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Abstract. This work presents an approach to classify road
users as pedestrians, cyclists or cars using a lidar sensor and a
radar sensor. The lidar is used to detect moving road users in
the surroundings of the car. A 2-dimensional range-Doppler
window, a so called region of interest, of the radar power
spectrum centered at the object’s position is cut out and fed
into a convolutional neural network to be classified. With this
approach it is possible to classify multiple moving objects
within a single radar measurement frame. The convolutional
neural network is trained using data gathered with a test vehi-
cle in real urban scenarios. An overall classification accuracy
as high as 0.91 is achieved with this approach. The accuracy
can be improved to 0.94 after applying a discrete Bayes filter
on top of the classifier.

1 Introduction

On the road to highly and fully automated driving, modern
cars need to not only capture their environment, but also be
able to understand it. For this purpose, being able to classify
the type of objects in the cars’ surroundings is of major im-
portance. This is especially true on inner city roads where
the everyday traffic situation is very complex and highly dy-
namic, due to multiple kinds of users, such as pedestrians, bi-
cycles and cars, sharing the road. Pedestrians and cyclists are
particularly prone to sustain a serious injury when involved
in a traffic accident and thus belong to the vulnerable road
users group.

While the overall number of fatalities from the vulnera-
ble road users group in the European Union decreased be-
tween 2006 and 2015, they still made up in 2015 for 21 %
(5435 pedestrians) and 7,8 % (2043 cyclists) of all road acci-

dent fatalities (European Commission, 2017a, b). This makes
capturing and understanding the cars’ surroundings in urban
scenarios of utmost importance.

A variety of sensors is integrated in modern cars for this
purpose. Two of the most important ones are lidar and radar
systems, both with advantages and shortcomings. While a
lidar sensor has excellent range and angular resolution, it
can only measure velocity by differentiating over position
measurements. On the other hand, a radar sensor is outper-
formed in position measurements, but it is able to measure
relative velocities directly by means of the Doppler effect.
With modern radar sensors it is even possible to measure the
motion of the single components of a moving body. These
motions’ components are known as the micro-Doppler (Chen
et al., 2006) of a radar signal and carry additional information
about the type of object, which can be used for classification.

Machine learning algorithms are well suited for classifica-
tion tasks. They have gained significant traction in the com-
puter vision world due to the availability of increasingly large
data sets and the rapid development of hardware for paral-
lel computing. In the domain of radar signal processing, ma-
chine learning has had an impact as well, e.g. for fall detec-
tion (Jokanovic et al., 2016) or for unmanned aerial systems
detection and classification (Mendis et al., 2016). In the au-
tomotive industry, machine learning has also been of great
interest in combination with the micro-Doppler effect as a
way of classifying different subjects (e.g., Pérez et al., 2018;
Prophet et al., 2018; Heuel and Rohling, 2012). In Pérez et al.
(2018) a radar-based classification system which works on
a single-frame basis was introduced. While it showed that
classification based on the radar range-Doppler-angle power
spectrum was possible, the approach was nonetheless limited
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to single target scenarios and thus not entirely suitable for ur-
ban automotive scenarios.

Another promising approach with origin in the image clas-
sification and detection domain is that of semantic segmenta-
tion, where each pixel in an image is assigned a class proba-
bility vector. Schumann et al. (2018) used an adapted version
of PointNet++ (Qi et al., 2017) for semantic segmentation
on four-dimensional (two spatial coordinates, compensated
Doppler velocity and radar cross section) radar point clouds.
The radar point clouds are obtained performing a constant
false alarm rate (CFAR) detection procedure. This kind of
approach has the advantage of avoiding both the clustering
of detections and the manual selection of feature vectors.

This work presents a machine learning classification sys-
tem for urban automotive scenarios using a lidar and a radar
sensor. Here, a different approach was chosen, where the in-
put of the classification network is a region of interest (ROI)
of the range-Doppler-angle spectrum, without applying a de-
tection procedure, such as CFAR, beforehand. By doing so,
the discarding of possible valuable information, e.g. micro-
Doppler components, by the detection algorithm is avoided.
The system classifies the detected objects as either pedestri-
ans, cyclists, cars or noise (i.e. no object present). In order
to lay the focus on the classification performance, the lidar
was chosen instead of the radar for the detection of the ROIs,
since reliable detection and tracking algorithms were already
implemented in the test-vehicle.

