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Abstract. The internally stored electric energy (Q-energy)
of a disk monopole antenna increases as compared to a
monopole antenna without a top disk. Recently it was shown
that the Q-energy can be significantly reduced and the band-
width increased by shielding the disk monopole antenna us-
ing a thin magnetic material. In the present paper we consider
the same structure to explain another method to increase the
bandwidth by using a shield made of dispersive magnetic
material. We apply the Kramers-Kronig transforms to derive
physically correct real and imaginary parts of the dispersive
magnetic material. We do not aim at a reduction of the inter-
nal energy but at a compensation of the electric by a magnetic
stored energy for a wide frequency range. Disk monopole an-
tennas with shells consisting of such dispersive permeability
are finally numerically evaluated by means of a commercial
frequency-domain field simulator.

1 Introduction

Because of their increasing importance electrically small
antennas have often been discussed in the literature. An
overview can be found in Hansen and Collin (2011). Gen-
erally the choice of an electrically small antenna narrows the
antenna’s bandwidth. Because of its inverse relationship to
the stored energy the fractional bandwidth can be increased
and consequently the quality factor (Q factor) can be reduced
by minimizing the electric and the magnetic stored energy of
the antenna. In a fundamental work, Chu (1948) showed that
the lower bound of the Q-factor of an omnidirectional linear
non-dispersive antenna is given by

QChu ∼= η
1

(kr)3
(1)

where k and r represent the wave number and the radius of
the minimum sphere, respectively. In Eq. (1) the radiation
efficiency η includes all of the losses.

Many techniques have been suggested and investigated
for reducing the Q-factor of electrically small antennas.
A few examples include but are not limited to the works
by Hansen and Collin (2011), Yaghjian and Best (2005),
Madsen et al. (2016), Best (2009), and Yaghjian and Stu-
art (2010). For low-frequency electromagnetic fields Stuart
and Yaghjian (2010) introduced a high-permeability mag-
netic shell to eliminate the stored electric energy of a disk-
loaded monopole antenna, resulting in a Q-factor nearby
QChu.

The role of the Q-energy for an antenna containing dis-
persive media has been discussed in Yaghjian (2018). In that
paper it was shown that the bound in Eq. (1) can be overcome
by using tuning elements containing highly dispersive lossy
material - however, the related increase of bandwidth was at
the cost of a reduced efficiency.

In this paper we further investigate the aforementioned
example of a disk-loaded monopole antenna (Stuart and
Yaghjian, 2010) by shielding it with a dispersive magnetic
material. However, we do not aim at a minimized stored en-
ergy. Instead we initially calculate frequency-wise the op-
timum permeability of the shielding material leading to a
stored magnetic energy which equalizes the stored electric
energy. Subsequently we calculate the related imaginary part
of the permeability (i.e. the magnetic losses) by numerically
applying the Kramers-Kronig (KK) transforms. Finally these
results are inserted into a full-wave electromagnetic simula-
tor to find the characteristics of the antenna.

The paper is organized as follows: We first derive an ex-
pression for the real part of the permeability of the dispersive
shell leading to an equivalence of stored electric and mag-
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Figure 1. Cross sectional view of a disk monopole antenna (a) with
a shorting post (SP) and (b) with a dispersive magnetic shield in-
cluding the definitions of the different volumes va , vb, v0, and v.
Due to the symmetry, only half of the cross section is shown for (b).

netic energies. Next we apply the Kramers-Kronig transform
to obtain the corresponding imaginary part of the permeabil-
ity. We also check the consistency of the method, i.e., if the
repeated application of the Kramers-Kronig transforms de-
livers the correct (initial) values of the real part of the per-
meability. Finally we numerically investigate the effect of
shielding the disk monopole antenna by the designed mag-
netic dispersive material on the antenna’s performance by
applying a commercial frequency-domain solver.

