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Abstract. A fundamental for an automated driving car is the
awareness of all its surrounding road participants. Current
approach to gather this awareness is to sense the environment
by on-board sensors. In the future, Vehicle-to-X (V2X) might
be able to improve the awareness due to V2X’s communi-
cation range superiority compared to the on-board sensors’
range. Due to a limited amount of communication partners
sharing their own ego states, current research focuses partic-
ularly on cooperative perception. This means sharing objects
perceived by local on-board sensors of different partners via
V2X. Data collections using vehicles, driving on real roads,
is challenging, since there is no market introduction of co-
operative perception yet. Using test cars, equipped with the
required sensors are rather expensive and do not necessarily
provide results representing the true potential of cooperative
perception. Particularly, its potential is highly dependent on
the market penetration rate and the amount of vehicles within
certain vicinity. Therefore, we consider to create synthetic
data for cooperative perception by a simulation tool. After
reviewing suitable simulation tools, we present an extension
of Artery and its counterpart SUMO by modelling realistic
vehicle dynamics and probabilistic sensor models. The gen-
erated data can be used as input for cooperative perception.

1 Introduction

Today’s Advanced Driver Assistance Systems (ADASs) rely
on on-board sensors, which perceive other road participants
and obstacles within their Field-of-View (FOV). The percep-
tion system fuses measurements from all of the on-board
sensors, such as camera and radar, and generates an envi-
ronmental model. Due to limited FOVs, the perception sys-

tem is not able to provide a complete environmental model.
On-board sensors like camera or radar are limited in their
perception range and due to possible occlusions. Addition-
ally, in unfavourable weather conditions the perception sys-
tem might fail. However, for automated driving of level 3
and higher, a best possible perception of the environment
is required in order to understand the scene adequately and
to make the right decision. In order to resolve these issues,
Vehicle-to-X (V2X) communication might be a key technol-
ogy. The communication range is significantly higher than
the sensors’ perception range and V2X communication is ro-
bust to occlusions and weather conditions. In the first few
years after market launch of V2X communication, the ra-
tio of V2X enabled road participants will be limited. Addi-
tionally, there might always be non-connected road partic-
ipants, e.g. pedestrians or cyclists not carrying any mobile
phone. Therefore, only a certain ratio of road participants are
able to broadcast ego state information, why current research
focuses particularly on cooperative perception. This means
sharing objects perceived by local on-board sensors of dif-
ferent partners via V2X. For the development of cooperative
perception, simulation tools generating synthetic data are a
reasonable complement to data collections. In this paper, we
extend an open-source simulation tool such that it is able to
generate synthetic data that can be used to develop cooper-
ative perception applications. Firstly, we review in Sect. 2
simulation tools for cooperative automated driving (CAD).
We have selected Artery as simulation tool, which extends
the Vehicles in Network Simulation (Veins) by an implemen-
tation of the European Telecommunications Standards Insti-
tute Intelligent Transport Systems (ETSI ITS)-G5 protocol
(ETSI, 2019) and a local perception toolbox. Veins couples
the traffic simulator Simulation of Urban Mobility (SUMO)
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with the network-simulator OMNeT++. In Sect. 3 our ex-
tensions to SUMO are described in order to model realistic
vehicle dynamics. Modifications to Artery are described in
Sect. 4. This includes probabilistic sensor models, sensor fu-
sion algorithms and a service for disseminating and receiv-
ing Cooperative Perception Messages (CPMs). In Sect. 5 an
evaluation of the vehicle dynamics described in Sect. 3 is
presented.

