some manipulations it can be written in the form:

S=
1
a

∞∑
m1=1

sin2(kvxx0) ·

[
2sinh(γ̃v(b− y0))sinh(γ̃vy0)

γ̃v sinh(γ̃va)
−

1
kvx

]

+
1

2π
ln
[
a|sin(πx0/a)|

πr0

]
,

where γ̃v =

√
(kvx)

2+ (kvz )
2− k2 (6)

If the frequency ω is far from cavity resonances: |ω−
ωv|>>1ω, where 1ω is the shift of an eigen- frequency,
which appears due to the interaction of TL modes with
those of the resonator: 1ωv ∼ ωv4π

[
abk2

v ln(2x0/r0)
]−1.

In case then the wire is close to one of the walls of the
resonator: r0� x0� y0,a, one can show that S ≈ STL ≈

ln(2x0/r0)/2π , and Eqs. (4b) and (5) yield the classical TL-
solution for the short-circuited wire obtained by a Fourier ex-
pansion series (Tkachenko et. al., 2011, 2013a).

2.2 Lumped excitations and loads

The solutions (Eqs. 4b–5) can be re-written in the integral
form with Green’s function for a transmission line, as in the
transmission line approximation, however, with exact scat-
tering function S(k,m3,x0,y0) (Eq. 6), taking into account
the properties of the resonator

I (z)=

h∫
0

Eex
z (z1)YRES(z,z1,k,a,b,h)dz1

YRES(z,z1,k,a,b,h,x0,y0) :=
jk

hη0

∞∑
m3=0

εm3 cos(πm3z/h)cos(πm3z1/h)

((kvz )
2− k2) · S(k,m3,x0,y0)

(7)

The Eqs. (4b)–(6) or (6)–(7) represent exact analytical solu-
tions for the current induced in the symmetrical line by arbi-
trary excitationsEex

z . In particular, the excitation of a lumped

source with the amplitude U0 and coordinate z0, gives the
current:

Eex
z (z)= U0 · δ(z− z0)⇒ I (z)= U0 ·YRES(z,z0) (8)

Similarly, one can also include lumped impedances. The
lumped load Z at the point z0 can be considered as controlled
lumped source with unknown amplitude:

EZz (x0,y0,z)=−Z · I (z0)δ(z− z0). (9)

In Eq. (9) I (z) represents the total current which flows
through the load. The contribution to the current from this
load then is

IZ(z)=−Z · I (z0) ·Y (z,z0). (10)

Thus, dealing with “external” exciting fields and/or fields
from controlled sources, one can express the total current
by unknown currents through loads. Calculating these cur-
rents one obtains a linear system for them (Tkachenko et al.,
2014a). For example, for the chain of N lumped impedances
excited by a lumped source (see Fig. 4a) the total exciting z-
field is

Eex.tot
z (z)= U0δ(z− z0)−

N∑
n=1

ZnI (zn)δ(z− zn) (11)

where z0 is the position of the exciting lumped source U0, z1,
z2, ... zN are positions of the lumped impedances Z1, Z2, ...
ZN . Then, the total current is a sum of N + 1 terms

I (z)= U0YRES(z,z0)−

N∑
n=1

ZnI (zn)YRES(z,zn) (12)

The current amplitudes in the points zn can be found by the
solution of the linear equation system:

N∑
n=1

[
δn,n1+Zn1YRES(zn,zn1)

]
· I (zn1)= U0YRES(zn,z0) (13)

For the case of two terminal loads Eq. (13) can be solved
analytically (Tkachenko et al., 2011). An example for one
load is shown in Fig. 1b.

3 Transmission Line with randomly located
non-uniformities. Statistical Moments

In this Section, we investigate the propagation of cur-
rent waves along a multiloaded transmission line with ran-
domly located non-uniformities. Earlier, it is was shown
(Tkachenko et al., 2013b) that statistical properties of trans-
mission lines with stochastic geometry could be approxi-
mately described by the model of a straight transmission line
with stochastic lumped inductance-like loads. Calculations
in the used method are greatly facilitated by the fact that,
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Figure 2. Transmission line with stochastically arranged lumped
impedances in free space.

for each Fourier mode the amplitude of the lumped potential
and its position define only the nominator of the correspond-
ing Fourier series coefficient through simple trigonometric
functions. The denominator is the same for each element, in-
cluding one-dimensional summation and depending on the
transversal geometry of the resonator.

