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Abstract. We present first numerical examples of how the
framework of isogeometric boundary element methods, in
the context of electromagnetism also known as method of
moments, can be used to achieve higher accuracies by eleva-
tion of the degree of basis functions. Our numerical examples
demonstrate the computation of the electric field in the exte-
rior domain.

1 Introduction

Spectral methods, cf. Trefethen (2000), are classes of meth-
ods for solving differential equations, closely related to clas-
sical element based methods. They share the same idea: The
approximation of the solution through a series of basis func-
tions. While classical methods choose to refine a mesh, and
with this to further localise the support of each individual
basis function, spectral methods employ global basis func-
tions to approximate the solution of the problem. Since such
a global basis is not always readily available, quite often any
finite and boundary element method which relies solely on p-
refinement, i.e., the increase of the degree of the local with-
out mesh (h-) refinement, is referred to as a spectral element
method.

In engineering applications, spectral element methods are
rarely considered; the reason simply being that to fully enjoy
their convergence properties, meshes with curved elements
of increasing orders must be generated. This poses chal-
lenges to mesh generation and pre-processing. In contrast,
classical h-refinement based mesh generators are well under-
stood. However, with the introduction of isogeometric anal-
ysis by Hughes et al. (2005) the problem of efficient mesh
generation can be avoided by the use of exact geometry map-

pings, allowing computations directly on CAD-generated ob-
jects.

In this document, we present numerical experiments which
showcase how the isogeometric framework can be used to
obtain an implementation of a spectral boundary element
method. We demonstrate the implementation by the so-
lution of electromagnetic scattering problems through p-
refinement. For this, we employ a solution strategy via the
electric field integral equation (Buffa and Hiptmair, 2003),
which is also referred to as method of moments (MOM), and
an isogeometric boundary element framework (Dölz et al.,
2018b). We essentially employ p-refinement to a patchwise
polynomial basis, in our case based on Bernstein polynomi-
als. Other variants of spectral MOM have already been stud-
ied, eg. by Benoit et al. (1992) or Di Ruscio et al. (2014).

The organisation of the paper is straight forward. We first
introduce basic notions of the electric field integral equation,
and our p-refinement based discretization scheme, built on
top of the framework of isogeometric analysis. Afterwards,
we comment on the matrix assembly, followed by a discus-
sion of our numerical examples.

2 The Electric Field Integral Equation

We consider the scattering of an electromagnetic wave un-
der the assumption of constant material coefficients µ and ε
in �c, i.e., the surroundings of a scatterer �, PEC boundary
condition on 0 := ∂� and the Silver-Müller radiation condi-
tion. Prescribing an incident wave g we arrive at

curl curl e− κ2e = 0, κ > 0 non-resonant, in �c,

e×n= g×n, (1)
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Figure 1. Visualisations of the geometries. The maximum diameter of the boat is smaller than 4.5, the sphere is of radius 1.

Figure 2. Visualisations of the real part of the unknown surface current.

with wave number κ := ω
√
εµ. Herein, n denotes the out-

ward unit normal of 0. Under these conditions, there exists
a surface current j such that the scattered field can be rep-
resented by the electric field integral equation (EFIE), given
by

e(x)=−
(
Ṽ j

)
(x), for all x ∈�c, (2)

with

Ṽ (j)(x) :=

∫
0

Gκ(x,y)j(y)d0y +
1
κ2 gradx

∫
0

Gκ(x,y)

· div0
(
j(y)

)
d0y, (3)

for all x 6∈ 0. Herein, Gκ(·, ·) denotes the Green’s function
given byGκ(x,y) := eiκ|x−y|

4π |x−y| , cf. Buffa and Hiptmair (2003)
for details.

In a continuous setting, this can be recast as the variational
problem of finding an unknown surface current j in the trace

of the space H(curl,�), such that

∫
0

∫
0

Gκ(x,y)j(x) · ξ(y)d0y +
1
κ2

∫
0

Gκ(x,y)

(div0 ◦ j)(x)(div0 ◦ ξ)(y)d0y
]

d0x =

−

∫
0

(ei ×n) · ξd0 (4)

holds for all test functions ξ in the same space. The corre-
sponding trace space is often denoted byH−1/2

× (div0,0) and
requires a divergence-conforming discretisation.