2 Review of relevant simulation tools

A simulation tool for CAD must provide sufficient realistic
network communication models and sufficient realistic vehi-
cle movements and sufficient realistic sensors, while achiev-
ing simultaneously sufficient scalability. The specifications
sufficient realism and sufficient scalability are contradictory
and result in a trade-off. The choice in favour of the realism
or the scalability depends on the desired application. For ex-
ample, if the application focuses on investigating character-
istics of the network of Inter-Vehicle Communication (IVC),
scalability and network communication models are in favour
and realistic vehicle models might be ignored. Whereas, if
the application aims at cooperative manoeuvring or evaluat-
ing tracking performance of cooperative perception, realism
is in favour and requires to model e.g. the powertrain, lat-
eral vehicle dynamics and distinct probabilistic sensors. A
standalone simulation tool for CAD is not available to date.
However, for simulating network models and vehicles there
are various network, respectively traffic simulators available.
A well-known option for CAD simulations is the bidirec-
tional coupling of simulators, like coupling a traffic simu-
lator and a network simulator. The simulators run in parallel
and exchange data among them. Subsequently, we list non-
exhaustively relevant simulators and coupling approaches.

Traffic simulators are distinguishable by the applied
model, respectively the simulation’s level of detail. There
are macro-, meso-, micro- and submicroscopic modelling ap-
proaches. Macro- and mesoscopic models are listed only for
the sake of completeness, but are not of relevance for CAD
simulations. Macroscopic simulators model roads as small-
est entity characterised by e.g. density or mean speed. Meso-
scopic simulators model partitioned roads or a convoy of ve-
hicles and represent an intermediate level in between macro-
and microscopic simulators. Microscopic simulators model
the movement of each vehicle by vehicle-following. VISSIM
(PTV Planung Transport Verkehr AG, 2018) and its open-
source counterpart SUMO (Krajzewicz et al., 2002) are pop-
ular representatives. Submicroscopic simulators extend mi-
croscopic models by additionally modelling specific parts
of the vehicle, e.g. power train, vehicle dynamics or sen-
sors. Submicroscopic traffic simulators are also often called,
nanoscopic traffic simulator, or driving simulator and often
included in robotics simulators. A non-exhaustive list of rep-
resentatives for submicrosopic simulators: SiVIC (Gruyer

et al., 2014), PreScan (International TASS, 2018), TORCS
(Wymann et al., 2015), RACER (Gonzalez and Kalyakin,
2009), VDrift (Kehrle et al., 2011), Webots (Michel, 2004)
and PHABMACS (Massow and Radusch, 2018).

The most popular network simulators for CAD are OM-
NeT++ (OMNeT++, 2018) and ns-3 (ns-3, 2018).

Subsequently, different frameworks that enable the bidi-
rectional coupling of traffic and network simulators are
listed. Rondinone et al. (2013) presents the open-source sim-
ulation platform iTetris that integrates the traffic simulation
SUMO and the network simulation ns-3. Llatser et al. (2017)
couples the commercial submicroscopic vehicle simulator
Webots and the network simulator ns-3, which achieves an
high realism in vehicle dynamics. In Gomez et al. (2014)
the submicroscopic traffic simulator MORSE and the net-
work simulator ns-3 are coupled and applied for cooperative
adaptive cruise control (CACC). Schünemann (2011) pro-
poses VimSIMRTI, which allows flexible coupling of differ-
ent network and traffic simulators, e.g. ns-3, OMNet++ and
VSimRTI cellular, respectively SUMO and PHABMACS.
The open-source tool Veins (Sommer et al., 2011) provides
simulation modules for vehicular networking. It executes two
simulators in parallel: OMNeT++ for network simulations
and SUMO for traffic simulations. Both simulators are con-
nected by the Traffic Control Interface (TraCI).

In recent research, there is also the trend for a coupled
micro- and submicroscopic traffic simulation. Pereira and
Rossetti (2012) couples the microscopic traffic simulator
SUMO and the submicroscopic traffic simulator USARSim.
Also in Barthauer and Hafner (2018), a micro- and submicro-
scopic traffic simulator are bidirectionally coupled, namely
SUMO and SILAB. Aramrattana et al. (2017) presents a sim-
ulation framework consisting of the VTI’s driving simula-
tor, the traffic Simulator Plexe-SUMO and the network sim-
ulator Plexe-VEINS. This framework is applied for testing
and evaluation of CACC. Plexe (Segata et al., 2015) is an
open source extension to VEINS and permits the simulation
of CACC or platooning systems. Communication protocols
for platooning are realized in VEINS, while distinct cruise
controllers and engine dynamics are implemented in SUMO.
Schiller et al. (2015) proposes an approach for coupling traf-
fic simulators (SUMO and VIRES Virtual Test Drive) of
different resolutions to satisfy the constraints of performing
simulations in real time.

