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Abstract. While measuring the effective permittivity of dis-
persive material it may be of interest to distinguish between
conductivity losses (caused by free electrons) and dielec-
tric losses (caused by bounded electrons) which both are in-
cluded in the imaginary part. This usually turns out to be
a non-trivial task unless suitable dispersion models for the
dielectric and/or the conductivity properties of the material
are assumed. In this paper we present a more general method
based on the Kramers-Kronig transformations to separate the
conductivity from the effective complex permittivity of a dis-
persive material. The Kramers-Kronig transforms (or KK-
transforms) are unique integral relations between the real
and the imaginary part of a complex quantity describing a
causal system. The proposed method and the corresponding
algorithm are tested by first supposing some fictitious values
of the complex permittivity satisfying the KK-transforms.
Then, different values of a conductivity are added leading
to a change of the imaginary part of the effective permittivity
while the real part remains the same. The effective permittiv-
ity (including a conductivity part) does generally not satisfy
the KK-transforms. This fact will be employed to retrieve
the conductivity from that effective complex permittivity. Fi-
nally the method is applied to measured values found in the
literature to retrieve the conductivity from the effective per-
mittivity of composite material.

1 Introduction

In electrical engineering the dispersion phenomenon is well-
known as a frequency-dependent variation of the phase ve-
locity of electromagnetic waves due to specific material
properties. Dispersion occurs in any medium which is not
vacuum though its effect can often be neglected within a

properly limited frequency band. Dispersion is closely re-
lated to the causality principle meaning that a cause can
never happen after the corresponding effect. Kramers (1927)
showed that the real part of the refractive index (closely re-
lated to the real part of the complex permittivity) of an op-
tical system can be calculated from the absorbed light, i.e.
from the imaginary part of the complex permittivity. Kro-
nig (1926) proved that the dispersion in a medium is a di-
rect consequence of the causality principle. The Kramers-
Kronig (KK) transforms generally relate the real and the
imaginary parts of a complex quantity describing a causal
system. In other words, the real part can be uniquely calcu-
lated from the imaginary part and vice versa. However, there
are some constraints for any complex quantity to satisfy the
KK-transforms such as stability and linearity (Esteban and
Orazem, 1991; Macdonald and Urquidi-Macdonald, 1990,
1985). Macdonald and Urquidi-Macdonald (1990) suggested
that these relations can be employed to resolve the complex
impedance data of any electrochemical system. They proved
that the electrical equivalent circuit of any electrochemical
impedance should follow the KK-transforms provided that it
satisfies the aforementioned constraints.

In practice, the main difficulty in numerically solving the
KK-transforms is the indefiniteness of the integrals whereas
the available data are given on a limited frequency range
only. Several algorithms were proposed to overcome this
problem by either calculating the data sets below the low-
est available frequency to force the system to satisfy the KK-
transforms (Esteban and Orazem, 1991), by extrapolating the
experimental data over a wide frequency range (Boukamp,
1995; Macdonald and Urquidi-Macdonald, 1990), or by ac-
cordingly applying Fourier transform techniques (Collocott,
1977). In Wallace (1993) the question was discussed whether
the Kramers-Kronig relationships place severe limitations on
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the bandwidths that can be achieved in homogeneous mi-
crowave absorbing materials.

2 Basic Idea

We propose a systematic method that exploits the KK-
transforms to distinguish between dielectric and conductive
losses, i.e., to retrieve the conductivity from a given effec-
tive permittivity. Usually the imaginary part of the measure-
ment of the complex permittivity includes both, dielectric
losses and conductivity losses. However, the KK-transforms
between the real and imaginary parts of the effective permit-
tivity are satisfied only if the imaginary part does not con-
tain any conductivity. The proposed method exploits that fact
while two different strategies are possible: We numerically
perform the KK-transform on the given (i.e. measured) real
part to find find the corresponding imaginary part which is
solely due to dielectric losses. The difference between that
KK-transformed imaginary part and the given (measured)
imaginary part must be due to the conductivity losses. A sec-
ond approach is to numerically perform a KK-transform on
the measured imaginary part. If it does not fit the measured
real part, we conclude that there is some conductivity which
can be found by solving a corresponding integral equation.
To check the algorithm used in this paper, we will start from
some fictitious values of the complex permittivity and of the
conductivity. Afterwards, the method will be applied to real-
world data (measured data found in the literature) of the ef-
fective permittivity of composite material.