3 Discretisation

To solve the electric wave equation via a boundary ele-
ment approach, the unknown is reduced to a vector field
on 0, often discretised by divergence-conforming elements.
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Figure 3. Numerical examples on the unit sphere. Wave number κ = 1. The error refers to the maximum error obtained by comparing the
values of the analytical solution with the field values through evaluation of Eq. (2) on a selection of 10 000 points on a sphere of radius 2
around the origin. Computed on a desktop PC with 16 GB RAM and an Intel i7 8700k processor.

Figure 4. Numerical examples for the ship geometry as presented in Fig. 1a. Highest p generates a discretisation with 5600 complex-valued
degrees of freedom. Wave number κ = 1. The error refers to the maximum error obtained by comparing the values of the analytical solution
with the field values through evaluation of Eq. (2) on a selection of 10 000 points on a sphere of radius 6 around the origin. Computed on a
desktop PC with 16 GB RAM and an Intel i7 8700k processor.

Implementations of such and related numerical schemes
are, among others, given by Hiptmair and Kielhorn (2012),
Tzoulis and Eibert (2005), or Weggler (2011). We utilise an
approach based on the framework of isogeometric analysis,
dealing with the special case where the B-spline basis re-
duces to the set of Bernstein polynomials, for order p ≥ 0
given by

bα,p =

(
n

α

)
xα(1− x)p−α, for 0≤ α ≤ p.

To apply p-refinement, one needs sufficiently smooth
(patchwise) geometry mappings, since otherwise they limit
the order of ansatz functions which can be applied ef-
fectively. Thus, we choose geometry mappings given by
mappings from the unit square to parts of the geometry
0j parametrized as tensor product mappings of rational
Bernstein polynomials. Such representations can be eas-
ily extracted from NURBS (non uniform rational B-Spline)
parametrisation through Bézier extraction (Borden et al.,
2011).

Following Buffa et al. (2011), a suitable discretisation
of the trace spaces on so-called multipatch domains 0 =

⋃
0≤j<N0j , i.e., elements in the context of spectral element

methods, is provided in Buffa et al. (2018). By tensor prod-
uct construction one constructs discrete spaces that are con-
forming w.r.t. the differential operators. As an example, if Sp

denotes the Bernstein polynomials of order p ≥ 1 on (0,1),
one finds that

Sp⊗ Sp
curl
−→

(
Sp⊗ Sp−1

Sp−1
⊗ Sp

)
div
−→ Sp−1

⊗ Sp−1

holds. This way, using the NURBS geometry mappings in-
duced by the CAD geometries to seamlessly map between
(0,1)2 and patches 0j ⊆ 0, one can define a conforming dis-
cretisation of the entire de Rham complex

H 1(�)
grad
−→H(curl,�) curl

−→H(div,�)
div
−→ L2(�), (5)

as well as its trace spaces

H 1/2(0)
curl0
−→ H

−1/2
× (div0,0)

div0
−→H−1/2(0), (6)

which is required for the analysis of boundary element meth-
ods. In the case of the divergence-conforming space, one
must require additional normal continuity of the vector field
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across patch interfaces. This can be achieved through iden-
tification of the corresponding degrees of freedom (DOFs)
with one another. We denote the discretisation on the bound-
ary defined Buffa et al. (2018) by

S0
p(0)

curl0
−→ S1

p(0)
div0
−→ S2

p(0). (7)

For these spaces, it is possible to show existence, unique-
ness, and quasi-optimality of the solution (Dölz et al.,
2018b). The discrete problem to Eq. (4) is that of finding a
discrete surface current jh ∈ S

1
p(0) such that

∫
0

∫
0

Gκ(x,y)jh(x) · ξh(y)d0y +
1
κ2

∫
0

Gκ(x,y)(div0 ◦ jh)

(x)(div0 ◦ ξh)(y)d0y
]

d0x =−
∫
0

(ei ×n) · ξhd0 (8)

holds for all test functions ξh ∈ S
1
p(0). The coefficients to

represent jh =
∑
cj ξh,j , where the ξh,j denote the basis

functions of S1
p(0), can be obtained in form of the vector

c given by the solution to the linear system Ac = r , where A
and r can be assembled in direct analogy to Eq. (8).

4 Matrix Assembly

We apply a modified version of the superspace approach as
used by e.g. Dölz et al. (2018a) to construct the dense system
matrix A resulting from Eq. (4) via the representation

A= PᵀA†P= Pᵀ

(
#elements∑
i,j=0

A†
j,i

)
P,

where A† is the dense system matrix w.r.t an elementwise
polynomial, globally discontinuous basis, and P is the su-
perspace matrix assembling the divergence-conforming ba-
sis. Herein, each matrix A†

j,i is sparse, including only the in-
teraction of the local basis on element i with that of element
j . This way, the small dense system A is assembled without
the need to store A† as a whole. In the special case of only
p-refinement, the matrix P incorporates only linear combi-
nations necessary to reduce the degree in one tensor product
direction for the construction of S1

p(0), and to achieve nor-
mal continuity across patch interfaces. For the solution of the
arising linear system, we utilise a partially pivoted LU de-
composition of the Eigen linear algebra library (Guennebaud
et al., 2010).