2 Disk monopole antenna with a dispersive shell

Assume a disk monopole antenna as shown in Fig. 1 with
negligible conductivity losses of the antenna structure. The
antenna is driven by a coaxial cable where its center conduc-
tor works as the feed line. Both, the radius rc and the height
h of the feed line are much smaller than the operating wave-
length (Stuart and Yaghjian, 2010).

To reduce the electric energy below the cap the antenna is
often equipped with a shorting post (SP) as shown in Fig. 1a.
Following the approach described by Stuart and Yaghjian
(2010) we shield the unfolded disk monopole antenna by a
magnetic material located symmetrically around the feed line
(see Fig. 1a). Differently from Stuart and Yaghjian (2010)
we choose a dispersive magnetic material for the shield. Fig-
ure 1b shows the geometry where due to the symmetry only
half of the cross section is displayed.

We introduce a cylindrical coordinate system ρ,φ,z

where the feed line is on the z-axis. A time-harmonic field
with time-factor ejωt is assumed and omitted throughout the

analysis. For the antenna structure in Fig. 1b it can be shown
that the fundamental resonant mode is Transverse Magnetic
(TMz) with an electric field E = Eρ ρ̂+Ezẑ and a magnetic
field H =Hφ ϕ̂. Following the analysis and argumentation in
Stuart and Yaghjian (2010) the Eρ-component is neglected.
According to Ampères law the magnetic field is represented
in terms of the current on the feed line as

Hφ(ω,ρ)=
I (ω)

2πρ
. (2)

The electric field is found by applying Faraday’s law to
Eq. (2)∮
C(F)

E ·ds =−jω

∫∫
F

µH ·df

Ez(ρ)=−jωµ
I

2π
ln
(
ρ

rc

)
. (3)

The shield’s permeability is described by µ(ω)= µ′(ω)−
jµ′′(ω) while the permittivity is supposed to be that one
in vacuum ε = ε0. We aim at calculating those frequency-
varying values µ(ω) leading to equivalent electric and mag-
netic stored energies for all frequencies in the desired fre-
quency range. According to Yaghjian and Best (2005, Eq. 43)
the complex input power of the antenna is related to the input
impedance Zin(ω)= R0(ω)+ jX0(ω) by

Pin(ω)=
1
2
| I (ω)|2Zin(ω)

= Pacc(ω)+ j2ω(Wm(ω)−We(ω)) (4)

where Pacc is the time-averaged power accepted by the an-
tenna and Wm, We are the stored magnetic and electric ener-
gies, respectively. For a linear homogeneous non-dispersive
material the stored energies of the antenna can be written in
terms of the frequency-domain fields (phasors) according to

Wm(ω)=
1
4

Re
∫
v

B∗ ·Hdv (5)

We(ω)=
1
4

Re
∫
v

D∗ ·Edv (6)

where the asterisk (∗) denotes the complex conjugation and
where v is the total volume enclosing the antenna as shown
in Fig. 1b.

Since the permeable shielding material is dispersive,
Eq. (5) is no longer valid. The time-averaged energy in a dis-
persive material does not depend only on the instantaneous
values of the material parameters (µ(ω) and ε(ω)) but also
on their frequency derivatives (Landau and Lifshitz, 1960).
Hence Eq. (5) must be rewritten for the volume vb according
to

Wm(ω)

∣∣∣∣
vb

=
1
4

∫
vb

d(ωµ′(ω))
dω

|Hφ |
2dv (7)
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Figure 2. Real (a) and imaginary (b) parts of the relative permeability of the dispersive shielding material for two values of A0. Geometry
data (see Fig. 1): h= 40, rb = 50, rc = 2.1, t = 0.7, d = 1 mm. (a) Comparison between the initial (original) values of the real part of the
permeabilityµ′ calculated from Eq. (13) (solid curves) and the double Kramers-Kronig (DKK) transformed values (broken curves) calculated
using Eqs. (15a) and (15b). (b) Imaginary part of the relative permeability µ′′ calculated by Eq. (15b) from the initial values of µ′.