The remaining of the paper is structured as follows. In
Sect. 2 the general principle of the detection and classifi-
cation system is introduced. Section 2.1 describes in detail
the architecture of the convolutional neural network (CNN),
which is used to perform the classifications. Section 3 goes
into the details of the test vehicle used to gather the data sets
and into the training of the CNN. The results of the proposed
approach as well as a high level tracking filter to improve the
performance are presented in Sect. 4. The conclusions of this
work and an outlook for future work are laid out in Sect. 5.

2 Classification system

The concept of the classification system is depicted in Fig. 1.
On the one hand, the lidar sensor is responsible for detecting
objects and tracking them over time. It delivers at each time
step t an object list �(t). A single object O(t)

k within �(t) is
described by the tuple

O
(t)
k =

{
id(t)k , ts

(t)
k ,x

(t)
k ,y

(t)
k ,v

(t)
x,k,v

(t)
y,k

}
, (1)

where idk is an identification number given to the k-th object,
tsk a time stamp of the measurement, xk and yk the estimated
position (middle point of the estimated bounding box) in the
car’s coordinate system, and vx,k and vy,k the velocities in x
and y direction.

On the other hand, the radar system is responsible for the
object classification task. It is a chirp sequence frequency-

Table 1. Radar system configuration.

Description Symbol Value

Sweep bandwidth Bsw 1 GHz
Chirp period Tc 64 ms
Ramp up-time tup 32 µs
Ramp down-time tdown 12 µs
Sampling frequency fs 10 MHz
Samples per chirp K 320
Number of chirps L 256
Number of Rx channels N 8
Number of range FFT points KFFT 320
Number of velocity FFT points LFFT 256
Number of angle FFT points NFFT 16
Range resolution 1R 0.15 m
Velocity resolution 1vr 0.43 km h−1

Max. range Rmax 23.85 m
Max. unambiguous velocity vr,max ±55 km h−1

Measurement frequency fmeas 5 Hz

modulated continuous wave radar with 8 receive channels.
The channels are arranged as a uniform linear array in
azimuth direction with neighboring elements separated by
half a wavelength at 77 GHz. The back-scattered, down-
converted, sampled signal at the receiver can be modeled by

sB(k, l,u)= exp
(
j2π ·

(
fB ·

k

fs
+ fD · l · Tc− fθ · u

))
(2)

with k the sample index within one chirp, l the chirp index,
u the receiver index, fB the beat frequency, fD the Doppler
frequency, fθ the normalized spatial frequency, fs the sam-
pling frequency and Tc the chirp period (Pérez et al., 2018).
By applying 3 independent fast Fourier transforms (FFTs)
across the k, l and u axis the range-Doppler-angle spectrum
is obtained. This allows to resolve objects in range, velocity
and angle dimensions, depending on the system parameters
shown in Table 1.

A radar measurement at time step τ is composed of the
tuple

9(τ ) =
{
P
(τ )
B , ts(τ )

}
, (3)

where PB denotes the range-Doppler-angle power spectrum
and “ts” the time stamp of the radar measurement.

Since the lidar and radar measurements are not triggered
by a common source, the measurements need to be matched
to one another using their time stamps. The radar measure-
ment frequency fmeas is the lower one and thus for each
radar measurement a lidar measurement that best matches the
radar’s time stamp is selected.

After building a radar-lidar measurement pair, all the ob-
jects in �(t) – excluding those outside the radar’s field of
view – are mapped to a location within the range-Doppler-
angle power spectrum. This is achieved by converting an ob-
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Figure 1. Description of the classification system. At stage I both radar and lidar measurements are performed (asynchronous). Stage II
provides the lidar object list �(t) and the processed radar measurement 9(τ ), which contains the range-Doppler-angle power spectrum.
Using the timestamps, the measurements are matched at stage III and the ROIs are extracted from the power spectrum. At stage IV the ROIs
are classified by the CNN.

Figure 2. Convolutional neural network architecture based on the VGGNet architecture from Simonyan and Zisserman (2014).

jects’ spatial coordinates (xk and yk) to a range R0,k and az-
imuth angle θk in the radar’s coordinate system. In the same
way, an object’s radial velocity vR,k and thus Doppler fre-
quency is computed from its velocity components (vx,k and
vy,k) provided by the lidar. A 2-dimensional region of inter-
est (ROI) centered at (R0,k , vR,k) in range and Doppler di-
mensions is then extracted from P

(τ )
B at the azimuth angle

bin nearest to θk (see Fig. 1 – III). The ROI is rectangular in
shape and has a fixed size of 5m× 20km h−1. This size was
chosen to fit the range-Doppler signatures of pedestrians, bi-
cycles and cars, while keeping it as small as possible.