5 Numerical Examples

To showcase the possibility of obtaining an increased accu-
racy through (mainly) p-refinement, we present a simple nu-
merical example in analogy to the ones for h-refinement pre-
sented by Dölz et al. (2018a).

We excite our model setup by a Hertz-Dipole as defined
by Jackson (1998, p. 411) as

EDP(x) := e
iκr

(
κ2

r
(n×p0)×n+

(
1
r3 −

iκ

r2

)
(
3n(n ·p0)−p0

))
, (9)

with r = ‖x−x0‖ and n= (x−x0)/r . The dipole’s singular-
ity is placed inside �. Away from its singularity, specifically
within the exterior domain, the dipole fulfils Eq. (1). Thus,
by existence and uniqueness of the solution of the exterior
problem Eq. (4), cf. Buffa and Hiptmair (2003), we know
that Eq. (8) will approximate the surface current required to
represent the field EDP|�c , cf. Dölz et al. (2018b). This con-
struction using a prescribed solution is known as a method
of manufactured solutions, cf. Oberkampf and Roy (2010,
Chap. 6.3).

Summarised, we solve for j in Eq. (8) with an excitation
given by Eq. (9). We then evaluate Eq. (2) numerically with
the approximated surface current jh whose induced eh(x)
yields the numerical solution. By existence and uniqueness
eh is an approximation to EDP in the exterior. We compute
the error maxx∈V ‖EDP(x)−eh(x)‖C3 at points x in a set V
containing points placed on a sphere enclosing the geometry,
see the captions of Figs. 3 or 4 for details.

As a first example, we choose the example of a unit sphere
given by 6 patches and define a dipole with x0 = p0 =

(0,0.1,0.1) as an excitation. Although a boundary element
framework has been utilised to solve the problem, no com-
pression was applied to the systems due to their small system
size, cf. Fig. 3c.

Thus the condition of the system matters little compared
to the case in which compression must be applied.

On the sphere, a stable exponential rate of convergence
w.r.t. p is observed. The application of p-refinement reduces
the time required for matrix assembly as well as the overall
system size, cf. Fig. 3, significantly.

We present another example. As geometry, we choose the
boat depicted in Fig. 1 consisting of 28 Bézier patches. Plac-
ing the dipole inside with x0 = (1,0,0) and p0 = (0,0,0.1),
i.e., under the “bridge”, we evaluate the electric field around
the geometry. For this non-smooth and non-convex geome-
try, the rate of convergence, as seen in Fig. 4, is not as pro-
nounced as before. Still, one can see an exponential conver-
gence behaviour paired with excellent times to solution.

6 Conclusions

The adaptation of isogeometric to spectral element methods
is straight forward. Through the use of Bézier extraction, one
extracts piecewise smooth parametrisations of geometries.
Using known constructions from isogeometric analysis, one
can define a global, divergence-conforming basis that con-
sists of tensor product Bernstein polynomials, with supports
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consisting of one patch each, or in the case of functions iden-
tified to achieve normal continuity, multiple patches. Appli-
cation of p-refinement to this basis yields a spectral method
of moments, which achieves high accuracies without the
need for system compression.

These results are exceptionally promising since the re-
duced system size makes the application of direct solvers
possible, thus circumventing the need for preconditioners,
which are still a challenging topic for boundary element
methods for electromagnetic problems.

Code availability. The code basis, as well as the geometries for
these computations are available at http://www.bembel.eu/ (last ac-
cess: 21 May 2019). A fork of the repository ready to recreate the
computations can be found at https://github.com/flx-wlf/bembel/
tree/ars2019aa/ (last access: 21 May 2019). See also Dölz et al.
(2019) (https://doi.org/10.5281/zenodo.2671596).

Author contributions. All authors have jointly carried out research
and worked together on the manuscript. The numerical tests have
been conducted by the last author. All authors read and approved
the final manuscript.

Competing interests. Stefan Kurz is also affiliated as Chief Expert
with Robert Bosch GmbH.

