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Abstract. A new multipole solution in plane-polar coordi-
nates for the scattering of an arbitrary TE- or TM-polarized
incident field by an infinitely extended slit in a plane screen is
derived. To this end a classical three-domain problem with a
complete multipole expansion in each of the domains is for-
mulated. The unknown multipole amplitudes are found from
the continuity conditions of the tangential electric and mag-
netic field components. Finally an infinite system of linear
equations is derived which can be approximated by a nu-
merically tractable finite one leading to a solution with an
arbitrary accuracy. The results are numerically successfully
compared to those ones obtained by classically solving the
strip problem using Mathieu functions and by a subsequent
application of the rigorous form of the Babinet principle. Nu-
merical results include the comparison of the scattered fields
obtained for an incident uniform complex-source beam and
for an incident plane wave.

1 Introduction

Because of its general theoretical and practical interest the
scattering and diffraction of acoustic and electromagnetic
waves by a slit has been very often discussed in the liter-
ature. An early contribution to that subject was given by
Schwarzschild (1902) who proposed an approximate method
based on the famous half-plane solution derived by Sommer-
feld (1896). Later, Sieger (1908) introduced a solution for
the strip in elliptic cylinder coordinates where this geometry
can be described by a coordinate surface as a flattened el-
liptic cylinder. The corresponding solution of the Helmholtz
equation for the strip problem is based on Mathieu func-
tions. According to the rigorous form of the Babinet principle
(Bouwkamp, 1954) the field diffracted by a slit can be exactly

deduced from the field diffracted by a strip. Morse and Ru-
binstein (1938) used this method and computed first numeri-
cal results for the scattering of TM- and TE-polarized plane
waves by a strip/slit. Many other contributions on that sub-
ject have been published since then including works on the
asymptotic evaluation using GTD/UTD techniques (Suedan
and Jull, 1987). An overview on methods and results on that
subject can be found in Bowman et al. (1998).

In the present work we introduce an alternative method to
exactly solve the slit/strip problem (Klinkenbusch, 2019). We
formulate a three-domain boundary-value problem in plane-
polar coordinates. In each of the domains we constitute a
complete multipole ansatz consisting of products of Bessel
or Hankel functions with harmonic functions. The modified
incident field in this formulation is build from the classical
incident field (which would exist in the free space) plus the
field reflected from the plane. The multipole amplitudes are
analytically found from the continuity conditions of the tan-
gential electric and magnetic field components at the bound-
aries between the domains and from suitably applied orthog-
onality relations. The special definition of a modified inci-
dent field leads to identical results for the scattered fields
above and below the plane which allows to state a system
of linear equations with the scattered-field amplitudes as the
unknowns.

The numerical evaluation includes a successful validation
of the method by comparing the results with those obtained
by the aforementioned solution of the strip problem and ap-
plication of the Babinet principle. Then we compare the scat-
tered fields for an incident plane wave to those obtained for
an incident uniform complex-source beam with different pa-
rameters. The goal of this investigation is to find out if and
for which parameters a uniform CSB can replace an incident
plane wave. This can be useful for many applications – par-
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44 L. Klinkenbusch: Scattering and diffraction by a slit

Figure 1. Definition of the three-domains of the boundary value
problem.

ticularly in the context of scattering from special sections as
part of infinitely extended structures like the scattering by the
tip of a circular or elliptic cone.

2 Formulation and solutions of the two-dimensional
boundary-value problems

Consider the geometry in Fig. 1. A perfectly electrically con-
ducting (PEC) plane at y = 0 is broken by a slit (width 2R0)
symmetrically located around the z-axis. We introduce cylin-
drical coordinates R,ϕ,z with x = R cosϕ; y = R sinϕ. We
are looking for a rigorous solution of the TMz case where
the phasor of the incident electric field intensity is given by
Einc(R,ϕ)= Einc

z (R,ϕ)ẑ, and of the TEz case where the
phasor of the incident magnetic field intensity is described
by H inc

=H inc
z ẑ. ẑ denotes the unit vector in z-direction.

Here and in the following a phasor is defined with respect
to a time-factor exp{+jωt} with j =

√
−1 and ω represent-

ing the angular frequency.
We split the entire space into three domains as sketched

in Fig. 1. Domain I consists of a circular-cylindrical domain
with radius R0 centered at the z-axis while the domains II
and III are defined byR > 0,y > 0 andR > 0,y < 0, respec-
tively. In domain II we split the total field into a known inci-
dent part (index inc) and into a scattered part (index sc).