In this work, we use the simulation framework Artery
(Riebl et al., 2015), which extends Veins by an implemen-
tation of the ETSI ITS-G5 network and transport protocols,
called Vanetza. Additionally, each vehicle is individually
configurable regarding its capabilities of ITS-G5 services.
For example, Artery includes a ITS-G5 service for dissem-
inating Cooperative Awareness Messages (CAMs). In Gün-
ther et al. (2015), Artery is extended by a local perception
toolbox, which allows for the introduction of individual local
perception sensors for each vehicle. The framework has been
used so far for investigating the network performance and to
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Table 1. Longitudinal and lateral vehicle model parameters

parameter value
ve
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cair 0.3
A 2.1 [m2]
ρ 1.2 [kg m−3]
m 1300 [kg]
g 9.81 [m s−2]
cr1 0.0136
cr2 5.18× 10−7

Nc 4
a0 −40.222
a1 0.065
a2 −2.159× 10−5

a3 4.360× 10−9

a4 −3.130× 10−13

η 0.9
lf 1.6 [m]
lr 1.9 [m]
Iz 10 000 [kg m2]

compare the awareness ratio between on-board sensors and
CAMs (Günther et al., 2016, 2018).

3 SUMO

As already mentioned, SUMO is a microscopic traffic simu-
lator and thus does not include any vehicle model. The con-
sequences are instantaneous accelerations or instantaneous
and unbounded yaw rates. This is impractical as a simula-
tion tool used for development or evaluation of cooperative
perception. In Segata et al. (2015), longitudinal vehicle dy-
namics have already been added to SUMO. We further ex-
tend this approach by modelling additionally lateral vehicle
dynamics.

Subsequently, the modifications to SUMO are described.
Section 3.1 describes the longitudinal vehicle dynamics,
while Sect. 3.2 describes the lateral vehicle dynamics. Fur-
ther theoretical background on vehicle dynamics can e.g. be
found in Rajamani (2006). The vehicle parameters applied
in the longitudinal and lateral models are summarized in Ta-
ble 1. In Sect. 3.3, the Pure Pursuit algorithm is presented,
which is used to keep the vehicle centred in its current lane.

3.1 Longitudinal vehicle dynamics

The longitudinal acceleration ẍ of a vehicle is dependent on
the mass of the vehicle m and the sum of the forces acting in
longitudinal direction on the vehicle:

mẍ = Fx −FA−FR−FG, (1)

where FA, FR and FG are the air resistance, the rolling resis-
tance, respectively the gravitational force:

FA =
1
2
cairAρẋ

2, (2)

FR =mg
(
cr1+ cr2ẋ

2
)
, (3)

FG =mg sin(θroad) , (4)

where cair is the aerodynamic drag coefficient, ρ is the den-
sity of air andA is the cross-sectional area of the vehicle. The
parameters cr1 and cr2 are dependent on the tires and their
pressure. The gravitational acceleration and the inclination
of the road are denoted as g, respectively θroad. The accelera-
tion force Fx is dependent on the desired acceleration ẍdes[t],
which is determined in a longitudinal control system. How-
ever, the desired acceleration is not immediately the true ac-
celeration of the vehicle. Indeed, there is an actuation lag due
to communication delays between distinct controllers and the
physical process until the force is transmitted to the tires and
accelerates the vehicle. This actuation lag is modelled using
a first order lag:

ẍ[t] = αẍdes[t] + (1−α) ẍ[t − 1]. (5)

The parameter α depends on the simulation sampling time
1t and the actuation lag τ :