Special issue statement. This article is part of the special issue
“Kleinheubacher Berichte 2018”. It is a result of the Klein-
heubacher Tagung 2018, Miltenberg, Germany, 24–26 September
2018.

Acknowledgements. The work of Felix Wolf is supported by the
Excellence Initiative of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at
TU Darmstadt.

Financial support. This research has been supported by the DFG
(grant no. SCHO1562/3-1) and the DFG (grant no. KU1553/4-1).

Review statement. This paper was edited by Thomas Eibert and re-
viewed by three anonymous referees.

References

Benoit, C., Royer E., and Poussigue, G.: The spectral moments
method, J. Phys. Condens. Matter., 4, 3125–3152, 1992.

Borden, J., Scott, M. A., Evans, J. A., and Hughes T. J. R.: Isoge-
ometric finite element data structures based on Bézier extraction
of NURBS, Int. J. Numer. Meth. Eng., 87, 15–47, 2011.

Buffa, A. and Hiptmair, R.: Galerkin boundary element methods for
electromagnetic scattering, Lect. Notes Comp. Sci., 31, 83–124,
2003.

Buffa, A., Rivas, J., Sangalli, G., and Vázquez, R.: Isogeometric
discrete differential forms in three dimensions, SIAM J. Numer.
Anal., 49, 818–844, 2011.

Buffa, A., Dölz, J., Kurz, S., Schöps, S., Vázquez, R., and Wolf,
F.: Multipatch approximation of the de Rham sequence and its
traces in isogeometric analysis, submitted, preprint available:
arXiv:1806.01062, 2018.

Di Ruscio, D., Burghignoli, P., Baccarelli, P., Comite, D., and Galli,
A.: Spectral Method of Moments for Planar Structures With Az-
imuthal Symmetry, IEEE T. Antenn. Propag., 62, 2317–2322,
https://doi.org/10.1109/TAP.2014.2302831, 2014.

Dölz, J., Kurz, S., Schöps, S., and Wolf, F.: A Numerical Compar-
ison of an Isogeometric and a Classical Higher-Order Approach
to the Electric Field Integral Equation, submitted, preprint avail-
able: arXiv:1807.03628, 2018a.

Dölz, J., Kurz, S., Schöps, S., and Wolf, F.: Isogeometric
Boundary Elements in Electromagnetism: Rigorous Analysis,
Fast Methods, and Examples, submitted, preprint available:
arXiv:1807.03097, 2018b.

Dölz, J., Harbrecht, H., Kurz, S., Multerer, M., Schöps, S., and
Wolf, F.: Bembel v0.9, https://doi.org/10.5281/zenodo.2671596,
2019.

Guennebaud, G. and Jacob, B.: Eigen v3, available at: http://eigen.
tuxfamily.org (last access: 21 May 2019), 2010.

Hughes, T. J. R., Cottrell, J. A., and Bazilevs Y.: Isogeometric anal-
ysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement, Comput. Meth. Appl. Mech. Eng., 194, 4135–4195,
2005.

Jackson, J. D.: Classical Electrodynamics, Wiley and Sons, New
York, 3rd edition, 1998.

Oberkampf, W. L. and Roy, C. J.: Verification and Validation in
Scientific Computing, Cambridge University Press, Caimbridge,
2010.

Trefethen, L. N.: Spectral Methods in MATLAB, SIAM, Philadel-
phia, 2000.

Tzoulis, A. and Eibert, T. F.: A Hybrid FEBI-MLFMM-UTD
Method for Numerical Solutions of Electromagnetic Problems
Including Arbitrarily Shaped and Electrically Large Objects,
IEEE T. Antenn. Propag., 53, 3358–3366, 2005.

Hiptmair, R. and Kielhorn, L.: BETL – A generic boundary element
template library, Seminar for Applied Mathematics, ETH Zürich,
Rep. no. 36, 2012.

Weggler, L.: High Order Boundary Element Methods, Dissertation,
Universität des Saarlandes, Saarbrücken, 2011.

www.adv-radio-sci.net/17/59/2019/ Adv. Radio Sci., 17, 59–63, 2019

http://www.bembel.eu/
https://github.com/flx-wlf/bembel/tree/ars2019aa/
https://github.com/flx-wlf/bembel/tree/ars2019aa/
https://doi.org/10.5281/zenodo.2671596
https://doi.org/10.1109/TAP.2014.2302831
https://doi.org/10.5281/zenodo.2671596
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

	Abstract
	Introduction
	The Electric Field Integral Equation
	Discretisation
	Matrix Assembly
	Numerical Examples
	Conclusions
	Code availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

