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Abstract. The simulation of large scale nonlinear dynamical
interconnected systems, as they arise in all modern engineer-
ing disciplines, is a usual task. Due to the high complexity
of the considered systems, the principle of thinking in hierar-
chical structures is essential and common among engineers.
Therefore, this contribution proposes an approach for the nu-
merical simulation of large systems, which keeps the hierar-
chical system structure alive during the entire simulation pro-
cess while simultaneously exploiting it for order reduction
purposes. This is accomplished by embedding the trajectory
piecewise linear order reduction scheme in a modified vari-
ant of the component connection modeling for building inter-
connected system structures. The application of this concept
is demonstrated by means of a widely used benchmark ex-
ample and a modified variant of it.

1 Introduction

The design and operation of todays electrical systems, rang-
ing from microelectronic circuits to power generation and
distribution systems, is enabled by powerful simulation tools
at hand. Models for such large scale systems are commonly
built up hierarchically from smaller and less complex inter-
connected sub-systems. While this hierarchical point of view
is the state-of-the-art, which is utilized within the modeling
process itself, the actual simulation is performed by numeri-
cally integrating the resulting large scale system of nonlinear
ordinary differential equations.

The same is true for model order reduction methods for
linear systems, (cf. Antoulas et al., 2001; Antoulas, 2005;
Baur et al., 2014), as well as for nonlinear systems, (cf. Baur
et al., 2014; Rewienski and White, 2003a). All these methods
start at a given description in form of an ordinary differential
equation of the entire system to be reduced, dismissing pos-
sible hierarchical structures which could be exploited ben-

eficially, e.g. by parallelizing the evaluation of the ordinary
differential equation during a numerical integration for tran-
sient simulation.

In contrast to this common practice, the simulation ap-
proach proposed in this contribution makes use of the so
called component connection modeling (CCM) by DeCarlo
and Saeks (1981), which preserves the system’s hierarchical
structure as well as its internal interconnections during the
entire modeling and simulation process. Details on the main
conception of CCM and the actually applied modified ver-
sion called mCCM (Popp et al., 2017a) with several struc-
tural changes to the original concept is introduced and dis-
cussed with respect to its properties in Sect. 4.

Besides the mCCM itself, this contribution demonstrates,
how the trajectory piecewise-linear approach (TPWL)
(Rewienski and White, 2003b) as an example for a broad va-
riety of order reduction methods for nonlinear dynamical sys-
tems can be embedded into such a framework. The main ben-
efit arising from this conceptual combination of mCCM and
TPWL can be seen in the additional degree of freedom which
is gained by exploiting the intrinsic hierarchy of large inter-
connected systems, i.e. the choice of the hierarchical level
which is to be reduced in its order. This important degree
of freedom refers to the necessity to obtain reference trajec-
tories of the non-reduced original system as a starting point
of the reduction process. Increasing the size of the consid-
ered systems, this necessity limits the practical applicability
and the proposed hierarchical approach helps to overcome
or at least to ease this problem. Therefore, Sect. 5 outlines
the implemented concepts of CoSimMA, a fully functional
simulation framework based on the mCCM formulation of
interconnected dynamical systems. As a part of these con-
cepts, the structural embedding of order reduction methods
into the framework CoSimMA is considered. Two applicable
procedures for reducing a model’s order are briefly described
and discussed with respect to their properties, advantages and
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drawbacks. The well established balanced truncation method
is treated in Sect. 2 and for nonlinear systems the trajectory
piecewise linear (TPWL) reduction scheme is chosen for fur-
ther analysis in Sect. 3, without restricting the general em-
bedding concept in this work to these order reduction meth-
ods.

In Sect. 6 the proposed combined approach of TPWL
order reduction of a hierarchically built up model by us-
ing mCCM within the simulation framework CoSimMA is
demonstrated. As an illustrative example, a standard bench-
mark system originally introduced in Chen and White (2000)
is processed in the context of the mentioned methods. Fur-
thermore, a slightly altered version of this example is utilized
to show a significant sensitivity of a systems reducibility to
the choice of output variables, which should be preserved
during the order reduction process.

