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Abstract. This paper deals with the propagation of electro-
magnetic waves in cylindrical waveguides with irregularly
deformed cross-sections. The general theory of electromag-
netic waves is of high interest because of its practical use as
a transmission medium. But only in a few special cases, an
analytic solution of Maxwell’s equations and the appropri-
ate boundary conditions can be found (Spencer, 1951). The
coupled-mode theory, also known as Schelkunoff’s method,
is a semi-numerical method for computing electromagnetic
waves in hollow and cylindrical waveguides bounded by per-
fect electric walls (Saad, 1985). It allows to calculate the
transverse field pattern and the propagation constant. The
aim of this paper is to derive the so-called generalized tele-
graphist’s equations for irregular deformed waveguides. Sub-
sequently, the method’s application will be used on a circular
waveguide as an illustrating example.

1 Introduction

Rayleigh was the first to describe the transmission of elec-
tromagnetic waves in hollow and perfect conducting waveg-
uides (Rayleigh, 1897). Later on, a general transmission
theory of plane electromagnetic waves taking attenuation
into account was published by Carson et al. (1936) and
Schelkunoff (1937). Since then, the analysis of electromag-
netic wave propagation and the practical use of different
kinds of waveguides were the subject of intensive research
(Southworth, 1950; Miller and Beck, 1953; Miller, 1954a, b).
The properties and behavior of electromagnetic waves in hol-
low, cylindrical waveguides are completely described, when
the cutoff frequency and the eigenfunctions are determined.
So from a mathematical point-of-view, the problem of elec-

tromagnetic wave propagation reduces to determine the so-
lution of Maxwell’s equations satisfying the boundary condi-
tions along the waveguide (Schelkunoff, 1952). In fact, only
for a few special cross-sections, in which the boundary can
be described by an orthogonal coordinate system, the electro-
magnetic field can be obtained by the method of separating
the variables (Stratton, 1941).

However, practical waveguides are usually not uniform
in their cross-section due to the manufacturing process. So
in case of nonuniform waveguides the method of separa-
tion does not work. Schelkunoff (1952, 1955) introduced a
more general transmission theory of electromagnetic waves
in waveguides by transforming Maxwell’s equation into a set
of ordinary differential equations. By expanding the elec-
tromagnetic field components into an orthogonal series of
basis function, an infinite system of differential equation
is derived, the so-called generalized telegraphist’s equation
(GTEs). The approach of the transverse cross-section method
is widely used in the analysis of waveguides with varying
boundaries (Reiter, 1959; Hung-Chia, 1962; Botton et al.,
1998; Zaginaylov et al., 2013).

Based on the earlier work of Schelkunoff (1952, 1955)
and Unger (1958, 1961a, c), Maxwell’s equation will be con-
verted into generalized telegraphist’s equations for an irregu-
lar deformed waveguide. Simplifications of the problem were
made by modeling the actual boundary of the waveguide
by using the so-called impedance boundary condition (IBC)
(Senior, 1960).

2 Generalized Telegraphist’s Equation

It is well known that the solution of Maxwell’s partial dif-
ferential equation can be reduced to the determination of a
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vector and a scalar potential. In 1889, Hertz showed that it
is possible to define an electromagnetic field with a single
vector function (Hertz, 1889). Such a vector function, called
the Hertz vector, is simply related to the vector and scalar
potential if the region is restricted to an isotropic and homo-
geneous medium within which are no conduction currents or
free electric charges (J = 0,ρ = 0). As a matter of fact, the
Hertz vector is only one possible approach. There are two
types, the electric and magnetic type (5E,5M), both satis-
fying the same vector Helmholtz equation of the form(
1+ k2

)
5= 0. (1)

In general, the vector Helmholtz Eq. (1) is still too compli-
cated for an analytic solution (Moon and Spencer, 1952).
Therefore, it is necessary to take appropriate simplifying
steps, so that a particular solution can be easily determined
without mathematical difficulties. As common in waveguide
analysis, we introduce orthogonal circular curvilinear coordi-
nates (u,v,z), with metrical coefficients (hu,hv,hz). In the
case of straight and uniform waveguides, the metrical coef-
ficients of the relevant coordinate system satisfy (Huang and
Hung-Chia, 1984)

∂hu

∂z
= 0,

∂hv

∂z
= 0 and hz = 1. (2)

Thus, in a source free region, the boundary problem is re-
duced to solving the scalar 2-dimensional Helmholtz equa-
tion, which together with the appropriate boundary condition
associated with the differential equation is satisfied by the
longitudinal component of the Hertz vector(

1+ k2
M
)
5M,z = 0

5M,z
∣∣
∂S = 0

}
for TM-modes,

(
1+ k2

E
)
5E,z = 0

∂5E,z

∂n

∣∣∣∣
∂S

= 0

 for TE-modes.