Finally, the ROIs are fed to the convolutional neural
network, which will be further explained in Sect. 2.1.
The CNN computes the class probability vectors P class =

[Pped,Pcyc,Pcar,Pnoise] and a decision is made in favor of
the class with the highest probability.

2.1 Convolutional neural network architecture

The architecture of the CNN, depicted in Fig. 2, is based on
the VGGNet network (Simonyan and Zisserman, 2014). In
the convolutional layers, only filters of size 3× 3 are used.
These filters are all slid with a stride of 1 and zero-padding is
applied to the edges of the input maps to preserve the same
dimensions at the output. The convolutional layers come in
groups of 2 followed by a max-pooling operation. The re-
ceptive field of the max-pooling filters has a size of 2× 2,
which means that at the output of the pooling layers the fea-
ture maps get reduced by a factor of 4. After the second group
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Figure 3. Test vehicle (BMW 5 Series F10) equipped with radar
(Radarbook from INRAS), lidar and camera sensors. Photograph
source: [Authors].

of convolutional layers, three fully connected layers follow
which progressively get smaller in size.

Every convolutional and fully connected layer (except for
the last one) is followed by an activation function – the rec-
tified linear unit (ReLU). The ReLU is defined as f (x)=
max(0,x) and it introduces a nonlinear behavior to the net-
work. At the last stage a softmax function turns the logits
into the class probabilities by fitting them between 0 and 1
and ensuring that their sum adds up to 1.

3 Data acquisition and training

To perform the measurements and acquire the data a test
vehicle was used. The vehicle is a BMW 5 Series (F10)
equipped with a variety of sensors. For this work only the
radar, the front lidar and the front camera are of relevance
(see Fig. 3). The radar system was fitted within the right kid-
ney grill using a specially designed case. The front camera,
mounted in place of the rear-view mirror, is exclusively used
as an aid to label the radar data.

The data was gathered by driving in the surrounding area
of the Technical University of Munich. This resulted in a var-
ied number of scenarios in real urban settings, i.e. subjects
from all classes in a varied range of directions (both lateral
and longitudinal with respect to the radar’s orientation). All
measurements were performed during daytime with no pre-
cipitation present.

In order to process the dataset the ROIs given by the lidar
object lists were labeled semi-automatically and all frames
were controlled and, if necessary, corrected manually. Since
the classification approach produces one prediction per ROI,
only tracks with one target present or with a clear dominant
target within the ROI were selected. Figure 4 depicts an ex-

Figure 4. Example of a measurement frame with a cyclist in the
radar’s FOV. The top half shows the range-Doppler-angle power
spectrum PB for a fixed angle with the ROI used for classification
marked in red. The front camera picture is shown on the bottom
half. Photograph source: [Authors].

ample measurement frame with the ROI enclosed by a red
rectangle (upper half). The lower half of Fig. 4 displays the
front camera picture, that shows a cyclist corresponding to
the ROI.

The distribution of the training dataset can be taken from
Table 2. A track Tid is composed of an arbitrary number of
frames Z, which belong to the same object Oid:

Tid =
{
O
(0)
id ,O

(1)
id ,O

(2)
id , . . .,O

(Z)
id

}
, (4)

where “id” stands for the object’s identification number (see
Eq. 1). In order to create the noise tracks, regions of the
range-Doppler-angle power spectrum without any targets
present were manually sampled. It is worth noting, that the
car class includes larger vehicles, such as trucks, as well.

The network was implemented with help of the Tensor-
Flow software library (Abadi et al., 2015). Since the network
is not particularly deep and the convolution filters are also
quite small, training is not very time consuming. Using a
NVIDIA GeForce GTX 1080 Ti GPU, the time it takes to
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Table 2. Distribution of the training dataset.

Class Tracks Frames

Pedestrian 51 740
Cyclist 80 1943
Car 150 2616
Noise 83 1473

Table 3. Distribution of the test dataset 1.

Class Tracks Frames

Pedestrian 14 264
Cyclist 21 746
Car 62 1834
Noise 17 388

train the CNN is only around 2 min. At test time, a single
inference takes less than 2 ms (without taking into consider-
ation any of the radar signal processing).