3 Methods

3.1 Kramers-Kronig transforms and effective
permittivity

The Ampere-Maxwell equation associates the magnetic field
intensity H̃ to the time-derivative of the electric flux density
D̃ and the electric current density J̃ according to

∇ × H̃ (r, t)=
∂D̃(r, t)

∂t
+ J̃ (r, t). (1)

Within a linear homogeneous medium D̃ and J̃ are related
to the electric field intensity Ẽ by the causal convolutions

D̃(r, t)= ε0

t∫
0

ε̃r(t
′)Ẽ(r, t − t ′)dt ′ (2)

J̃ (r, t)=

t∫
0

σ̃ (t ′)Ẽ(r, t − t ′)dt ′ (3)

where ε0 is the permittivity of vacuum, ε̃r(t) represents the
relative permittivity, and σ̃ (t) denotes the electric conductiv-
ity. Note that dielectric effects including dielectric losses are

part of ε̃r(t). We apply the Fourier transform defined as

F (r,ω)=

∞∫
−∞

F̃ (r, t)exp{−jωt}dt (4)

to Eqs. (1)–(3) and derive

∇ ×H (r,ω)= jωD(r,ω)+J(r,ω) (5)

and

D(r,ω)= ε0εr(ω)E(r,ω) (6)
J (r,ω)= σ(ω)E(r,ω). (7)

In general, both of the frequency-domain (Fourier-
transformed) material parameters εr and σ are complex-
valued. However, in practice the conductivity is assumed to
remain real-valued within a limited frequency range. In this
paper we will use that assumption as well. Moreover, the
real and imaginary parts of the complex relative permittivity
can not be chosen independently. Since εr(ω) represents
the Fourier transform of a causal function [i.e. ε̃r(t)= 0 for
t < 0, which also is reflected in the lower integral bound in
Eq. (2)] its Fourier transform must be an analytic function
of ω in the upper half complex-plane (Sethuraman and
Sirohi, 1979). Equivalently, the real and imaginary parts of
εr(ω) satisfy the KK-transforms, also known as the Hilbert
transform.

With the definition

εr(ω)= ε
′(ω)− jε′′(ω) {ε′,ε′′} ∈ R (8)

the Kramers-Kronig transforms are given by the integrals
(Sethuraman and Sirohi, 1979)

ε′(ω)= 1+
2
π

∞∫
0

ψε′′(ψ)−ωε′′(ω)

ψ2−ω2 dψ (9)

ε′′(ω)=
−2ω
π

∞∫
0

ε′(ψ)− ε′(ω)

ψ2−ω2 dψ (10)

where ψ also represents the angular frequency. Now we in-
sert Eqs. (6) and (7) into (5) and obtain

∇ ×H (r,ω)= jωε0εr(ω)E(r,ω)+ σ(ω)E(r,ω) (11)
= jωε0εeff(ω)E(r,ω). (12)

In Eq. (12) we have introduced the effective relative permit-
tivity as

εeff(ω)= εr(ω)− j
σ (ω)

ωε0

= ε′(ω)− j

[
ε′′(ω)+

σ(ω)

ωε0

]
(13)

= ε′eff(ω)− jε
′′

eff(ω). (14)

For a real-valued conductivity σ , the real component of the
effective relative permittivity is identical to the real compo-
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nent of the relative permittivity while the imaginary compo-
nent ε′′eff contains both, dielectric and conductivity losses:

ε′(ω)= ε′eff(ω) (15)

ε′′(ω)= ε′′eff−
σ(ω)

ωε0
. (16)

We insert Eq. (16) into (9) and (15) into (10) and derive:

ε′eff(ω)=1+
2
π

∞∫
0

ψε′′eff(ψ)−ωε
′′

eff(ω)

ψ2−ω2 dψ

−
1
ε0

∞∫
0

σ(ψ)− σ(ω)

ψ2−ω2 dψ (17)

ε′′eff(ω)=
−2ω
π

∞∫
0

ε′eff(ψ)− ε
′

eff(ω)

ψ2−ω2 dψ +
σ(ω)

ε0ω
. (18)

A comparison of Eq. (17) with (9) and of (18) with (10) re-
veals that the real and imaginary parts of the effective rel-
ative permittivity satisfy the KK-transforms only if there is
no electric conductivity, σ(ω)≡ 0. However, the results in
Eqs. (17) and (18) also offer two methods to separate the
electric conductivity for the commonly measured values of
the effective relative permittivity:

a. Starting from Eq. (17) we perform a KK-transform on
the measured values of ε′′eff(ω). Subtracting from the re-
sult ε′eff(ω) equals the last term in Eq. (17) yielding an
integral equation for σ(ω).

b. Starting from Eq. (18), performing a KK-transform on
the measured values of ε′eff(ω) and subtracting the result
from ε′′eff(ω) we directly obtain the conductivity σ(ω).

