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Abstract. Waveguides play one of the key figures in today’s
electronics and optics for signal transmission. Correspond-
ing simulations of electromagnetic wave transportation along
these waveguides are accomplished by discretization meth-
ods such as the Finite Integration Technique (FIT) or the
Finite Element Method (FEM). For longitudinally homoge-
neous and transversely unbounded waveguides these simula-
tions can be approximated by closed boundaries. However,
this distorts the original physical model and unnecessarily
increases the size of the computational domain size. In this
article we present a boundary condition for transversely open
waveguides based on the Kirchhoff integral which has been
implemented within the framework of FIT. The presented
solution is compared with selected conventional methods in
terms of computational effort and memory consumption.

1 Introduction

In order to quantify electromagnetic wave propagation in
longitudinally homogeneous waveguides, simulations are
performed on a two-dimensional domain. Transversely un-
bounded waveguides such as the microstrip-line displayed in
Fig. 1 or an on-chip open waveguide are often physically not
enclosed by shields. For numerical simulations a specifically
tailored boundary condition has to be considered.

The two-dimensional problem of transversely unbounded
waveguide can be calculated in terms of an eigenvalue prob-
lem. The required calculation is performed on a compu-
tational domain that consists in the considered case of a
face and corresponding boundary conditions, by which the
solution is defined. In contrary to closed waveguides, nu-
merically efficient and physically correct representations of

Figure 1. Two-dimensional cross section in a reference plane used
to calculate the modal fields on a transversely open microstrip line.

transversely open boundary conditions are still subject to re-
search.

2 Conventional solutions

Simulations of the wave propagation along a three-
dimensional, longitudinally homogeneous waveguides can
be reduced to a two-dimensional formulation using the fol-
lowing ansatz:

E(x,y,z)=E(x,y)e−jkzz, (1)

with E being the phasor of the electric field strength and
kz being the propagation constant of a corresponding mode
along the propagation direction z. On account of the underly-
ing frequency-domain formulation, a time harmonic depen-
dency of electromagnetic field is assumed. Inserting Eq. (1)
in Maxwell’s equations, an eigenvalue problem can be for-
mulated, where the eigenvectors represent the phasors of the
electric field strength in the transverse plane (also known as
waveguide modes) and the eigenvalues describe the propaga-
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8 M. Patrushev et al.: Transparent boundary condition for the calculation of eigenmodes

tion constants kz for each individual mode. Each solution for
these modes in transversely unbounded and longitudinally
homogeneous waveguides can be approximated using closed
boundary conditions.

2.1 Closed boundary conditions

Hollow waveguides with good electric conductive materials
can be simplistically simulated using Perfect Electric Con-
ductor (PEC) instead of the conductive material. In this case,
an efficient implementation can use this boundary condition
to represent the conducting material.

A Perfect Magnetic Conductor (PMC) can also be used
to formulate a closed boundary. Dependent on the specific
application, PMC or PEC also handles a suitable symme-
try condition. With PMC or PEC boundary conditions, the
solution contains propagating, evanescent or even complex
modes, which appear as complex conjugate pairs.

If a transversely unbounded waveguide is artificially trun-
cated with a PEC or PMC boundary condition, the resulting
solution will be distorted, since either the tangential or the
normal electric or magnetic field components will be miss-
ing. Furthermore, in transversely inhomogeneous waveg-
uides, complex modes have to be considered (Strube and
Arndt, 1985; Monsoriu et al., 2003; Clarricoats and Slinn,
1965). However, in case of a longitudinally homogeneous
open waveguide complex eigenmodes are only present at
very specific conditions (Jabłoński, 1994). Furthermore, it is
also important that choosing between PEC or PMC requires
an a priori knowledge of the field distribution of a specific
mode. Thus, for TEM or Quasi-TEM modes the PMC might
generally be suited better than the PEC boundary condition,
since the PEC boundary condition itself introduces an ad-
ditional conductor. In order to obtain an accurate solution,
closed boundary conditions must be set further away from
the original waveguide which naturally is accompanied by an
increase of the computational cost due to the enlarged prob-
lem size.