4 Classification results

The top half of Table 4 shows the confusion matrix that re-
sults after running the data set from Table 3 through the con-
volutional neural network. Two common metrics to assess
the performance of a classifier are the precision and the re-
call. The precision is defined as

p =
tp

tp+ fp
, (5)

where “tp” is the number of true positives and “fp” the num-
ber of false positives. It relates the number of correct pre-
dictions (tp) to the number of overall positive predictions
(tp+ fp) for a given class. On the other hand, the recall, or
sensitivity, gives the fraction of a class that gets correctly
classified and it is defined as

r =
tp

tp+ fn
, (6)

where “fn” is the number of false negatives (Shalev-Shwartz
and Ben-David, 2014, p. 244).

From both the precision and the recall it can be seen that
the classification network has trouble with the pedestrian
class. A glance at the confusion matrix (top half of Table 4)
shows that pedestrians tend to be confused with both cyclists
and cars. While the classifier performs better for cyclists,
about a third of all cyclist frames get wrongfully classified
as cars. The car and noise classes show an overall good per-
formance with the car class having just a small percentage
misclassified as either pedestrians or cars. The overall classi-
fication accuracy for this data set is 0.84.

A further analysis of the results shows, that many classifi-
cation errors occur for only a small number of frames within

Table 4. Confusion matrix for data set from Table 3 before (top)
and after (bottom) DBF.

Pedestrian/ Cyclist/ Car/ Noise/
% % % %

Before DBF

Pedestrian 57.6 15.5 23.9 3.0
Cyclist 7.0 61.7 30.4 0.9
Car 3.0 3.1 93.3 0.5
Noise 0.0 0.0 0.0 100.0

After DBF

Pedestrian 84.8 1.9 13.3 0.0
Cyclist 14.7 81.8 3.1 0.4
Car 3.6 2.2 94.2 0.
Noise 0.0 0.0 0.0 100.0

Table 5. Precision and recall for data set from Table 3 before (top)
and after (bottom) DBF.

Pedestrian Cyclist Car Noise

Before DBF

p 0.59 0.82 0.86 0.94
r 0.58 0.62 0.93 1.00

After DBF

p 0.56 0.93 0.97 0.99
r 0.85 0.82 0.94 1.00

a track. Figure 5 depicts a histogram of the relative number
of errors per track (excluding tracks without errors). From
the histogram it can be observed, that tracks with a low per-
centage of misclassified frames are more frequent than tracks
with a high percentage of misclassified frames.

Nonetheless, there are still tracks where the system fails
to correctly classify the majority of the frames (15 out of
114 tracks). One common occurrence that can be observed
within some of these tracks (5 out of 15) is multiple objects
falling inside the ROI. While most tracks with multiple ob-
jects within an ROI were sorted out during labeling, tracks
where it was assessed that the object of interest was visible
enough were still allowed. Figure 6 depicts such an exam-
ple, where 2 cyclists are riding closely together. The system
erroneously classifies this track as a car for most of its life-
time. The same happens in other tracks, where e.g. pedestri-
ans are crossing the street in groups, or when a pedestrian is
walking slowly near parked cars. This highlights an inherent
weakness of the approach, namely that of overlapping tar-
gets, since the train set contains mainly frames where only
one single target is present in the ROI.
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Figure 5. Histogram of the relative number of erroneously classified
frames per track. Tracks without any misclassified frames are not
included.

4.1 Filtering the classifications

By applying a high level filter on top of the classifier, the
classification performance could be improved, since tracks
with small percentages of misclassified frames (the major-
ity) would tend to 0 % misclassifications. Nonetheless, tracks
with big percentages of misclassified frames will tend to even
higher percentages, but since they are the minority, an overall
improvement would be achieved.

For this purpose a discrete Bayes filter (DBF) was chosen.
An object is modeled as a random state variable X and the
four classes (pedestrian, cyclist, car and noise) represent the
discrete states xc that X can take on. The goal of a DBF is to
recursively estimate at time t the discrete posterior probabil-
ity distribution{
pc,t

}
= {p(Xt = xc|z1 : t )} ,c = 1 . . .4 (7)

where z1 : t stands for all measurements up to time t , by as-
signing a probability pc,t to each of the single states. The
working principle of the DBF can be taken from Algorithm 1
(Thrun et al., 2005). For a single object at time t the function
loops over all four possible states (classes) xc and computes
their respective probability pc,t . To do this, first the so called
prediction, or prior, pc,t is calculated in line 2. The term
p(Xt = xc|Xt−1 = xi) is called the state transition probabil-
ity and it represents the probability of going from state xi at
time t − 1 to state xc at time t . Here it is assumed that an
object cannot change classes during its lifetime. Therefore, it
follows that

p(Xt = xc|Xt−1 = xi)=

{
1, if xc = xi

0, otherwise
(8)

and thus pc,t = pc,t−1. In line 3 the current measurement zt
is incorporated by multiplying its likelihood p(zt |Xt = xc)