(3)

The reduction of the vector Helmholtz Eq. (1) to the scalar
Helmholtz Eq. (3) is a significant step in simplifying the
mathematics. For the sake of brevity, we use 5 to represent
5E,z,5M,z. In the following we will use the method of sep-
aration of variables, we assume

5(u,v,z)=5z,⊥ (u,v) ·W (z) (4)

where W (z) is a function of the longitudinal coordinate and
5⊥ (u,v) a function of the transverse coordinates. The sepa-
ration of variables yields(
1⊥+ k

2
⊥

)
5z,⊥ (u,v)= 0,

(
d2

dz2 − k
2
z

)
W (z)= 0 (5)

in which k2
z = k

2
− k2
⊥
, k2
:= ω2µε. It is apparent that the

second Eq. (5) has solutions of the form exp(±kzz), repre-
senting forward and backward traveling waves in the longi-
tudinal direction. The transverse pattern of these waves is de-
scribed independently by the solutions of the 2-dimensional

Helmholtz equation. Once 5 is found, the electromagnetic
field can be derived by simple differentiation according to
(Stratton, 1941)

EE =
(
1+ k2

E
)
5E, HE = jωε∇ ×5E

EM =−jωµ∇ ×5M, HM =
(
1+ k2

M
)
5M

(6)

The concept of the so-called generalized telegraphist’s equa-
tions starts with the separation of the electromagnetic field
components and Nabla operator

E(r) =E⊥(r)+Ez(r)ez,

H (r) =H⊥(r)+Hz(r)ez,

∇ = ∇⊥+ ez
∂

∂z

(7)

where E⊥,H⊥ are the transverse and Ez,Hz are the lon-
gitudinal components of the total field. The time depen-
dence exp(−jωt) is omitted. Substituting these fields into the
source free Maxwell’s equation, we obtain

∂E⊥

∂z
=−jωµ(H⊥× ez)+∇⊥Ez

∂H⊥

∂z
=−jωε (ez×E⊥)+∇⊥Hz

(8)

for the transvers fields and

Ez =
1

jωε
∇⊥ · (H⊥× ez)

Hz =
1

jωµ
∇⊥ · (ez×E⊥)

(9)

for the longitudinal components. In the next step, the trans-
verse field components will be expanded into series of or-
thogonal functions of the following form

E⊥ =
∑
n

VM,n (z) · eM,n(u,v)+VE,n (z) · eE,n(u,v)

H⊥ =
∑
n

IM,n (z) ·hM,n(u,v)+ IE,n (z) ·hE,n(u,v)
(10)

in which eM,n,hM,n are the vector fields of the eigenmodes
of the TM-mode, while those with the index E refer to the
eigenmodes of the TE-mode (Reiter, 1959). There are vari-
ous approaches to the expansion of the electromagnetic field
components. A more detailed treatment of the field expan-
sion can be found in the work of Huang and Hung-Chia
(1984). The coefficients Vn,In are called the complex voltage
and current amplitudes. It should be mentioned that the phys-
ical dimensions of the coefficients are not those of voltage
and current. The eigenmodes are simply related to the pre-
viously mentioned Hertz functions (Huang and Hung-Chia,
1984)

TM-modes: eM,n =−∇⊥5⊥,M,n
hM,n = ez× eM,n

(11)
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TE-modes: eE,n = ez×∇⊥5⊥,E,n
hE,n = ez× eE,n.