2 Order reduction of linear systems via balanced
truncation

The order reduction of linear dynamical systems of the form

ẋ = Ax+Bu (1)
y = Cx

with the order n, i.e. x = [x1, . . .,xn]ᵀ, aims at finding an
approximate system representation

ẋr = Arxr+Bru (2)
yr = Crxr

of order q with xr =
[
xr1, . . .,xrq

]ᵀ and q� n while approx-
imately keeping the outputs unchanged, i. e. y ≈ yr. This or-
der reduction is formally achieved by applying a state trans-
formation

xr = Tx , (3)

wherein the transformation matrix T has the dimension q×n
and is assumed to be orthonormal, i. e. TᵀT= 1 holds. Over
the last decades several specialized methods for computing
such an order reducing transformation in Eq. (3) have been
developed and the properties of each method are well under-
stood (cf. Antoulas et al., 2001; Antoulas, 2005; Baur et al.,
2014 among many others).

As an example of such a method of computing a transfor-
mation matrix T, the balanced truncation (BT), often also
referred to as truncated balanced realization (TBR), trac-
ing back to Moore (1981) is discussed in the following. The
BT is based on the controllability and the observability of
the states x of the original system in Eq. (1), measured by
the gramian matrices P and Q. According to Moore (1981),

first a so called balancing transformation xb = T bx has to be
found, which makes each state within xb itself equally well
controllable and observable, which is expressed by

Pb =Qb = diag(σ1, . . .,σn) , (4)

wherein Pb and Qb denote the gramian matrices of the bal-
anced system, which are equal diagonal matrices with the
Hankel singular values (HSV) σ1, . . .,σn in descending or-
der. Algorithms for computing such a balancing transforma-
tion are given e.g. in Laub et al. (1987). States in xb with
corresponding small HSV are neither well controllable nor
well observable and can therefore be truncated in the second
step of the BT procedure, resulting in a reduced order system
in Eq. (2) of order q.

A key benefit of the BT reduction scheme described above
is the existence of a maximum error bound (Glover, 1984)

‖H(s)−Hr(s)‖∞ ≤ 2
n∑

i=q+1
σi , (5)

referred to the transfer functions H(s) and Hr(s) of the origi-
nal and the reduced system, respectively, which can be com-
puted a priori, before setting up the actual reduced order sys-
tem. With this at hand, the decision of how to choose the
reduced order q can be made upon a quantitative criterion in-
stead of a trial and error procedure, as it is the case with other
reduction schemes (Antoulas, 2005).

3 Order reduction of nonlinear systems via TPWL

For the reduction of nonlinear dynamical systems of the form

ẋ = f (x,u) (6)

the two basic steps of reducing linear systems, cf. Sect. 2, can
in principle be applied. Unfortunately, the computation of an
appropriate state variable transformation as well as the reduc-
tion procedure itself are more challenging in the nonlinear
case, strongly depending on the nonlinearity of the system in
Eq. (6).

Restricting the structure of the considered original nonlin-
ear dynamical system of order n to

ẋ = g(x)+B(x)u (7)
y = Cx

and assuming the transformation xr = Tx as introduced in
Sect. 2 to be appropriate and known, the resulting reduced
nonlinear model of order q can be written as
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ẋr = Tg(Tᵀxr)+TB(Tᵀxr)u (8)
yr = Crxr with Cr = CTᵀ .

While in the linear case, the system matrix of the re-
duced system of true order q is given by TATᵀ, this does
not work in the nonlinear case. Even if the terms Tg(Tᵀxr)

and TB(Tᵀxr) in Eq. (8) appear to be of reduced order q,
the computational complexity is even increased, because the
nonlinear function g(·) and the state dependent input matrix
B(·) and their arguments still have the original order n. The
state transformation in general cannot be applied once dur-
ing the reduction process. Instead, it has to be evaluated for
each evaluation of the system’s equations and thus no com-
putational effort is saved in spite of the reduced model order
(Rewienski and White, 2003b).

Over the last decades, several approaches have been de-
veloped in order to find usable state transformations T on
the one hand and practical ways of avoiding the problem of
an only seemingly reduced model order. For an overview of
these developments (cf. Baur et al., 2014; Dukic and Saric,
2012) as comprehensive survey articles.

One of these approaches is the TPWL order reduc-
tion scheme originally developed by Rewienski and White
(2003a), which underwent several extensions and variations
(Dong and Roychowdhury, 2008; Vasilyev et al., 2003; Mar-
tinez, 2009). In this paper, only the original version Rewien-
ski and White (2003a) with application of BT as the reduc-
tion method for the resulting linear systems similar to Vasi-
lyev et al. (2003) is discussed.