α =
1t

τ +1t
, τ = τinj (n)+ τburn (n)+ τexh. (6)

Opening the fuel valves and injecting the fuel is modelled by
the parameter τinj(n), while burning the fuel and accelerating
the crankshaft is considered by the parameter τburn(n):

τinj(n)=
2(Nc− 1)
nNc

, τburn (n)=
3

2n
. (7)

Additionally, a constant transport delay τexh of 100 ms is
considered. Nc is the number of cylinders and n is the en-
gine speed expressed in [rps]. The maximum engine force
depends on the the engine power Peng, which again is depen-
dent on the current engine speed Neng in [rpm]:

Feng =
ηPeng

(
Neng

)
ẋ

, (8)

where η denotes the engine efficiency and ẋ is the speed
in [m s−1]. Engine power curves can be found e.g. at
Automobile-Catalog (2019). We model the engine power us-
ing a polynomial function:

Peng
(
Neng

)
=

N∑
i=0

aiN
i
eng. (9)

So far, we only considered forces in case of positive accelera-
tion, where the acceleration force is Fx = Feng. On the other
hand, if the vehicle is braking, the acceleration force Fx is
negative. The maximum braking force is Fx =−µmg. The
braking actuation lag is fixed to τ = 200 ms.
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Figure 1. Dynamic bicycle model.

3.2 Lateral vehicle dynamics

For modelling the lateral vehicle dynamics, the dynamic bi-
cycle model as shown in Fig. 1 is applied. The distances of
the front axle F and the rear axle R to the center of the ve-
hicle C are denoted as lf, respectively lr. The yaw angle ψ
defines the orientation of the vehicle’s body frame with re-
gard to the global frame. The side slip angle αt and the yaw
angle define together the driving direction of the vehicle with
velocity vt. The direction of the velocity vf at the front axle
is dependent on the front slip angle αf and the steering wheel
angle δ. The rear slip angle αr determines the direction of the
velocity vr at the rear axle.

Using again Newton’s second law, the lateral acceleration
is dependent on the mass of the vehicle and the sum of the
forces acting in lateral direction on the vehicle:

may =m
(
ÿ+ vxψ̇

)
= Fyf +Fyr , (10)

where Fyf and Fyr are the lateral tire forces of the front and
rear wheels, respectively. The inertial lateral acceleration ay
comprises two terms, the acceleration along the y-axis ÿ and
the centripetal acceleration vxψ̇ . The angular acceleration
ψ̈ is dependent on the moment of inertia Iz, the lateral tire
forces and the the distances of the front lf and rear lr tire to
the center of the vehicle:

Izψ̈ = lfFyf − lrFyr . (11)

The tire forces are due to deformations which occur during
manoeuvring. These deformations result in a slip angle α and
vice versa the tire forces can be expressed as a non-linear
function depending on the slip angle. The slip angle of the
front wheel αf and the real wheel αr can be determined by:

αf = tan−1
(
vy + lfψ̇

vx

)
− δ, αr = tan−1

(
vy − lrψ̇

vx

)
.

(12)

To model the front and rear tire forces, the well-known Pace-
jka tire model is applied. The generated force can be ex-

pressed as a function of the slip angle α:

Fy = Fy,n
(
αeq
)
+ Sv, with αeq = α− Sh, (13)

where

Fy,n =D

· sin
(
Ctan−1

(
Bαeq−E

(
Bαeq− tan−1 (Bαeq

))))
. (14)

Fy might be the front lateral tire force Fyf or the rear lateral
tire force Fyr and α the front slip angle αf or the rear slip
angle αr. For further information on the model parameters
B, C, D, E, Sh and Sv , see e.g. Rajamani (2006).