2.1 Solution of the TMz problem

In each of the domains I, II, and III we introduce a complete
plane-polar multipole expansion for the electric field inten-
sity according to:

EI
z(R,ϕ)=

∞∑
n=0

aI,TM
n Jn(κR)cos(nϕ)

+

∞∑
n=1

bI,TM
n Jn(κR)sin(nϕ) (1)

EII
z (R,ϕ)= E

inc
z +E

II,sc
z (2)

Einc
z =

∞∑
n=1

binc
n Jn(κR)sin(nϕ) (3)

EII,sc
z =

∞∑
n=1

bII,sc
n H (2)

n (κR)sin(nϕ) (4)

EIII
z =

∞∑
n=1

bIII
n H

(2)
n (κR)sin(nϕ). (5)

Here, κ = ω
√
εµ is the wave number with the permittivity ε

and permeability µ, Jn and H (2)
n represent Bessel functions

of the first kind and Hankel functions of the second kind to
satisfy regularity at R = 0 as well and to comply with the
Sommerfeld radiation condition, respectively. Note that Einc

z

is defined as an arbitrary incident field in domain II in the
presence of the conducting plane at y = 0, i.e., it includes
the corresponding reflected field.

The Hϕ-component of the magnetic field follows from
Faraday’s law H =

j
ωµ

∇×E according to:

H I
ϕ(R,ϕ)=−

j

ωµ

[
∞∑
n=0

aI,TM
n

∂Jn(κR)

∂R
cos(nϕ)

+

∞∑
n=1

bI,TM
n

∂Jn(κR)

∂R
sin(nϕ)

]
(6)

H II
ϕ (R,ϕ)=H

inc
ϕ +H

II,sc
ϕ (7)

H inc
ϕ (R,ϕ)=−

j

ωµ

∞∑
n=1

binc
n

∂Jn(κR)

∂R
sin(nϕ) (8)

H II,sc
ϕ (R,ϕ)=−

j

ωµ

∞∑
n=1

bII,sc
n

∂H
(2)
n (κR)

∂R
sin(nϕ) (9)

H III
ϕ (R,ϕ)=−

j

ωµ
)

∞∑
n=1

bIII
n

∂H
(2)
n (κR)

∂R
sin(nϕ). (10)

Note that the multipole amplitudes of the incident
field binc

n (n= 1,2,3, . . .) are known. For finding the
other multipole coefficients a

I,TM
n (n= 0,1,2, . . .) and

b
I,TM
n ,b

II,sc
n ,bIII

n (n= 1,2,3, . . .) we have to consider the
boundary- and continuity conditions of the electromagnetic
field.

At the circular boundary around domain I the tangential
components of the electric field intensity have to be continu-
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ous:

EI
z

∣∣
R=R0

=


[
Einc
z +E

II,sc
z

]
R=R0

0< ϕ < π

EIII
z

∣∣
R=R0

π < ϕ < 2π
(11)

H I
ϕ

∣∣
R=R0

=

{ [
H inc
ϕ +H

II,sc
ϕ

]
R=R0

0< ϕ < π
H III
ϕ

∣∣
R=R0

π < ϕ < 2π
. (12)

We insert Eqs. (1)–(5) into Eq. (11), multiply the result by
cos(mϕ), integrate on the interval (0,2π), and finally obtain
while using the orthogonality of the harmonic functions:

aI,TM
n Jn(κR0)εnπ

=

∞∑
m=1

binc
m Jm(κR0) < sin(mϕ),cos(nϕ)>1

+

∞∑
m=1

bII,sc
m H (2)

m (κR0) < sin(mϕ),cos(nϕ)>1

+

∞∑
m=1

bIII
m H

(2)
m (κR0) < sin(mϕ),cos(nϕ)>2

(n= 0,1,2, . . .). (13)

In Eq. (13) the Neumann number is given by

εn =

{
2 if n= 0

1 if n= 1,2,3, , . . .
(14)

while the scalar products are defined according to:

< f1(ϕ),f2(ϕ)>1 =

π∫
0

f1(ϕ)f2(ϕ)dϕ (15)

< f1(ϕ),f2(ϕ)>2 =

2π∫
π

f1(ϕ)f2(ϕ)dϕ. (16)