2.2 Absorbing boundary conditions

Transversely open waveguide problems can also be ad-
dressed using absorbing boundary conditions like perfectly
matched layers (PML) (Bérenger, 1994). There are different
possibilities to implement PML (Roden and Gedney, 2000;
Johnson, 2010) but independent of the formulation the under-
lying idea is not changed. The PML implements a boundary
condition that contains one or multiple layers of nonphysical
materials, that absorb the energy of incidenting electromag-
netic wave. If PML is used as a transverse boundary con-
dition for the case of longitudinally homogeneous waveg-
uides, the propagation direction of the wave is directed paral-
lel to the boundary. Hence, the assumed conditions for a PML
boundary to function properly are not met. Additionally, a
PML introduces nonphysical modes (Talukder, 2009; Rogier

Figure 2. The energy of an incoming wave traveling towards the
boundary at the angle α is partially absorbed within the PML region.
The PML layer is terminated by a closed boundary condition such
as PEC or PMC or by a simple open condition.

and De Zutter, 2001) that unfortunately distorts the physical
solution spectrum. However, these modes can be identified
(Bandlow et al., 2010). Furthermore, if the PML is enclosed
by PEC or PMC, similar modes as described in Sect. 2.1 can
arise.

3 Enhanced solution approach

The core idea for the realization of a physically correct trans-
versely open boundary condition within the framework of
FIT resides in (i) the evaluation of the field in the exterior do-
main and in (ii) its implication on the location of the bound-
ary of the computational domain. In the presented approach,
the electromagnetic field is evaluated using the Kirchhoff
Integral (Jackson, 1998). Contrary to specifically available
closed or absorbing boundary conditions, this approach de-
fines a generally available open boundary condition. After
a short survey of the fundamentals of Kirchhoff Integral as
well as the basic principles of FIT, the combination of both
will be used to formulate an open boundary condition.

3.1 Fundamentals of the Kirchhoff integral

In Fig. 3, a region R1, containing all the sources that are
enclosed by a surface S1 and another surface S2 is consid-
ered. Hence, the region R2 is a source-free and homoge-
neous domain. Electromagnetic fields in region R2 generated
by the sources in region R1 can be efficiently described by
corresponding field components on the surface S1 (Jackson,
1998).

Using the electric and magnetic field values on the sur-
faces S1 and S2, the electric or magnetic field strength in the
region R2 can be evaluated. By expressing the magnetic field
strength H through the electric field strength E, the calcu-
lation of the required fields inside the region R2 can be con-
ducted using the surface integral
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Figure 3. Sources in the region R1 enclosed by the surface S1. An
additional surface S2 is considered here, but will be moved to infin-
ity afterwards for technical reasons.

E(r)=

‹

S1∪S2

[E(r)(n′ ·∇′G(r))−G(r)(n′ ·∇′)E(r)]da′, (2)

with n′ being the normal vector on the respective surfaces
directed towards the region R2 and G(r) being the three-
dimensional Green’s Function for the Helmholtz equation
(Jackson, 1998). By placing the surface S2 infinitely far away
from S1, the surface integral (Eq. 2) has to be evaluated only
along S1, as specified in Jackson (1998).

The required integration over the entire two-dimensional
surface can be carried out partially on account of the a priori
knowledge given in Eq. (1). As a result, a one-dimensional
integral over a closed contour in the transverse plane of the
investigated waveguide remains and can be summarized as

E(r)=

∮
C

[
E(r)

(
n′ ·∇′G

(
kz,r

))
−G

(
kz,r

)
(n′ ·∇′)E(r)

]
ds′, (3)

G
(
kz,r

)
=

∫
G(r)e−jkzz dz, (4)

where G(kz, r) is the two-dimensional Green’s function that
additionally depends on the propagation constant due to the
integration along the longitudinal coordinate. In the pre-
sented method, the open boundary problem is transferred
into a nonlinear eigenvalue problem with kz being the de-
sired eigenvalue. Hence, the linear eigenvalue problem in
case of PMC or PEC boundary condition becomes nonlin-
ear for the specified open boundary condition due to the two-
dimensional Green’s function being dependent on the eigen-
value.