In order to be able to evaluate the reduction transforma-
tions in Tg(Tᵀxr) and TB(Tᵀxr) for lowering the computa-
tional complexity as well as the model order, first, multiple
linearizations of Eq. (7) around N different points xi in the
state space are generated and afterwards these individual lin-
earized models are put together in form of a convex combi-
nation

ẋ ≈

N∑
i=1

wi(x)(g(xi)+Ai · (x− xi)+Biu) , (9)

which is called trajectory piecewise linear approximation of
7. TheN state dependent functionswi(x) are weights, which
select the most relevant linear models among the given set
and

N∑
i=1

wi(x)= 1 ∀x (10)

holds. Ai represents the Jacobian of g(x) evaluated at the
linearization points xi and Bi are the corresponding input
matrices.

Since Eq. (9) consists of a collection of linear models, an
order reducing state transformation xr = Tx can be applied
and evaluated, resulting in

ẋr =

N∑
i=1

wri(xr)(T(g(xi)−Aixi)+Arixr+Briu) (11)

as the reduced order TPWL model. Here, it is assumed, that
the freedom of choosing the transformed weight functions

wri(xr)= Tᵀwi(Tx) (12)

can be used to render them evaluable with reasonable ef-
fort, to prevent the aforementioned problem associated with
the order reduction of nonlinear systems. In Rewienski and
White (2003a) such a choice for the weight function is given
as

wi(x)=

exp

(
−β‖x−xi‖2
min

j=1,...,N
‖x−xj ‖2

)
N∑
k=1

exp

(
−β‖x−xk‖2
min

j=1,...,N
‖x−xj ‖2

) , (13)

which also can be applied as wri(xr) by substituting xr for x

and Txi for xi in Eq. (13). With an empirical choice of the
constant parameter β the number of simultaneously active
linear systems can be influenced.

Also on an empirical basis, a procedure to select the lin-
earization points xi based on euclidean distances in the state
space can be found in Rewienski and White (2003a). In this
approach, the full order system in Eq. 7 is simulated and each
time the inequality

min
i=1,...,N

‖x− xi‖2 > δ , δ > 0 (14)

is fulfilled, a new linearization point xi+1 is added. With
the constant parameter δ, the final number N of linearization
points can be controlled empirically, also strongly depending
on the choice of the test trajectory.

Even if there are many examples in the literature, in which
the TPWL (Rewienski and White, 2003a; Dong and Roy-
chowdhury, 2008; Vasilyev et al., 2003; Martinez, 2009) and
other order reduction schemes like Empirical Gramian based
balanced trucation (Condon and Rossen, 2004) or Krylov
subspace based reduction of quadratic taylor expanded non-
linear systems (Chen and White, 2000) among many others
are applied successfully, i. e. the example system’s order as
well as the simulation time decreases notably, all methods
have many empirical parameters and options.
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Figure 1. Stages of the hierarchical model formulation process
within the mCCM framework; (a) compound component S contain-
ing individual components Si ; (b) connected component C; (c) hi-
erarchically connected component C̃.

4 Modified component connection modeling (mCCM)

Originally introduced by DeCarlo and Saeks (1981), CCM
provides a mathematical framework to describe intercon-
nected dynamical systems in a convenient way. It focuses on
a strictly separate treatment of the individual sub-systems,
called components, and the connections between them,
which are used to build up an interconnected system. This
separation of components and connections is kept during the
entire modeling and simulation process. A comparison of
CCM and other formalisms for the description of intercon-
nected dynamical systems is given in Popp et al. (2017a).

Within the proposed mCCM, which is a structurally sim-
plified variant of the original CCM aiming towards hierar-
chical system formulations, the interconnection process of
individual components Si is performed in three stages and,

optionally, hierarchical connections can be considered in a
fourth stage.

In the first stage, the components Si , which are the small-
est entities used for building up larger systems, have to be
defined. This can be done by means of systems of explicit
ordinary differential equations

ẋi = f i (xi,ui) (15)

for dynamical components and as systems of algebraic equa-
tions

xi = hi (ui) (16)

for non-dnyamical systems, wherein ui is the vector of the
input quantities and xi denotes the state vector of dynam-
ical components in Eq. (15) or the output vector of non-
dynamical components in Eq. (16), respectively. Deviating
from the original CCM, in mCCM more general descrip-
tions of dynamical components like a mass matrix formu-
lation Mi (xi) ẋi = f mi (xi,ui) or even a fully implicit sys-
tem of ordinary differential equations 0= F i (xi, ẋi,ui) are
permitted, which both allow for the important case of differ-
ential algebraic component equations. For the sake of sim-
plicity, only dynamical components in the form of Eq. (15)
are considered in the following without loss of generality. As
a further deviation from the original framework, any kind of
observer equation is dismissed in the component description.
This simplifies the formulation of connections between com-
ponents as will be seen later in this section.