Next, multiplying Eq. (11) by sin(mϕ) and integrating on 0≤
ϕ ≤ 2π leads to:

bI,TM
n Jn(κR0)π

=

∞∑
m=1

binc
m Jm(κR0) < sin(mϕ),sin(nϕ)>1

+

∞∑
m=1

bII,sc
m H (2)

m (κR0) < sin(mϕ),sin(nϕ)>1

+

∞∑
m=1

bIII
m H

(2)
m (κR0) < sin(mϕ),sin(nϕ)>2

(n= 1,2,3, . . .). (17)

Now we insert Eqs. (6)–(10) into Eq. (12), multiply the re-
sult by cos(mϕ) and sin(mϕ), respectively, integrate on the

interval (0,2π), and obtain

aI,TM
n

∂Jn(κR)

∂R

∣∣∣∣
R0

εnπ =

∞∑
m=1

binc
m

∂Jm(κR)

∂R

∣∣∣∣
R0

< sin(mϕ),cos(nϕ)>1

+

∞∑
m=1

bII,sc
m

∂H
(2)
m (κR)

∂R

∣∣∣∣∣
R0

< sin(mϕ),cos(nϕ)>1

+

∞∑
m=1

bIII
m

∂H
(2)
m (κR)

∂R

∣∣∣∣∣
R0

< sin(mϕ),cos(nϕ)>2

(n= 0,1,2, . . .) (18)

and

bI,TM
n

∂Jn(κR)

∂R

∣∣∣∣
R0

π =

∞∑
m=1

binc
m

∂Jm(κR)

∂R

∣∣∣∣
R0

< sin(mϕ),sin(nϕ)>1

+

∞∑
m=1

bII,sc
m

∂H
(2)
m (κR)

∂R

∣∣∣∣∣
R0

< sin(mϕ),sin(nϕ)>1

+

∞∑
m=1

bIII
m

∂H
(2)
m (κR)

∂R

∣∣∣∣∣
R0

< sin(mϕ),sin(nϕ)>2

(n= 1,2,3, . . .), (19)

respectively. Combining Eq. (18) with Eq. (13) and Eq. (19)
with Eq. (17) leads to:

∞∑
m=1

binc
m < sin(mϕ),cos(nϕ)>1

×

[
∂Jm(κR)

∂R

∣∣∣∣
R0

Jn(κR0)− Jm(κR0)
∂Jn(κR)

∂R

∣∣∣∣
R0

]
=

∞∑
m=1

bII,sc
m < sin(mϕ),cos(nϕ)>1

×

H (2)
m (κR0)

∂Jn(κR)

∂R

∣∣∣∣
R0

−
∂H

(2)
m (κR)

∂R

∣∣∣∣∣
R0

Jn(κR0)


+

∞∑
m=1

bIII
m < sin(mϕ),cos(nϕ)>2

×

H (2)
m (κR0)

∂Jn(κR)

∂R

∣∣∣∣
R0

−
∂H

(2)
m (κR)

∂R

∣∣∣∣∣
R0

Jn(κR0)


(n= 0,1,2, . . .) (20)
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and

∞∑
m=1

binc
m < sin(mϕ),sin(nϕ)>1

×

[
∂Jm(κR)

∂R

∣∣∣∣
R0

Jn(κR0)− Jm(κR0)
∂Jn(κR)

∂R

∣∣∣∣
R0

]
=

∞∑
m=1

bII,sc
m < sin(mϕ),sin(nϕ)>1

×

H (2)
m (κR0)

∂Jn(κR)

∂R

∣∣∣∣
R0

−
∂H

(2)
m (κR)

∂R

∣∣∣∣∣
R0

Jn(κR0)


+

∞∑
m=1

bIII
m ×< sin(mϕ),sin(nϕ)>2H (2)

m (κR0)
∂Jn(κR)

∂R

∣∣∣∣
R0

−
∂H

(2)
m (κR)

∂R

∣∣∣∣∣
R0

Jn(κR0)


(n= 1,2,3, . . .), (21)

respectively. As easily can be shown it holds:

< sin(mϕ),sin(nϕ)>1 =< sin(mϕ),sin(nϕ)>2

=

{
π
2 if m= n

0 if m 6= n,
(22)

< cos(mϕ),sin(nϕ)>1 = (−1)m−n < cos(mϕ),sin(nϕ)>2

=

{ 2n
n2−m2 if m− n is odd
0 if m− n is even.