3.2 Numerical evaluation of the Kramers-Kronig
transforms

Basically the KK transforms can be applied if the real or the
imaginary part of the complex relative permittivity is known
over the entire angular frequency range ω ∈ [0,∞). How-
ever, generally the measured permittivity is available only on
a limited frequency range which we assume as ωmin ≤ ω ≤

ωmax. Generally, from the denominator in the KK-transform
integrands (ψ2

−ω2) it follows that the result at an angular
frequency ω is more reliable if ω is not too close to ωmin
and ωmax. There are several strategies to cope with the prob-
lem of indefiniteness of the KK-integrals. Exemplarily we
will treat the transform given in Eq. (10). Urquidi-Macdonald
et al. (1990) and Lovell (1974) suggested to first divide the

semi-infinite range of integration according to:

ε′′(ω)=−
2ω
π

ωmin∫
0

ε′(ψ)− ε′(ω)

ψ2−ω2 dψ

+

ωmax∫
ωmin

ε′(ψ)− ε′(ω)

ψ2−ω2 dψ (19)

+

∞∫
ωmax

ε′(ψ)− ε′(ω)

ψ2−ω2 dψ

 .
The first and the last integrals in Eq. (19) are neglected which
is equivalent to the assumption the ε′ is constant in these do-
mains:

ε′′(ω)≈−
2ω
π

ωmax∫
ωmin

ε′(ψ)− ε′(ω)

ψ2−ω2 dψ. (20)

As mentioned above the quality of the transformations is
increased if the distance between the desired ω to each of
the limits of the integral (ωmin,ωmax) is chosen to be large
(Lovell, 1974). To this end, the permittivity ε′(ω) is extrap-
olated over a wider frequency range (ω̂min, ω̂max) according
to

ω̂min < ωmin ≤ ω ≤ ωmax < ω̂max

while the integration in Eq. (20) is performed on the interval
(ω̂min, ω̂max) (Urquidi-Macdonald et al., 1990). Esteban and
Orazem (1991) suggested a logarithmic extrapolation, Mac-
donald and Urquidi-Macdonald (1990) proposed a polyno-
mial extrapolation. However, they found that a single high-
order polynomial expansion leads to nonphysical oscillations
at the ends of the extrapolation domains leading to significant
errors in the numerical evaluation. In this paper we therefore
use a spline approximation and extrapolation, i.e., we split
the interval (ω̂min, ω̂max) intoK sub-domains and expand the
permittivity in the kth sub-domains using low-order polyno-
mials according to

ε′k(ω)=

{∑n
i=1aiω

i if ωk−1 < ω < ωk

0 else .
(21)

We insert Eq. (21) into (20) and obtain

ε′′(ω)≈−
2ω
π

K∑
k=1

ωk∫
ωk−1

ε′k(ψ)− ε
′(ω)

ψ2−ω2 dψ. (22)

A typical scheme is a division into 3–5 sub-domains and
polynomials of degree 3–8.
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Figure 1. Imaginary part (a) and real part (b) of the complex relative
permittivity of a (fictitious) material without conductivity losses.
From the initial data (red solid curve in (a)) the red solid curve (ini-
tial data) in (b) has been obtained using Eq. (9). From this result the
blue broken curve in (a) and from this the blue broken curve in (b)
have been obtained using Eq. (10) and again Eq. (9), respectively.

4 Numerical Results

4.1 Check of consistency

We start with a check of the self-consistency of the proposed
method. The red solid curve in Fig. 1a) represents a fictitious
imaginary part of the complex permittivity (σ = 0). The cor-
responding real part of the complex permittivity (red solid
curve in Fig. 1b) has been evaluated using a numerically per-
formed KK-transform Eq. (9). The outcome has been numer-
ically KK-transformed using Eq. (10) (blue broken curve in
Fig. 1a) and finally again back transformed applying Eq. (9)
(blue broken curve in Fig. 1b).