Figure 6. Exemplary frame, where two bicycles fall within one sin-
gle ROI, which leads to a high percentage of misclassified frames
within the track. Photograph source: [Authors].

with the prior. The measurement zt at time t corresponds
to the class with the highest probability as predicted by the
CNN and its likelihood p(zt |Xt = xc) is derived from the
statistics given by the confusion matrix in the top half of Ta-
ble 4. Since the product p(zt |Xt = xc)pc,t is usually not a
probability, a normalization factor η makes sure that the sum
of all pc,t add up to one and thus, that {pc,t } is a probability
distribution. When a new track is started, the DBF needs an
initial probability distribution pc,t=0 to compute the first es-
timate. Since no knowledge about the initial state is assumed,
a uniform distribution is assigned to it.

Algorithm 1 Discrete Bayes filter. Adapted from Thrun et al.
(2005, p. 87).

Require: {pc,t−1},zt
1: for all c do
2: pc,t =

∑
ip(Xt = xc|Xt−1 = xi) pi,t−1 = pc,t−1

3: pc,t = η p(zt |Xt = xc) pc,t
4: end for
5: return {pc,t }
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Figure 7. Histogram of the relative number of erroneously classified
frames per track after the discrete Bayes filter. Tracks without any
misclassified frames are not included.

Table 6. Distribution of the test dataset 2.

Class Tracks Frames

Pedestrian 13 264
Cyclist 29 746
Car 70 1834
Noise 27 744

The results from applying the discrete Bayes filter can be
taken from the bottom half of Table 4. The confusion matrix
clearly shows an improvement of the classification accuracy
for all classes. From the bottom half of Table 5 the precision
and recall after applying the DBF can be seen. A substan-
tial improvement of the recall for both pedestrian and cyclist
classes is observed. A histogram of the relative number of
errors per track after incorporating the DBF is also shown
in Fig. 7. It can be seen that one clear drawback of this ap-
proach is that the number of completely misclassified tracks
increases. These are the tracks that already had a high per-
centage of misclassified frames to begin with. Still, the over-
all classification accuracy improves from 0.84 to 0.91 after
applying the DBF.

Since the likelihood values needed for the DBF were taken
from the confusion matrix on Table 4, a new set of measure-
ments is needed to make sure that the proposed filter doesn’t
only work with that specific dataset. A different set of data
(see Table 6) was used to evaluate again the improvement
after applying the DBF. The results for this set are laid out
on Table 7. It is evident, that the filter improves the overall
classification performance for this data set as well. In this
case the overall accuracies are 0.91 before and 0.94 after the
DBF.

Table 7. Confusion matrix for new data before (top) and after (bot-
tom) DBF.

Pedestrian/ Cyclist/ Car/ Noise/
% % % %

Without DBF

Pedestrian 65.6 23.2 11.2 0.0
Cyclist 4.7 85.1 8.6 1.5
Car 2.1 4.1 93.8 0.0
Noise 0.0 0.0 0.0 100.0

After DBF

Pedestrian 88.4 10.9 0.7 0.0
Cyclist 5.2 90.0 4.1 0.7
Car 3.2 3.7 93.0 0.
Noise 0.0 0.0 0.0 100.0

5 Conclusions and outlook

This work presented a system to classify detected objects as
either pedestrians, cyclists, cars or noise in urban automo-
tive scenarios. It does so by first detecting the objects using
a lidar sensor, extracting a region of interest from the radar
range-Doppler-angle power spectrum and running it through
a deep convolutional neural network. Training and test data
sets were gathered using a test vehicle in real urban scenar-
ios. The test results showed that the CNN reliably correctly
classifies cars and empty ROIs (noise), but has trouble with
the pedestrian and cyclist classes. Overlapping targets also
present a big challenge for the system, since the network
was trained mainly with ROIs which contain only one tar-
get. It was shown, that for many of the tracks only a small
fraction of frames were misclassified, which could be im-
proved by applying a tracking filter on top of the classifier.
For this purpose a discrete Bayes filter was chosen, which
significantly improved the classification performance for the
pedestrian and cyclist classes. The improvements achieved
with the DBF were validated using a new test data set.

Future work will focus on improving the classification per-
formance by introducing the temporal information directly
into the neural network, developing an approach to handle
overlapping targets and increasing the number of classes.
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