(23)

From Eqs. (22) and (21) it immediately follows that

bIII
n =−b

II,sc
n (n= 1,2,3, . . .) (24)

which reflects the symmetry of the scattered field originating
from the slit in the domains II and III. With Eqs. (24) and
(23) we write Eq. (20) as

∞∑
m=1

m−n odd

binc
m

2m
m2− n2

×

[
∂Jm(κR)

∂R

∣∣∣∣
R0

Jn(κR0)− Jm(κR0)
∂Jn(κR)

∂R

∣∣∣∣
R0

]
=

∞∑
m=1

m−n odd

bII,sc
m

4m
m2− n2

×

H (2)
m (κR0)

∂Jn(κR)

∂R

∣∣∣∣
R0

−
∂H

(2)
m (κR)

∂R

∣∣∣∣∣
R0

Jn(κR0)


(n= 0,1,2, . . .) (25)

which approximately can be written as a finite system of lin-
ear equations to determine the bII,sc

n from the binc
n :


A01 A02 . . . A0M
A11 A12 . . . A1M
...

...
...

...

AN1 AN2 . . . ANM



b

II,sc
1
b

II,sc
2
...

b
II,sc
M

=

B inc

0
B inc

1
...

B inc
N

 . (26)

The elements of the checkerboard-like matrix in Eq. (26) are
found as

Anm =
2m

m2− n2

×


[
H
(2)
m (κR)

∂Jn(κR)
∂R
−
∂H

(2)
m (κR)
∂R

Jn(κR)

]
R0

n−m
odd

0 else
(27)

while for the elements of the right-hand side we obtain:

B inc
n =

∞∑
m=1

m−n odd

binc
m

m

m2− n2

×

[
∂Jm(κR)

∂R

∣∣∣∣
R0

Jn(κR0)− Jm(κR0)
∂Jn(κR)

∂R

∣∣∣∣
R0

]
. (28)

For a quadratic system of linear equations in Eq. (26) we
choose for the upper limits N =max(n) and M =max(n)+
1. Finally, with Eq. (24) we conclude from Eqs. (22) and (17)

bI,TM
n =

1
2
binc
n (n= 1,2,3, . . .) (29)

while Eq. (13) yields:

aI,TM
n =

1
Jn(κR0)εnπ

×

∞∑
m=1

m−n odd

2m
m2− n2

[
binc
m Jm(κR0)+ 2bII,sc

m H (2)
m (κR0)

]
(n= 0,1,2, . . .). (30)

2.2 Solution of the TEz problem

In each of the domains I, II, and III we introduce a complete
plane-polar multipole expansion for the magnetic field inten-
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sity H I
=H I

z ẑ,H
II
=H II

z ẑ, and H III
=H III

z ẑ according to:

H I
z(R,ϕ)=

∞∑
n=0

aI,TE
n Jn(κR)cos(nϕ)

+

∞∑
n=1

bI,TE
n Jn(κR)sin(nϕ) (31)

H II
z (R,ϕ)=H

inc
z +H

II,sc
z (32)

H inc
z =

∞∑
n=0

ainc
n Jn(κR)cos(nϕ) (33)

H II,sc
z =

∞∑
n=0

aII,sc
n H (2)

n (κR)cos(nϕ) (34)

H III
z =

∞∑
n=0

aIII
n H

(2)
n (κR)cos(nϕ). (35)

Again the incident field is defined as the field of an arbitrary
source in domain II in the presence of the perfectly electri-
cally conducting plane at y = 0, i.e., it includes the reflected
field.

The ϕ-component of the corresponding electric field fol-
lows from Maxwell’s law E =−

j
ωε

∇×H according to:

EI
ϕ =

j

ωε

[
∞∑
n=0

aI,TE
n

∂Jn(κR)

∂R
cos(nϕ)

+

∞∑
n=1

bI,TE
n

∂Jn(κR)

∂R
sin(nϕ)

]
(36)

Einc
ϕ =

j

ωε

∞∑
n=0

ainc
n

∂Jn(κR)

∂R
cos(nϕ) (37)

EII,sc
ϕ =

j

ωε

∞∑
n=0

aII,sc
n

∂H
(2)
n (κR)

∂R
cos(nϕ) (38)