In the second formal step, the individual components Si ,
which are to be connected in order to form a larger system,
are collated in the composite component S as depicted in
Fig. 1a. Thereby, the composite component is described by

ẋ = f (x,u) , (17)

with x = [x1, . . .,xn]ᵀ, u= [u1, . . .,un]ᵀ and
f =

[
f 1, . . .,f n

]ᵀ collating the individual component’s
states, inputs and vector fields. Up to this step, no connec-
tions are considered, yet.

These are introduced in the third step by means of a linear
algebraic connection equation

u= Cx, (18)

in which the weighted connection between the i-th input vari-
able in u and the j -th output variable in x is established by
a nonzero matrix entry cij within the connection matrix C.
The connected component C arises by combining the com-
pound component S and the connection equation as illus-
trated in Fig. 1b. Besides the main properties from a system
and network theoretic point of view, which are mentioned
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Figure 2. Schematic representation of the modular concept of
CoSimMA.

in DeCarlo and Saeks (1981) and Mathis (1987, pp. 175 et
seq.), all component input and output quantities are preserved
throughout the entire modeling and simulation procedure.
This is in contrast to the loss of intermediate information,
which occurs by simply substituting component inputs by the
corresponding linear combinations of outputs. Moreover, by
dismissing observer equations, as mentioned above, a single
connection between two components is expressed only by a
single entry in the connection matrix C, which makes the for-
mulation of hierarchically interconnected systems a straight
forward procedure.

As depicted in Fig. 1c, not only individual components
Si but also several connected components Ci can be con-
nected again, forming arbitrarily deep hierarchical model
structures without any theoretical limitations. The hierarchi-
cal connected component C̃ is formed by the same steps as
described above. Only the formation of the hierarchical con-
nection matrix C̃ has to be handled additionally in a fourth
step. This is accomplished by placing the connection matri-
ces Ci of the individual connected components Ci as diago-
nal blocks in hierarchical connection matrix C̃ and connec-
tions between individual connected components Ci are han-
dled as entries besides these diagonal blocks. At this point, it
becomes clear how the structural simplifications of mCCM
to the original concept in DeCarlo and Saeks (1981) make
it very convenient, to model hierarchical system structures
while keeping the key benefits of the CCM.

5 CoSimMA – an mCCM based simulation framework

As originally introduced in Popp et al. (2016a), CoSimMA,
a modular simulation framework, uses mCCM as theoreti-
cal core for performing studies on the efficient simulation
of large interconnected dynamical systems. The basic con-
cept behind CoSimMA and its modular structure is graphi-
cally outlined in Fig. 2. After setting up the connected com-
ponent, several types of model manipulation and simulation
such as linearization, model aggregation, linear and nonlin-
ear order reduction as well as static and transient simula-
tions can be performed in a modular manner. The key of
the implementation concept is, that the result of each manip-
ulation is a connected component or a component, respec-
tively. This is enabled by strictly utilizing the object oriented
programming paradigm within the problem solving environ-
ment MATLAB (The MathWorks, Inc., 2015). Using MAT-
LAB’s interfaces for other programming languages such as C
or FORTRAN allows the convenient usage of sophisticated
software packages for simulation purposes such as SUN-
DIALS (Hindmarsh et al., 2005) as an alternative to MAT-
LAB’s own numerical solvers for ordinary differential equa-
tions (Shampine et al., 2003; Shampine, 2002). On the one
hand, due to the unified module interfaces within CoSimMA,
it becomes completely transparent from a users point of view,
which specific algorithm and software package is used for
simulation purposes. On the other hand, the development of
new simulator modules, such as the model order reduction
methods treated in this paper, are easily implemented, since
already existing modules are interfaced in an abstract and
therefore very clear manner. All simulation results presented
in the following section have been obtained with CoSimMA.

6 Nonlinear modeling and reduction example

In this section, first the application of the hierarchical mod-
eling approach utilizing the mCCM framework is demon-
strated by means of an example circuit. Afterwards, several
reduced order models are generated by applying the TPWL
order reduction scheme combined with the BT for reducing
the intermediate linear systems.