Rewriting Eqs. (10) and (11) results in the lateral acceler-
ation and the angular acceleration:

ÿ =
Fyf +Fyr

m
− vxψ̇, ψ̈ =

lfFyf − lrFyr

Iz
. (15)

In order to be able to model the previously described lat-
eral vehicle dynamics in SUMO, it is required to detach the
vehicle from its lane and that the vehicle is able to move
freely through the cartesian space. As shown in Fig. 2, in
SUMO the vehicle’s movement is usually described by a po-
sition on lane value. The vehicle is always driving on the cen-
ter of lane, wherefore the lateral offset equals zero. A global
cartesian position might be calculated by a function that uses
additionally the start and end position of the present lane. We
determine the vehicle’s movement in the global frame and
update always the redundant values that describe the longi-
tudinal and lateral position on the current lane. The steering
wheel angle δ is the input parameter of the lateral vehicle dy-
namics. The steering wheel angle is controlled by the path
tracking algorithm that is described in the next subsection.

3.3 Path tracking

For path tracking we apply the Pure Pursuit controller, which
is a popular geometric controller that determines the desired
steering wheel angle δ according to:

δ = tan−1
(

2Lsin(θ)
ld

)
. (16)

It’s basic principle is to follow a carrot-point, that is defined
based on the look-ahead distance ld and the planed trajectory.
In our case corresponds the planed trajectory to the center of
lane. The angle θ is given through the velocity vector of the
vehicle and the look-ahead vector. The parameter L corre-
sponds to the wheelbase of the vehicle.

4 Artery

We start with a brief review of the local perception toolbox of
Artery (Günther et al., 2015), which is shown in Fig. 3. The
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Figure 2. Representation of the position in SUMO.

local perception toolbox of Artery is based on the Global En-
vironmental Model (GEM), the Local Environmental Model
(LEM) and the local perception sensors.

The GEM acts as a global database containing all vehicles
within the simulation. Each vehicle is described by a Global
Environmental Object (GEMO). The GEMO retrieves con-
tinuously values of the corresponding vehicle in SUMO via
TraCI. Each vehicle might be equipped with local percep-
tion sensors. Those sensors are configurable by the percep-
tion range, the opening angle as well as the mounting point
on the vehicle. The GEM provides functionality to determine
if other vehicles are perceived by the installed sensors.

Every vehicle equipped with a sensor creates its own in-
stance of a LEM. The LEM acts as the database of all vehi-
cles that are perceived by the ego vehicle. Whenever a mea-
surement is performed by the sensor, the vehicles within its
perception range, respectively their corresponding Local En-
vironmental Model Objects (LEMOs) are updated. When-
ever a vehicle is first measured by a perception sensor, i.e.
the vehicle has not be sensed before by the ego vehicle, a
new LEMO is created for that particular vehicle. In Günther
et al. (2015), there is one LEMO per sensor per perceived
object. The LEMO stores the last measurements. Whereas, in
our approach, a LEMO comprises one object tracker process-
ing the measurements of all perception sensors installed in
the ego vehicle. In Sect. 4.1 a probabilistic radar and camera
model are described. In Sect. 4.2 we describe the operating
principle of the involved modules in cooperative perception.

4.1 Sensor modelling

We extend Artery by a probabilistic radar and camera sensor
model. The radar sensor measures target range r , azimuth
angle θ and range rate ṙ with frequency f = 10 Hz:

r =

√
(xo− xe)

2
+ (yo− ye)

2
+wr ,

θ = tan−1
(
yo− ye

xo− xe

)
+wθ ,

ṙ = v cos
(
φo− tan−1

(
yo− ye

xo− xe

))
+wṙ .

Figure 3. Artery’s local perception toolbox (Günther et al., 2015).

The respective measurement noise is described by wr ,
wθ and wṙ , which are zero mean white Gaussian noises
with standard deviations σr = 1.2 m, σθ = 0.01 rad and σṙ =
0.45 m s−1. The camera sensor measures the position in pic-
ture coordinates u and v with the same frequency:

u=
q11 (xo− xe)+ q12 (yo− ye)+ q14

q31 (xo− xe)+ q32 (yo− ye)+ q34
+wu, (17)

v =
q21 (xo− xe)+ q22 (yo− ye)+ q24

q31 (xo− xe)+ q32 (yo− ye)+ q34
+wv. (18)

Here the respective measurement noise is given by wu and
wv , which are zero mean white Gaussian noises with stan-
dard deviations σu = 6 and σv = 6 pixels. The variables qij
correspond to the elements of the projection matrix. The
global position of the detected vehicle and the ego vehicle are
given by xo and yo, respectively by xe and ye. The detected
vehicle drives with velocity v towards the direction φo. The
sensor models and its parameters have been taken over from
the data fusion software BASELABS Create (BASELABS,
2019).
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Figure 4. Architecture of the cooperative perception.