EIII
ϕ =

j

ωε

∞∑
n=0

aIII
n

∂H
(2)
n (κR)

∂R
cos(nϕ). (39)

At the boundary to domain I, the tangential fields have to be
continuous:

H I
z

∣∣
R=R0

=


[
H inc
z +H

II,sc
z

]
R=R0

0< ϕ < π

H III
z

∣∣
R=R0

π < ϕ < 2π
(40)

EI
ϕ

∣∣
R=R0

=

{ [
Einc
ϕ +E

II,sc
ϕ

]
R=R0

0< ϕ < π
EIII
ϕ

∣∣
R=R0

π < ϕ < 2π
. (41)

A similar procedure as in the TMz case leads to a finite sys-
tem of linear equations to determine the aII,sc

n from the ainc
n :

C10 C11 . . . C1M
C20 C21 . . . C2M
...

...
...

...

CN0 CN1 . . . CNM



a

II,sc
0
a

II,sc
1
...

a
II,sc
M

=

Dinc

1
Dinc

2
...

Dinc
N

 . (42)

The elements of the checkerboard-like matrix are found as

Cnm =
2n

n2−m2

×


[
H
(2)
m (κR)

∂Jn(κR)
∂R
−
∂H

(2)
m (κR)
∂R

Jn(κR)

]
R0

n−m
odd

0 else
(43)

while for the elements of the right-hand side we have:

Dinc
n =

∞∑
m=0

m−n odd

ainc
m

n

n2−m2

×

[
∂Jm(κR)

∂R

∣∣∣∣
R0

Jn(κR0)− Jm(κR0)
∂Jn(κR)

∂R

∣∣∣∣
R0

]
. (44)

To obtain a quadratic system of linear equations we choose
for the upper limits N =max(n)+ 1 and M =max(n). Fi-
nally, the multipole amplitudes in the domains III and I are
found as

aIII
n =−a

II,sc
n (n= 0,1,2, . . .) (45)

and

aI,TE
n =

1
2
ainc
n (n= 0,1,2, . . .), (46)

bI,TE
n =

1
Jn(κR0)π

×

∞∑
m=0

m−n odd

2n
n2−m2

[
ainc
m Jm(κR0)+ 2aII,sc

m H (2)
m (κR0)

]
(n= 1,2,3, . . .), (47)

respectively.

2.3 Scattered far fields

In domain III, the scattered far-field can be obtained from
Eq. (5) or from Eq. (35) using the asymptotic expression of
the Hankel function of the second kind for large values of its
argument:

H (2)
n (κR)∼=

√
2

πκR
e−jκRejnπ/2ejπ/4. (48)

The electric far-field reads for the TMz case

EIII,∞ ∼=

√
2
π
ejπ/4

e−jκR
√
κR

∞∑
n=1

bIII
n e

jnπ/2 sin(nϕ) (49)

while the magnetic far field for the TEz case is obtained as:

H III,∞ ∼=

√
2
π
ejπ/4

e−jκR
√
κR

∞∑
n=0

aIII
n e

jnπ/2 cos(nϕ). (50)

https://doi.org/10.5194/ars-18-43-2020 Adv. Radio Sci., 18, 43–52, 2020



48 L. Klinkenbusch: Scattering and diffraction by a slit

Figure 2. Snapshot of a uniform CSB with Rinc
= 2λ;ϕinc

=

30◦;b = 2λ. The beam width of the waist is characterized by w =
√
b/κ . The focus length is b.

3 Uniform Complex-Source Beam

A complex-source beam (CSB) is obtained for a complex-
valued point-source coordinate. As has been shown, in a
paraxial approximation a CSB represents a Gaussian beam
(Felsen, 1976). More specifically, for the present two-
dimensional problems the multipole amplitudes of a CSB
which is propagating from the waist directly towards the ori-
gin (i.e., the z-axis) are found to be (Katsav et al., 2012)

binc
n = E0H

(2)
n (κRC)sin(nϕinc) (n= 1,2,3, . . .) (51)

ainc
n =H0H

(2)
n (κRC)cos(nϕinc) (n= 0,1,2, . . .) (52)

for the TMz- and TEz-case, respectively. In Eqs. (51) and
(52), the radial coordinate is defined by