Now, we consider a resonator with the dimensions a =
30 cm, b = 53 cm, and h= 79 cm (see Fig. 1a). The transver-
sal position of the transmission line is given by x0 = a/2,
y0 = b/2. The line is excited by a lumped voltage source
U0 = 1 V at the left terminal and loaded by six lumped
loads. At the terminals, the loads are matched impedances
(for the propagation of TEM waves along the wire in an in-
finite waveguide): Z1 = ZNmax = ZC = 333�. The central
part of the line contains Nmax− 2 equal non-uniformities
which can be considered as local distortions of the geome-
try as well as lumped loads. Here, we assume that they are
lumped impedances with an essentially inductive and small
ohmic component: Zn = Z = jωL+R, n= 2, ... Nmax− 1.
The average position of each impedance is z(0)n = (n−1)·1L,
n= 2,3, ... Nmax−1. They are randomly distributed accord-
ing to the normal law and with dispersion σ . Thus, the proba-
bility density function (PDF) for the position of the nth non-
uniformity zn is given by (Tkachenko et al., 2013b)

p(zn)= (
√

2πσ)−1
· exp

(
−(zn− z

(0)
n )

2/2σ 2
)

(14)

For comparison with the case of free space we consider a
transmission line with the parameters: LTL = hRES, hTL =

x0RES. The line is connected with matched impedances cal-
culated by the usual way (see Fig. 2).

In the following we investigate the value D̃ = 2ZC ·
J (h)/U0 which, for the case of a transmission line in free
space, coincides with the transmission coefficient for current
waves up to an obvious phase factor. We choose Nmax = 6,
(i.e., the number of internal scatterers are not too large) and
Nsc :=Nmax− 2= 4. This allows us already to show the
main characteristic features of the stochastic system. The
values of inductance and resistance for each impedance are:
L= 0.1 µH, R = 50�. We took Nf = 3000 frequency points
in the frequency band up to 3 GHz, and for each frequency
point Nst = 300 statistical events.

Since the lumped impedance is mainly inductive, the scat-
tering on it amplifies with increasing frequency. To change
“the value of stochastization” of the line we changed the dis-
persion σ . The results for the square of the absolute value
of the averaged transmission coefficient and the averaged
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Figure 3. Statistical moments of the transmission coefficient for
different parameters of the scatterers distribution. Comparisonof re-
sults for a TL in free space (a) and in a resonator (b). Case of weak
scattering: σ = h/(N − 1)/20 = h/100.

square of the absolute value of the transmission coefficient
are presented in Figs. 3 and 4 for the case of weak and strong
stochastization.

For weak stochastization (see Fig. 3a) the average value
of the transmission coefficient for the transmission line in
free space looks practically like a transmission coefficient
for the deterministic line with finite number of equidistant
lumped loads (Tkachenko et al., 2013b). One observes al-
lowed and forbidden (gap) frequency bands which are caused
by the interference effects for current waves. However, for
the TL in resonator, the stochastization is essentially larger〈
|D|2

〉
>>|〈D〉|2 (see Fig. 3b).

For strong stochastization for the TL in free space, only the
two lowest allowed bands are observed. For higher frequen-
cies, when the value of the impedance increases, the current
wave cannot propagate through the chain (in average) (see
Fig. 4a). In other words, one observes the effect of stochastic
localization, where the current wave is not able to go through
the stochastic line. On the contrary, for the TL in resonator
the signal can propagate from the left terminal to the right
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Figure 4. Statistical moments of the transmission coefficient for dif-
ferent parameters of the scatterers distribution. Comparison of the
results for a TL in free space (a) and in a resonator (b). Case of
strong scattering: σ = h/(N − 1)/3 = h/15.

one (see Fig. 4b). Roughly speaking, this can be explained as
a direct action of the EM field which is re-reflecting from the
walls of the resonator.

4 PDF of the transmission coefficient for a
transmission line with randomly located
non-uniformities inside a resonator

In this Section we investigate the probability distribution
function (PDF) for the absolute value of the square of the
transmission coefficient for a stochastically loaded transmis-
sion line in a resonator. We use the results of the numerical
simulation for the model of stochastic variation of the po-
sitions of the lumped impedances (see above). To smooth
the influence of the cavity resonances on the PDF-function
and to increase the number of statistical events we con-
sider frequency intervals of 100 MHz to define each PDF. We
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Figure 5. PDF of |D|2 for different frequency intervals. (a) PDF for
frequency intervals 200–1100 MHz. (b) PDF for frequency intervals
2000–2900 MHz.

considered stochastical distributions with σ = h/(N−1)/20
= h/100, when the stochastic phenomena were observed
(see Fig. 3b).

To find the PDF we use the usual histogram method with
division of the interval from minimum to maximum of the
explored values of Ngist = 100 subintervals (bins), and cal-
culating the number of statistical events falling into each of
them, followed by a further normalization of the curve. The
results are presented in Fig. 5 for different frequency inter-
vals.