while the total stored magnetic energy is estimated as

Wm(ω)=
1
4

d[ωµ′(ω)]
dω

∫ ∫ ∫
vb

|Hφ |
2dv

+µ0

∫ ∫ ∫
va+v0

|Hφ |
2dv



=
| I (ω)|2

4


d[ωµ′(ω)]

dω
1

(2π)2

∫ ∫ ∫
vb

1
ρ2 dv

︸ ︷︷ ︸
=L̃1

+µ0
1

(2π)2

∫ ∫ ∫
va+v0

1
ρ2 dv

︸ ︷︷ ︸
=L̃2


=
| I (ω)|2

4

{
d[ωµ′(ω)]

dω
L̃1+µ0L̃2

}
(8)

where v0 represents an equivalent extension of the volume
under the cap which is imaginarily extended by 1r (see
Fig. 1b). This equivalent extension is due to the fringing
fields at the rim of the cap. As shown in Chew and Kong
(1980, Eq. 33) 1r can be estimated as

1r ≈

[
2rbh
π

(
ln(
rb

2h
)+ 0.665

h

rb

)
+ r2

b

] 1
2
− rb. (9)

The total stored electric energy is calculated as

We(ω)=
1
4


∫ ∫ ∫

vb

ε0 | Ez|
2dv+

∫ ∫ ∫
va+v0

ε0 | Ez|
2dv



=
| I (ω)|2

4


ω2µ′

2
(ω)

ε0

(4π)2

∫ ∫ ∫
vb

ln2
(
ρ

rc

)
dv

︸ ︷︷ ︸
=C̃1

+ω2µ2
0
ε0

(4π)2

∫ ∫ ∫
va+v0

(
ln2(

ρ

rc

)
dv

︸ ︷︷ ︸
=C̃2


=
| I (ω)|2

4

{
ω2µ′

2
(ω)C̃1+ω

2µ2
0C̃2

}
.

(10)

At resonance the total input reactance X0 is zero. Accord-
ingly the magnetic and electric stored energies in Eq. (5)
are equal,Wm(ω)=We(ω). Thus, from Eqs. (8) and (10) we
have

d[ωµ′(ω)]
dω

L̃1+µ0L̃2 = ω
2µ′

2
(ω)C̃1+ω

2µ2
0C̃2

dµ′(ω)
dω

+
1
ω
µ′(ω)−

C̃1

L̃1
ωµ′

2
(ω)= ωµ2

0
C̃2

L̃1
−

1
ω
µ0
L̃2

L̃1
. (11)

Equation (11) represents a Riccati differential equation
which generally can be difficult to solve. However, we fol-
low Stuart and Yaghjian (2010) and assume that the stored
energy is concentrated in the dispersive shell, i.e., µ′vb�
µ0(va + v0) (see Eqs. 8 and 10). Consequently we neglect
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Figure 3. Input impedance of the open disk monopole (no shield-
ing) (green curves) and of the shielded disk monopole antenna
(red curves). Geometry of the antenna: h= 40, rb = 50, rc = 2.1,
t = 0.7, d = 1 mm, A0 = 8.3× 10−13s/�. Simulation using the
CST© frequency-domain solver.

Figure 4. Input return loss of the open disk monopole (no shielding)
(blue curve) and of the shielded disk monopole antenna (red curve).
The other data can be found in Fig. 3.

the right-hand side in Eq. (11) and obtain the Bernoulli dif-
ferential equation

dµ′(ω)
dω

+
1
ω
µ′(ω)=

C̃1

L̃1
ωµ′

2
(ω). (12)

The solution of Eq. (12) can be easily obtained as

µ′(ω)=
1

−
C̃1
L̃1
ω2+A0ω

(13)

where A0 is an arbitrary constant of dimension Am/V .