RC = R
inc
+ jb (53)

where E0 and H0 are the amplitudes, Rinc,ϕinc represent
the location of the waist of the CSB, and b is the focus (or
Rayleigh) length. It can be shown (Felsen, 1976) that the
analogy between a CSB and a Gaussian beam is valid nearby
the axis (par-axial) and only on that side of the waist from
which the field is propagating away. Moreover, as can be
seen from the behaviour of the Hankel function directly in the
waist the field of the CSB is not regular. On the other hand,
by choosing Hankel functions of the first kind (instead of sec-
ond kind) in Eqs. (51) and (52) we obtain a par-axial Gaus-
sian beam approximation on the other side of the waist which
is travelling towards the waist. By adding both CSBs one ob-
tains a par-axial approximation of a complete Gaussian beam
which moreover is regular everywhere including the waist

Figure 3. Snapshots of the near fields obtained by the present ap-
proach using 60 eigenfunctions for the incident field, 40 eigenfunc-
tions for the scattered field in regions II and III, and 20 eigenfunc-
tions in region I. (a) TMz-case and (b) TEz-case. Lines sources at
Rinc
= 5λ, ϕinc

= 60◦. Width of the slit: 1λ.

(uniform CSB). Similar to (Klinkenbusch and Brüns, 2016)
where the proof has been outlined for the 3D case for the
present case the multipole amplitudes for an incident uniform
CSB can be found as:

binc
n = E0Jn(κRC)sin(nϕinc) (n= 1,2,3, . . .) (54)

ainc
n =H0Jn(κRC)cos(nϕinc) (n= 0,1,2, . . .). (55)

Figure 2 shows a snap-shot of a uniform CSB and the re-
lation of b to the parameter of the corresponding Gaussian
beam.
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Figure 4. Comparison between the normalized far fields obtained
by the present approach using 40 eigenfunctions (solid) for the scat-
tered field and by applying the rigorous form of Babinet principle
to the solution found for the strip in elliptic coordinates using 8
eigenfunctions, i.e. products of radial and angular Mathieu func-
tions (dotted). (a) TMz-case and (b) TEz-case. Lines sources at
Rinc
= 5λ, ϕinc

= 60◦. Width of the PEC slit/strip: 1λ.

4 Numerical Evaluation

4.1 Convergence properties

Basically, all of the infinite series involved for solving the
boundary value problem have to be truncated to come to a
numerical solution. The maximal order of multipole func-
tions needed for a desired accuracy of the scattered field (for
instance, nmax in Eqs. 4 and 5) depends on the electric size
of the scatterer. More quantitatively this follows from the be-
havior of Bessel functions of the first kind with half of the
electric width of the slit (κR0) as the argument. As has been
outlined in Chew et al. (1998, p. 51), a maximum order of
nmax ≈ κR0+C(κR0)

1/3 with C being a positive number

Figure 5. Snapshots of the TMz-polarized near fields (a) for an
incident plane wave, and b) for an incident uniform CSB. Waist
centered at Rinc

= 0.001λ, ϕinc
= 60◦. Width of the slit: 1λ. Focus

length: b = 5λ. 60 eigenfunctions for the incident field, 40 eigen-
functions for the scattered field in regions II and III, and 20 eigen-
functions in region I.

which directly corresponds the number of relevant digits is
a suitable choice to obtain an accurate far-field. Moreover,
mmax must be larger than nmax in Eqs. (28) and (29) hence
the following rule for the number of eigenfunctions applies:

nmax|in domain I < nmax|scattered fields < nmax|incident field . (56)

4.2 Validation

We start with a comparison of the results of the current ap-
proach to those ones obtained by solving the complemen-
tary problem of a strip using Mathieu functions and a subse-
quent application of the rigorous form of the Babinet princi-
ple (Bouwkamp, 1954). All numerical results have been ob-
tained using MATLAB© including a toolbox for the numer-
ical calculation of the Mathieu functions (Cojocaru, 2020).
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Figure 6. Snapshots of the TEz-polarized near fields (a) for an in-
cident plane wave, and (b) for an incident uniform CSB. The other
data are the same as in Fig. 5.

Figure 3 show snapshots of the diffracted (total) near fields in
case of a line source located at Rinc

= 5λ;ϕinc
= 60◦. Note

that identical results are obtained in both cases if the fields
are calculated by applying the classical method, i.e., by solv-
ing the strip problem using Mathieu functions with 8 eigen-
functions and a successive application of the rigorous form
of the Babinet principle. The CPU time on an AMD Ryzen
3700 platform needed for calculating the field at 100× 100
points is 69.70 s for the classical method using Mathieu func-
tions and 1.15 s for the present approach.