The example circuit treated in this section originates from
Chen and White (2000) and is used by several other authors,
e.g. Rewienski and White (2003a), as a benchmark system
for the comparison of different order reduction methods. It
is composed of a current driven input stage followed by N
nonlinear subcircuits in a chain configuration as depicted in
Fig. 3a. Although this circuit is intended as an academic
benchmark example, it can be used as a charge pump for the
transformation of a low input voltage uC0 into a higher out-
put voltage uCN .

In the original version of the considered example, the ca-
pacitor voltage uC0 of the input stage, cf. Fig. 3a, is chosen
as output variable which is preserved throughout the reduc-
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Figure 3. Example system for the mCCM modeling and TPWL re-
duction; (a) nonlinear chain network; (b) input section of the ex-
ample circuit represented as mCCM component; (c) chain section
of the example circuit represented as connected component; (d) in-
terconnection scheme of the input section and the first two chain
sections as mCCM representation of the considered example cir-
cuit.

tion process. This specific choice apparently leads to a good
reducibility of the complete system because chain sections
located far away from this circuit node of interest are less
important for the actual behavior of the chosen output quan-
tity.

In order to demonstrate the severe influence of the choice
of variables which are to be preserved throughout the reduc-
tion process, a second scenario is treated in the following.
Therein, additionally to the fist capacitor voltage uC0 the
voltage of the last capacitor in the chain network is chosen
to be an output variable, i.e. y = [uC0,uC50]

ᵀ for N = 50 as
size of the original system.

6.1 Hierarchical modeling of the nonlinear example
circuit

Following the presented steps of the mCCM modeling pro-
cedure in Sect. 4, fist the components itself are defined. The
input stage of the given circuit in Fig. 3a leads to a dynamical
component C0 depicted in Fig. 3b, which is described by the
ordinary differential equation

u̇C0 =
1
C

(uC0

R
+ iD(uC0)

)
+

1
C
(ie− i0) (19)

with the circuit element parameters R = 1� and C = 1F .
All diodes of the entire circuit are described by the algebraic
equation

iD(uD)= Is (exp(kDuD)− 1) , (20)

wherein kD = 40V −1 and IS = 1A are chosen. The vector
of input variables of C0 is given by uC0 = [i0, ie]

ᵀ and the
corresponding state vector results in xC0 = uC0.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Figure 4. Behavior of the weight functions w1. . .w5 without units
(p.u.) during the first second of simulation time.

The n-th chain section Cn, shown in Fig. 3c, consists of a
dynamical component C1,n called chain element and a non-
dynamical observer component C2,n called current observer.
The component equation of the C1,n reads

u̇Cn =
1
C

(
un− uCn

R
+ iD(un− uCn)− in

)
(21)

with uC1,n = [un, in]
ᵀ and xC1,n = uCn as input and state

vectors, respectively. The current input in−1 of the chain sec-
tion Cn−1 is observed by means of the observer component
C2,n, which is described by

in−1 =
un− uCn

R
+ iD(un− uCn) (22)

and the corresponding input and state vectors are defined
as uC2,n = [un,uCn]

ᵀ and xC1,n = in−1. Both build up a
connected component Cn by applying a suitable connection
equation to set up the interconnection structure within Cn as
shown in Fig. 3c. In order to compile the entire example sys-
tem, a hierarchical connected component has to be set up by
interconnecting the input element C0 withN = 50 chain sec-
tions as depicted in Fig. 3d and adding the current source iq
for the excitation of the system.

6.2 Reduced TPWL models

6.2.1 Reference simulation of the original system

As described in Sect. 3 it is necessary to simulate the orig-
inal system of full order n in order to obtain a training tra-
jectory for setting up a TPWL reduced model. This reference
simulation furthermore is used as a base for the normalized
representation of computation times, i.e. the time needed to
perform the reference simulation (210ms) is referred to as
100 %. Even though the figures below show different time
axis, all simulations have been performed for a time in-
terval of 5 s with the same solver (ode45 from Shampine
et al., 2003) for each resulting systems of ordinary differ-
ential equations. All relative errors stated below are also re-
ferred to the reference simulation in the entire considered
time interval.
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Figure 5. Comparison of the original model with two reduced vari-
ants for the case 1.