Striking in the curves of Fig. 5 (Vick, 2014) are their
large “humps” on the right or in the central part for the case
of weak scattering (curves 200–300 and 400–500 MHz in
Fig. 5a), and more or less horizontal curves for the interme-
diate case, and damped curves, which have their maximum
near zero, for the case of strong scattering (all curves on
Fig. 5b). However, unlike in the case of free space, the PDF-
curve for strong scattering does not attenuate exponentially
to zero, but retains a finite value. This means that, on contrary

www.adv-radio-sci.net/16/195/2018/ Adv. Radio Sci., 16, 195–201, 2018



200 S. V. Tkachenko et al.: Propagation of current waves along a transmission line

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Initial gistorgramm
Stochastic minimization, α = 2.878, β = 1.689, S2 = 2.06 x 10-2

PD
F(

|D
|2 )

|D|2

f = 200–300 MHz

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

Initial gistorgramm
 Stochastic minimization. α = 0.5063, β = 1.528, S2 = 3.83 x 10-3

PD
F(

||D
|2 )

|D|2

f = 1600–1700 MHz

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

Initial gistorgramm
 Stochastic minimization, α = 0.4664, β = 1.482, S2 = 3.424 x 10-3

 f = 2800–2900 MHz

PD
F(

|D
|2 )

|D|2
0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6

7

In
de

xe
s 

of
 B

et
a 

di
st

rib
ut

io
n

fmid = (fmin+fmax)/2

α
β

(a) (b)

(d)(c)

Figure 6. Beta approximation of the PDF of |D|2. (d) Indices of the Beta approximation for the PDF of |D|.

to the TL in free space, the PDF-dependencies show the pos-
sibility of propagation of current waves along the stochastic
line inside the resonator.

Now we can obtain an analytical approximation of the
PDF-curves. The square of the absolute normalized value of
the transmission coefficient y1 := |D|

2/|D|2max is a stochastic
value1, which is defined on the restricted interval 0< y1 < 1.

Then, according to the principle of maximum entropy, the
PDF of y1 is a Beta-distribution (Park and Bera, 2009):

fβ(α,β,y1)= y
α−1
1 (1− y1)

β−1B−1(α,β) where B(α,β)

is the Euler Beta-function, and parameters α > 0,β > 0. (15)

The approximation parameters α and β are found by the
Monte-Carlo minimization of the integral functional of
the square of the absolute value of deviation S2, where
the y1n and f (y1n) are arguments and function of PDF-
distribution obtained from the simulation above. The func-
tion fβ(α,β,y1n) is the beta-distribution (Eq. 15), where the
indices α and β are chosen randomly from some initially

1Of course, to speak correctly about the PDF one has to have a
case of strong stochastization, i.e., the equality<D >≈ 0 has to be
satisfied.

guessed interval (we use 106 statistical events).

S2 =

Ngist∑
n=1

∣∣fβ(α,β,y1n)− f (y1n)
∣∣21y (16)

For more accuracy the procedure can be repeated for nar-
rower initial parameter intervals. The results for several fre-
quency intervals are presented in Fig. 6a–c. In Fig. 6d we
present the indices of the Beta approximation for PDF distri-
bution of the square of the absolute value of the transmission
coefficients through the chain of the stochastically arranged
impedances. Analyzing this curve, one can observe a change
in the nature of the scattering of the current wave at about
1300 MHz (a sharp change of the alpha-index). In our opin-
ion, this corresponds to a transition from a regime of weak
scattering to the regime of strong scattering.

5 Conclusions

In this paper, we investigated the propagation of current
waves through a transmission line with a randomly located
chain of lumped impedances inside a rectangular resonator
using the method of symmetrical lines in the resonator, de-
veloped earlier. It was shown, that unlike the case of TL in
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free space, where the current wave cannot propagate through
a random chain of impedances due to the effect of dynam-
ical localization (Klyatskin, 2008), or one-dimensional An-
derson localization (Lifshitz et al., 1988). In the resonator,
however, such penetration is possible due to reflection of the
signal from the walls of the resonator. It can be interpreted as
destruction of the one-dimensional Anderson localization by
additional external resonances.

The stochastical properties of the absolute value of the
propagation coefficient was studied. It was shown that its
PDF can be approximated by a binomial distribution with
good accuracy.

The results obtained, after additional examinations, can
be used to study cabling in cars, computer cases and air-
craft fuselages. Namely, distortion of the signals during the
penetration through internal wires can be considered and the
influence of the wiring currents on the fields can be cal-
culated. To do this, one has to solve coupling problem for
multiconductor case, consider wiring in the cylindrical res-
onators, and to solve scattering problem. The first two prob-
lems can be solved by method of symmetrical wire in res-
onator (Tkachenko et al., 2018, 2014b). The main challenge
here is the definition of load parameters of the examined ob-
jects, such as the number of impedances, the stochastic distri-
butions, etc. To solve this problem, some efforts were made
in (Vick, 2018) where a wire with stochastic geometry in the
resonator was considered.
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