4.2 Cooperative perception

The implemented architecture of the cooperative perception
is shown in Fig. 4. The in Sect. 4.1 described sensors gen-
erate noisy measurements which are fused in the respective
local fusion module. The result of the local fusion module
is broadcasted via V2X communication. The information re-
ceived by the communication module is then fused into the
global fusion module with the result of the local fusion mod-
ule.

Whenever a LEMO is updated, its corresponding local fu-
sion is triggered, i.e. there are multiple single object tracker.
The object tracker firstly compensates the ego motion. Sec-
ondly, the track is predicted using the Unscented Kalman Fil-
ter (UKF) according to the system model. Depending on the
sensor that has triggered the local fusion, a noisy measure-
ment is generated. Finally, the track is updated by the UKF
using the corresponding measurement model. A CPM ser-
vice is implemented that creates a CPM message containing
information about the ego state, the FOVs of the local sen-
sors and the tracked objects. The ego state information is in-
terpretable as a downsized CAM and describes the dynamic
state of the broadcasting vehicle. It is provided by Artery’s
GEMO. The tracked object states are obtained by an access
to the LEMOs’ local fusion module.

Artery with its extensions described so far is used to evalu-
ate the network load. Additionally, Artery outputs the ground
truth and non-noisy measurements that might be used for
Monte-Carlo simulations, i.e. the noise is added later in a
separate fusion framework. Both opportunities are shown in
Fig. 5.

5 Evaluation

This section evaluates the proposed extensions of SUMO,
i.e. the longitudinal and lateral vehicle models as well as the
path tracking. For evaluation a map of the sub-urban area
Garching is used. Figure 6a shows the trajectory the vehicle

Figure 5. Artery data generation.

Figure 6. Vehicle dynamics.

is driving in the initial SUMO version and after the exten-
sion. The initial trajectory corresponds to the center of lane,
which is used as input for the Pure Pursuit algorithm. The ve-
hicle drives from the top to the left bottom. During cornering,
the vehicle slightly cuts the corner, which is a typical chal-
lenge for the Pure Pursuit controller. In Fig. 6c the velocity
is shown. Before cornering the vehicle is braking, and af-
terwards accelerating. As visible in Fig. 6e the acceleration
is not instantaneous available. Figure 6b compares the yaw
angles. Adding the lateral vehicle dynamics as described in
Sect. 3.2 results in a continuous yaw angle, i.e. there are no
abrupt jumps. The yaw rates are compared in Fig. 6d. The
initial yaw rate is changing very rapidly and achieves large
values due to the discontinuities in the yaw angle. In contrast,
the yaw rate after the extension is within a realistic range and
continuous. In Fig. 6f, the steering wheel angle and the slip
angle are shown.
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6 Conclusions

This paper describes a number of extensions to the simula-
tion tool Artery and its counterpart SUMO. We add longitu-
dinal and lateral vehicle dynamics as well as a lateral con-
troller to the vehicle simulator SUMO. Moreover, Artery’s
local perception toolbox is extended by probabilistic sensor
models and a service for disseminating CPMs. Afterwards,
we evaluate the changes regarding the vehicle dynamics. In
our view, the framework is now able to be applied for inves-
tigation of cooperative perception, which we plan for future
work. Adequate network communication models and scala-
bility have already been available and the extensions provide
in our view sufficient realistic vehicle movements and sen-
sors. The future work may e.g. include to test different sensor
fusion methods or different message formats.
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