6.2.2 Reduced system – case 1

In this first reduction example the capacitor voltage uC0 of
the input stage is chosen as the output variable, which is to
be preserved after the reduction has been applied. This choice
equals the original version of this example (Chen and White,
2000).

For the test trajectory resulting form zero initial conditions
for all state variables and a step excitation of 1A, 27 lin-
earization points have been found empirically to be a good
compromise between approximation quality and computa-
tional effort. The unreduced TPWL representation shows a
maximal relative error smaller than 0.1 % and it increases the
computation time by 35.2 % referred to the reference simula-
tion. The behavior of the first five weight functions is shown
in Fig. 4 and it can be seen, that most of the time only a single
linearized model is active, as desired.

Reducing the order to q = 16 results in a maximal rel-
ative error smaller than 1% accompanied by a moderately
decreased computation time by −9.9 %. A more significant
reduction if the computation time by −61% can be reached
with a reduced order of q = 1 while keeping the relative error
below 3 %. Clearly, the usable range around the training tra-
jectory of this reduced model is very limited. A comparison
of the two reduced models and the original system is given in
Fig. 5, revealing slight transient and static deviations within
the stated a posteriori error bounds.

6.2.3 Reduced system – case 2

As a second case, a slightly modified variant of the original
system in Chen and White (2000) is investigated. Instead of
only preserving the capacitor voltage uC0, in this case addi-
tionally uC50 is considered as an output variable. For the sake
of comparison, the reduced order q had been lowered step by

0 0.5 1 1.5 2 2.5 3

0

0.02

0.04

0 0.5 1 1.5 2 2.5 3

-0.2

0

0.2

0.4

O

O

Figure 6. Comparison of the original model with two reduced vari-
ants for the case 2.

step in order to keep the relative error just below 1%. This
could be reached with q = 34, which more then doubles the
number or states in the reduced model compared to case 1.
The simulation time increases by 46 %, which makes the or-
der reduction superfluous for the practical use in this case.

The further reduction with q = 8 results in the first reduced
model with actual savings in computation time (3.8 %),
whereby the relative error increases to nearly 10 %. Compar-
ing the small benefit in computation time with the increased
relative error and the added slightly oscillatory behavior visi-
ble in the simulation results shown in Fig. 6 also reveals lim-
ited practical use of such a reduced model.

In order to clarify the severe differences in the reduction
results between case 1 and case 2, the Hankel singular val-
ues of the linearized and balanced models of both cases are
compared in Fig. 7. It turns out, that the Hankel singular val-
ues in case 1 decay very fast while in case 2 this decay is less
steep. Recalling the relation between the Hankel singular val-
ues and the controllability and the observability of state vari-
ables explains, why the choice of uC50 as additional output
variable lowers the reducibility of the entire system.

7 Conclusions

With the introduction of mCCM, a modified and structurally
extended version of the component connection modeling by
DeCarlo and Saeks, a useful framework for the convenient
and efficient formulation of hierarchical interconnected dy-
namical systems had been presented and its advantageous
properties were discussed in detail. Due to the rising com-
putational complexity with an increasing number of compo-
nents to be simulated, it is desirable to have advanced sim-
ulation techniques such as model order reduction methods
in a usable form at hand. Therefore, it had been described,
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Figure 7. Comparison of the Hankel singular values σi for case 1
and case 2.

how such order reduction schemes can be embedded into the
software framework CoSimMA, a fully functional simulator
based on the mCCM formulation of interconnected dynami-
cal systems. Two model order reduction schemes, namely the
well established balanced truncation method for linear sys-
tems as well as the TPWL method for nonlinear systems were
described and discussed with respect to their basic properties,
advantages and disadvantages. Finally, a modeling, reduction
and simulation study by means of a standard benchmark ex-
ample had been presented and critically discussed with re-
spect to the quality of the reduced models and the savings in
computation time.

As a main result it had been shown, that the reducibility
of a given system strongly depends on the choice of the out-
put variables which are preserved throughout the reduction
process. In the case of a well reducible system, considerable
savings in computation time could be achieved while keep-
ing the approximation error in moderate bounds. In the other
case, only an insignificant reduction of the computation time
or prohibitively large approximation errors result.

In summary, efforts considering not only order reduc-
tion techniques but also efficient model formulations, cf.
Popp et al. (2016b, 2017b), as well as specialized numeri-
cal solvers, cf. Korolova et al. (2017), are important factors
for a truly efficient simulation of nonlinear large scale inter-
connected dynamical systems.
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