(12)

These vector functions en,hn have certain orthogonality
properties which can be expressed as

∫∫
S
(en×hm) · ezdS = δnm, δnm =

{
1, n=m

0, n 6=m
(13)

The Hertz functions of the various modes are determined by
Eq. (5) and the boundary conditions Eq. (3) except for arbi-
trary factors related to the power of the modes. If we choose
these constants in such a way that∫∫
S

(∇5⊥ · ∇5⊥)dS = k2
⊥

∫∫
S

52
⊥

dS = 1 (14)

where S is the cross-section of the waveguide, then the
complex power carried by the modes is described by
(Schelkunoff, 1952)

P =
1
2

∑
n

(
VM,nI

∗
M,n+VE,nI

∗
E,n
)
. (15)

In this case, the complex voltage and current coefficients
correspond to voltages and currents. In order to derive the
GTE’s, the series expansion Eq. (10) of the transverse field
will be substituted into the Eqs. (8) and (9). Subsequently,
these equations will be multiplied with orthogonal functions
and integrated over the waveguide cross-section S. Using
the orthogonal condition Eq. (13) (Schelkunoff, 1952) and
Green’s second identity (Schelkunoff, 1951), the GTE’s for
the basis coeffcients Vn,In of the series expansion of the TM-
and TE-Modes are derived

dVM,m

dz
=

∑
n

∮
∂S

[
hv

hu
Ez,n

∂5⊥,M,m

∂u

]
r

dv

+k2
M,m

∑
n

∫∫
S
Ez,n5⊥,M,mdS− jωµIM,m,

dIE,m

dz
=

∑
n

∮
∂S

[
hv

hu
Hz,n

∂5⊥,E,m

∂u

]
r

dv

+k2
E,m
∑
n

∫∫
S
Hz,n5⊥,E,mdS− jωεVE,m,

(16)

dVE,m

dz
+ jωµIE,m =

∑
n

∮
∂S

[
Ez,n

∂5⊥,E,m

∂v

]
r

dv,

dIM,m

dz
+ jωεVM,m =

∑
n

∮
∂S

[
5⊥,M,m

∂Hz,n

∂v

]
r

dv.
(17)

The set of GTE’s is equivalent to the equations in Unger
(1961b). A more detailed derivation of the equation above
can be found in Weiss and Mathis (1998). For a further anal-
ysis of the GTE’s, the field components in the integral kernel
of the line integral need to be determined.

2.1 Boundary Conditions

There are different kinds of boundary conditions to model the
actual boundary of a waveguide. One of the most commonly
used boundary conditions is the perfect electric conductor
(PEC)

n×E = 0, n ·B = 0, n=

∂r
∂φ
×

∂r
∂z∣∣∣ ∂r∂φ × ∂r
∂z

∣∣∣ . (18)

where n is the outward unit normal vector to the boundary
∂S. In case of a circular waveguide, we obtain of Eq. (18)
for the tangential electric and normal magnetic components

Eφ
∣∣
∂S = 0, Ez|∂S = 0 and Br |∂S = 0. (19)

The equations above specify the relations which must be sat-
isfied by the electric and magnetic field at the boundary ∂S.

In case of small irregular deformations of the cross-
section, it is appropriate to use the perturbation theory. The
surface of the waveguide can be represented in cylindrical
coordinates (r,φ,z). The radius r of the cross-section is a
function of φ,z and a parameter ω

r (ξ (φ,z,ω))= r0 · (1+ ξ (φ,z,ω)) , (20)

where r0 is the waveguide mean radius and the function ξ
describes the irregular deformation of the cross-section. For
convenience the deformation function ξ will only be a func-
tion of φ and ω. So instead of the usual boundary conditions
Eq. (19), the field components have additional terms

Eφ = 0, Ez =
∂r(φ,ω)

∂φ
Er and Br =

∂r(φ,ω)

∂φ
Bφ . (21)

The next task is to express the field components at a mean
surface r0 (regular boundary) and this is done by expanding
the field components in a Taylor series in ξ (Senior, 1960;
Unger, 1961a). Since the field is finite and continuous within
the boundary, we have the following form

Eφ(r (ξ) ,φ) = Eφ(r0,φ)+ r0ξ
∂

∂r
Eφ(r0,φ)