3 Kramers-Kronig transformation

In a magnetically dispersive material the magnetic flux den-
sity B(t) is related to the magnetic field intensity H (t) by

Figure 5. Antenna gain of the open disk monopole (no shielding)
(blue curve) and of the shielded disk monopole antenna (red curve).
The other data can be found in Fig. 3.

the causal convolution

B(t)=

t∫
0

µ(τ)H (t − τ)dτ. (14)

Equivalently, in the frequency domain the real and imaginary
components of µ have to satisfy the Kramers-Kronig trans-
forms (Kramers, 1927), (Kronig, 1926) according to

µ′(ω)= 1+
2
π

∞∫
0

ω̂µ′′(ω̂)−ωµ′′(ω)

ω̂2−ω2 dω̂ (15a)

µ′′(ω)=−
2ω
π

∞∫
0

µ′(ω̂)−µ′(ω)

ω̂2−ω2 dω̂. (15b)

First we calculate µ′(ω) from Eq. (12) by choosing the con-
stant A0 such that we obtain a positive permeability. Ex-
emplarily, we consider the disk monopole antenna of Fig. 1
with the dimensions h= 40, rb = 50, rc = 2.1, t = 0.7, d =
1 mm. As shown in Fig. 2a µ′(ω) is evaluated according to
Eq. (12) as a function of the angular frequency for different
values of A0. Next, we apply Eq. (15b) to numerically cal-
culate the corresponding µ′′(ω) as shown in Fig. 2b. For the
numerical procedure (splitting the integration ranges, spline-
based extrapolation) we have used the same technique as we
developed and described in Bakry and Klinkenbusch (2018).
To check the consistency of the method we performed an ad-
ditional Kramers-Kronig transform according to Eq. (15a)
on the data shown in Fig. 2b. The results (dotted curves in
Fig. 2a) are in good agreement to the initial values of µ′(ω)
(solid curves).
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Figure 6. Electric field distribution (a) of the open disk monopole (with shorting post) at f0 = 437 MHz and (b) of the shielded disk monopole
at f = 200 MHz. The other data can be found in Fig. 3.

Figure 7. Electric energy density (a) of the open disk monopole (with shorting post) at f0 = 437 MHz and (b) of the shielded disk monopole
at f = 200 MHz. The other data can be found in Fig. 3.

4 Numerical results

Both types of the disk monopole antennas in Fig. 1a with
shorting post and Fig. 1b with a dispersive permeable shield
were simulated using a commercial field solver (CST©,
frequency-domain solver). The characteristic impedance of
the feed line is 50 �. The fundamental resonance frequency
for the non-shielded antenna has been found to be f0 =

437 MHz. Figures 3 and 4 show the input impedance and
the return loss, respectively, of both antenna types, each as
a function of the frequency. It is obvious that the antenna Q
is much higher for the non-shielded antenna and that the res-
onance frequency moves to a higher frequency. Overall, it is
observed from Figs. 3 and 4 that the bandwidth can be dras-
tically increased by using dispersive permeable material. At
low frequencies the input resistance approaches the feed line
resistance while the return loss is relatively constant and low.
However, because of the high losses of the dispersive shield-
ing material it is expected and shown in Fig. 5 that the gain
for the shielded antenna is drastically reduced.

As proven in Stuart and Yaghjian (2010) the shielding of
the antenna by a non-dispersive high-permeability shell leads
to a reduced electric field in the shielded domain. As shown
in Fig. 6 this fact can also be proven for a dispersive shell
with high permeability. Correspondingly, Fig. 7 finally rep-
resents the reduction of the stored electric energy within the
shielded domain.

5 Conclusions

We have introduced a systematic method showing that the
numerical evaluation of the Kramers-Kronig transformations
can be used to design wide-band antennas consisting of dis-
persive material. In the future the method will also be applied
to other antenna geometries and to a material with a negative
value of the real part of the permeability and/or permittivity
(metamaterial) to eventually avoid the high dispersion losses
and the corresponding reduced gain.
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