We observe that the data obtained for the imaginary part
of the relative permittivity obtained after two KK-transforms
relatively well fits the initial data. Even the three-times KK-
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Figure 2. Imaginary part of the effective complex permittivity for
different values of the conductivity (a). The curves in (b) represent
the corresponding Kramers-Kronig transforms according to Eq. (9).
Note that only the curve for σ = 0 (black solid) in (b) represents the
correct real part of the effective complex permittivity for all conduc-
tivities.

transformed real part shows a reasonable agreement apart
from a deviation at the end of the observation interval.

4.2 Conductivity retrieval

Now we add some conductivity to the previously defined fic-
titious material.We distinguish two cases:

a. frequency-independent conductivity σ = 0.8 S m−1

with ε′′eff(ω)= ε
′′(ω)+ 0.8/(ωε0)

b. frequency-dependent conductivity σ(ω) with ε′′eff(ω)=

ε′′(ω)+ σ(ω)/(ωε0).

The situation is shown in Fig. 2. Clearly, only ε′′eff is
changed by adding some (real-valued) conductivities. The
imaginary part of the effective relative permittivity is shown
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Figure 3. Conductivity retrieval for a frequency-independent (a)
and frequency-dependent (b) conductivity added to a dispersive ma-
terial as described in Fig. 2. The retrieval is performed for different
values of the upper bound ω̂max, while ω̂min = 0.6× 1010 s−1.

in Fig. 2a for the different values of σ . Performing the KK-
transform Eq. (9) on the curves in Fig. 2a yields different real
parts as shown in Fig. 2b. However, the correct real part ε′eff
in Fig. 2b is only found for the KK-transform according to
Eq. (9) in the case σ = 0. In other words, only the real and
imaginary parts of the complex permittivity without conduc-
tivity losses satisfy the KK-transforms.

Now we use Eq. (18) to retrieve the conductivities for the
two cases described above.

In Fig. 3 the results of the conductivity-retrieval are
shown for a frequency-independent (Fig. 3a) and frequency-
dependent (Fig. 3b) conductivity added to a dispersive mate-
rial as described in Fig. 2. The retrieval is performed for dif-
ferent values of the upper bound ω̂max, while ω̂min = 0.6×
1010 s−1. Obviously the bounds of the extrapolation domains
have to be chosen properly to obtain satisfactory results.

Finally, we applied the proposed method to investigate
some measured values of the effective permittivity which is
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Figure 4. Imaginary part (a) and real part (b) of the effective per-
mittivity of different CNT composite materials as investigated in
(Wang and Guang-Lin, 2013). In addition, the KK-transform Eq. (9)
has been applied to the imaginary parts and compared to the mea-
sured real parts (b).

found in the literature (Wang and Guang-Lin, 2013). Here,
carbon nano-tubes (CNT) in epoxy-resin multi-layers were
composed at different CNT weight fractions (wt %) for de-
signing an electromagnetic absorber in the frequency range
2–20 GHz. The effective permittivity was calculated from
measurements of the reflection and transmission coefficients.

Figure 4 shows the imaginary part (Fig. 4a) and the real
part (Fig. 4b) of the effective permittivity. We applied the
KK-transform Eq. (9) to the imaginary part and obtained the
curves additionally shown in Fig. 4b. As they do not agree
with the measured values of the real part of the effective per-
mittivity we conclude that the material includes conductivity
losses. The corresponding conductivity which has been re-
trieved using Eq. (18) is represented in Fig. 5 for the two
materials.
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Figure 5. Conductivity retrieved by the proposed method from the
measured values of the effective permittivity of different CNT com-
posite materials. The measured values were found in Wang and
Guang-Lin (2013).

5 Conclusions

We introduced a systematic method to retrieve the electric
conductivity from given values of the effective permittivity
using Kramers-Kronig relations. The method has been ap-
plied to fictitious values of the complex permittivity and also
to real-life data for a carbon nano-tubes composite material
used for absorbers. The most crucial task in this method is
the numerical evaluation of the Kramers-Kronig integrals.
Therefore, future work will focus on the further investigation
of related strategies including to find an a-priori estimate of
the corresponding error.
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