+r2
0
ξ2

2
∂2

∂r2Eφ(r0,φ)+ . . .,

(22)

where the differentiation must be carried out before r is put
equal to r0. In this paper, we will use the first order approxi-
mation of the boundary condition and all higher order terms
will be neglected (Unger, 1961a). Substituting the Taylor se-
ries into Eq. (21), we obtain

Eφ
∣∣
∂S =−r0ξ

∂Eφ

∂r
,

Ez|∂S =
∂r(φ,ξ)

∂φ

(
Er + r0ξ

∂Er

∂r

)
− r0ξ

∂Ez

∂r
,

Br |∂S =
∂r(φ,ξ)

∂φ

(
Bφ + r0ξ

∂Bφ

∂r

)
− r0ξ

∂Br

∂r
.

(23)
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Figure 1. X1 (φ,ω1) and X2 (φ,ω2) are two realizations of the
stochastic process. Parameters for simulations: N = 60, r0 = 1 and
δmax = 1.

For a more general approach the IBC will be used (Katsene-
lenbaum, 1998)

n×E = Z ·n× (n×H ) , Z =
k

κ − jµε
. (24)

It can be shown that the PEC Eq. (18) is only a special case of
the IBC Eq. (24) (Z = 0). Using the same method as above,
we obtain two equations for the tangential electric field com-
ponents

Ez = Z ·

(
Hφ +

∂r(φ,ξ)

∂φ
Hr

)
,

Eφ =−Z

(
Hz+

(
∂r(φ,ξ)

∂φ

)2

Hz

)
−
∂r(φ,ξ)

∂φ
Eφ,

(25)

which can be substituted in the line integral of Eqs. (16) and
(17).

2.2 Stochastic Process

In the previous section, the boundary condition for an irreg-
ular deformed waveguide was modeled. The imperfections
on the surface ∂S, where we assume that there is no rule for
these deformations, were described by the function ξ (φ,ω).
Therefore, it is useful to interpret the perturbation term ξ as
a random variable X(φ,ω). For this purpose, an appropri-
ate probability space (�,A,P ) with a sample space �, a σ -
algebraA and a probability measure P has to be constructed

Figure 2. Change of transverse field pattern of the electric and
magnetic field along the z-axis.Parameters for simulation: N = 60,
r0 = 1 and δmax = 0.1.

Table 1. Coupling modes in the irregularly deformed waveguide.

TM-modes TE-modes

TM01 TM02 TE01 TE02
TM11 TM12 TE11 TE12

where ω ∈� (Mathis and Mathis, 2015). For computational
and mathematical reasons, the stochastic process has the fol-
lowing form

X(φ,ω)=

ξ1 (φ,ω), 0≤ φ ≤
2π
N
, ω ∈�

...
...

...

ξn (φ,ω)
2π (n− 1)

N
< φ ≤

2πn
N

ω ∈�

...
...

...

ξN (φ,ω),
2π (N − 1)

N
< φ ≤ 2π, ω ∈�

(26)

with

ξn = cn,3 (ω) ·φ
3
+ cn,2 (ω) ·φ

2
+ cn,1 (ω) ·φ+ cn,0 (ω) .

With this specific form of the stochastic process X(φ,ω),
the randomness is contained in the coefficients cn,i (ω) of
the polynomial and can be separated from the variable φ. So
the line integral in Eqs. (16)–(17) can be evaluated before
the stochastic integration. Due to this form, there is a com-
putational advantage in calculating the coupling coefficients.
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Figure 3. Change of transverse field pattern of the electric and
magnetic field along the z-axis. Parameters for simulation: N = 60,
r0 = 1 and δmax = 1.

As an illustrating example, two realizations of the stochastic
process X(φ,ω) are shown in Fig. 1.

3 Numeric Results

In this section, we will present the method of computing the
stochastic GTE’s. After substituting the field components of
the IBC Eq. (25) into each integrand of the line integrals
of Eqs. (16) and (17), the coupling coefficients on the right
side of the equations will be divided into a deterministic and
stochastic part. Combining the Eqs. (16) and (17) into the
form of state space equations we obtain

Figure 4. All the basis coefficients VE,n and IE,n. Parameters for
simulation: N = 60, r0 = 1 and δmax = 1.

Table 2. Parameters for simulation of excited TE01-mode.