Figures 4 reveal that the scattered far-fields computed with
the present and the classical approach are in an excellent
agreement for both cases, TEz and TMz.

Finally we remark that the code used for the calculation
of the Mathieu functions (Cojocaru, 2020) does not give suf-
ficient information about its accuracy and consequently this
validation is limited to a qualitative level.

Figure 7. Polar diagrams of the scattered far-fields for an incident
plane wave and for incident uniform CSBs with different values of
the focus length b. (a) TMz-polarization; (b) TEz-polarization. The
other data are the same as in Fig. 5.

4.3 Comparison between an incident uniform CSB and
a plane wave.

As described above the proposed solution can be easily ex-
tended to include the case of an incident uniform CSB. Of
particular interest is the question whether a CSB can replace
a plane wave to investigate the scattering by certain areas of a
scattering object. As the best similarity of a uniform CSB to
a localized plane wave is obviously in the waist, we choose
its location almost at the center of the slit (Rinc

= 0.001λ).
Figures 5 and 6 each show snapshots of the near-fields for
an incident plane wave and for an incident uniform CSB in
the TMz and TEz-polarization cases, respectively. The fields
for an incident plane wave in the upper half plane each are
dominated by the typical interference patterns and look com-
pletely different to those ones obtained for incident uniform
CSB. In the lower half plane the results for an incident plane
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Figure 8. Polar diagrams of the scattered far-fields for an incident
plane wave and for incident uniform CSBs with different values of
the angle of incidence. (a) TMz-polarization; (b) TEz-polarization.
The other data are the same as in Fig. 5.

wave and for a uniform CSB each look similar. More quan-
titatively, Fig. 7 represent the scattered far-fields for an in-
cident plane wave compared to incident uniform CSBs with
different values of the focus length b. The scattered far-fields
obtained for an incident plane wave and for an incident uni-
form CSB are nearly identical except of a small deviations
in the area of the side lobe. These deviations are larger for
a smaller value of the focus length b because the width of
the waist (where the uniform CSB represents a plane wave)
is given by w =

√
b/κ and thus getting smaller for smaller

values of b. However, even for larger values of b the results
do not perfectly agree to those ones obtained for an incident
plane wave. The reason for this might be the fact that only
the plane-wave equivalence is valid only at the center of the
slit where the waist is located. At the other parts of the slit
particularly at the edges the CSB represents a converging or
a diverging field. Consequently for a symmetrically incident

Figure 9. Relative maximum deviation between the normalized
scattered far fields in case of an incident plane wave and an inci-
dent uniform CSB for different angles of incidence as a function of
the normalized focus length b/λ. The other data are the same as in
Fig. 5.

uniform CSB (see Fig. 8) there is the best agreement be-
tween the scattered fields for both cases, incident plane wave
and incident uniform CSB. More quantitatively, Fig. 9 repre-
sents the relative maximum deviation between the scattered
far fields for an incident plane wave (index pw) and an in-
cident uniform CSB (index csb) for different values of the
angle of incidence as a function of b/λ. The relative maxi-
mum deviation regarding the TMz-case is defined by

|1|(b)=max
{∀ϕ}

∣∣∣∣∣E
III,∞
csb (b,ϕ)−E

III,∞
pw (b,ϕ)

E
III,∞
pw (b,ϕ)

∣∣∣∣∣ (57)

The relative maximum deviation for the TEz-case is found
by simply replacing the electric by the corresponding mag-
netic scattered far-fields in Eq. (57).

As expected, an increase of the focus length and corre-
sponding beam width leads to a reduction of the maximum
relative deviation. Moreover, for the TMz-case we observe a
higher dependence of the maximum relative deviation on the
angle of incidence than for the TEz-case.

5 Conclusions

A new direct method to analytically solve the electromag-
netic scattering and diffraction by a slit has been derived.
The results are in agreement to those ones obtained by the
classical solution in elliptic coordinates using Mathieu func-
tions and a subsequent application of the rigorous form of
the Babinet principle. It has been shown that an incident uni-
form complex-source beam can be used instead of an inci-
dent plane wave if the waist is chosen to be located nearby
the slit and the beam width at the waist has been chosen to
be sufficiently larger than the slit.
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