Name N r0 δmax z0 z1 z2 z3

Value 60 1 m 1 % 0 m 0.25 m 0.5 m 0.75 m

dx

dz
= D · x+S(ω) · x with x =


V M
IM
V E
IE

 (27)

D=


D0 D1 D2 D3
D4 D5 D6 D7
D8 D9 Da Db
Dc Dd De Df

 ,

S(ω)=


S0 (ω) S1 (ω) S2 (ω) S3 (ω)

S4 (ω) S5 (ω) S6 (ω) S7 (ω)

S8 (ω) S9 (ω) Sa (ω) Sb (ω)
Sc (ω) Sd (ω) Se (ω) Sf (ω)

 .
(28)

The next task is to consider all couplings between the differ-
ent modes (see Table 1). For convenience, the double sub-
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scription for the designation of various modes has been sub-
stituted by a single subscription, but in order to consider all
possible couplings the double subcription is useful. We will
substitute the single subscription n and m with the double
subscription

[
pq
]

and [rs]

n=
[
pq
]

m= [rs] , p,r = 0,1. . ., q,s = 1,2. . ..

V =

V01
V11
V02
V12

 , Si (ω)=

Si,0101 Si,0111 Si,0102 Si,0112
Si,1101 Si,1111 Si,1102 Si,1112
Si,0201 Si,0211 Si,0202 Si,0212
Si,1201 Si,1211 Si,1202 Si,1212

. (29)

In the case of the introduced stochastic process X(φ,ω)
(Eq. 26), the matrices D and S (Eq. 28) become sparse matri-
ces

D =


0 D1 0 D3
0 0 0 0
0 D9 0 Db
0 0 De 0

 ,

S(ω) =


0 S1 (ω) 0 S3 (ω)

0 0 0 0
0 S9 (ω) 0 Sb (ω)
0 0 Se (ω) 0

 .
(30)

As an example, we will calculate the basis coefficients Vn,In
for an excited TE01-mode. The simulation parameters are
shown in Table 2. δmax describes the maximum deviation
from the mean radius r0, while zi characterizes four differ-
ent cross-sections of the waveguide. The associated voltage
and currents coefficients Vn,In are shown in Fig. 4. In Fig. 3,
there are the transverse patterns of the electric and mag-
netic field at four different cross-sections. There are obvious
changes of the transverse pattern due to the variation of the
radius (see Fig. 1). In the case of a TE01-mode, the electric
and magnetic field components are

Er = 0, Eφ 6= 0, Ez 6= 0 Hr 6= 0, Hφ = 0, Hz = 0. (31)

The deformation causes other field components to arise,
which can be seen in the changes of the transverse pattern
of the electric and magnetic field (see Fig. 3). According to
the results of the simulation for the voltage and current co-
efficients, there is an attenuation to VM,01 and IM,01, besides
the excited TE01-mode there are other spurious modes (see
Fig. 4). If the maximal deviation become less than 0.1 % of
the mean radius r0, the transverse pattern of the electric and
magnetic field show no significant changes along the propa-
gation direction (see Fig. 2). It is also important to mention
that the impedance factorZ (Eq. 24) is restricted to small val-
ues close to Z = 0 (Botton et al., 1998; Vlasov and Anton-
sen, 2001). The effect of mode conversion and attenuation of
the excited wave will not be discussed in this work and need
further investigation.

4 Conclusions

In this paper it was shown, that it is possible to derive
stochastic generalized telegraphist’s equation for irregular
deformed waveguides for a specific random process. In the
case of the impedance boundary condition from Leontovich
(IBC), the mathematical derivation and first numeric results
were presented. The changes of the transverse field pattern of
a circular electric wave (TE01) in the direction of propagation
was determined. Effects of mode conversion and attenuation
due to the surface roughness and finite conductivity need fur-
ther investigation. Especially, the choice of the model of the
boundary condition as well as the stochastic process is essen-
tial. In consequence of non-uniform convergence of the basis
function, the impedance has to be close to zero (Botton et al.,
1998). In a recent work from Zaginaylov and Shcherbinin
(2016) a new approach was given for that problem.

Data availability. There are no underlying research data for the
presented work. All results can be reproduced with the equations
and parameters given directly in the paper.
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