3.2 Finite integration technique

The volume discretization method FIT (Weiland, 1977), Wei-
land (2017) is applicable for calculations in the frequency as
well as in the time domain. It allocates electric and magnetic

voltages and fluxes on a primal and a dual mesh. These field
quantities are defined in FIT as integrals as follows1

=

∫
Ci

E · ds, =

∫
C̃i

H · ds,

=

∫∫
S̃i

D · dA, =

∫∫
Si

B · dA, =

∫∫
S̃i

J · dA.

Voltages and fluxes are allocated on mesh edges and faces,
respectively, and are stored as algebraic vectors of dimen-
sion 3Np.

=

(
, , . . .,

)
, =

(
, , . . .,

)
,

with Np being the number of mesh nodes. Material settings
are expressed as material matrices, thus the corresponding
material relations can be expressed as follows:

=Mµ , =Mε , =Mκ .

The required curl, divergence and gradient operators are de-
fined on the primal and dual mesh as band matrices C, C̃, S,
S̃, G, G̃, respectively, with following properties

SC= 0, CG= 0,

S̃C̃= 0, C̃G̃= 0, (5)

where the operators marked with a tilde are defined on the
dual mesh. Assuming harmonic time dependence as before
and substituting magnetic quantities by electrical quantities,
a three-dimensional wave equation in the frequency domain
can be formulated in form of the standard eigenvalue prob-
lem

M−1
ε C̃Mµ−1C = ω2 , (6)

where ω represents the angular frequency. The specified sys-
tem matrix M−1

ε C̃Mµ−1C is sparse and unsymmetrical, but
can be symmetrized. The three-dimensional problem (Eq. 6)
can be reduced to two dimensions and formulated in a
way such that kz becomes the eigenvalue (Weiland, 1977;
Schmitt, 1994). As a result, the two-dimensional eigenvalue
problem

A(ω) = kz
2 (7)

can be derived. The system matrix A is sparse and unsym-
metrical and can generally not be symmetrized.

1Symbols consisting of letters and bows might not be displayed
correctly in this version of the published article.
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Figure 4. (a) Model of a longitudinally infinite and transversely
open artificial optical waveguide with η1, η2 being different in-
dices of refraction and R being the radius of the cylindrical waveg-
uide. (b) Two-dimensional rectangular mesh with the reference sur-
face Br and computational domain boundary Bc. Parameters are as
follows: 1x = 0.4 mm, frequency= 16 GHz, radius R = 6.5 mm,
L= 4 mm, η1 = 2, η2 = 1.5.

3.3 Kirchhoff integral used as an open boundary
condition for FIT

Consider the two-dimensional rectangular mesh specified in
Fig. 4. The presented Kirchhoff Integral boundary (KIR)
evaluates the electric field E at the boundary Bc of the com-
putational domain via Eq. (3). For this evaluation, the electric
field values E on the reference boundary Br are used. In or-
der to study the influence of the singularity in the Green’s
function on the modeling accuracy, a variable spatial dis-
tance betweenBc andBr is introduced. Since Eq. (3) depends
on kz, the two-dimensional eigenvalue problem with KIR as
a boundary condition becomes nonlinear. FIT 2D eigenvalue
matrix (Eq. 7) becomes denser and non symmetrizable if KIR
is used as a boundary condition.

In order to integrate KIR into the framework of FIT mul-
tiple steps are necessary. First, the boundary field values of
the computational domain must be replaced by the integral
(Eq. 3) along the cell edges. After evaluating the integral,
the relationship for a boundary field cell at the boundary
point r is obtained:

(8)

with c0...U being the KI weights and 0...U,q being the field
values at the reference boundary.

In the next step, Eq. (8) will be rearranged so that the val-
ues of individual reference sources i,q can be expressed as
a function of the boundary value x,r and other reference
sources.

= f
(

, ,c0...U

)
(9)

Each row and column of the A matrix from Eq. (7) that cor-
responds to a specific reference source i,q must be altered
according to Eq. (9), thus a separate matrix AKIR is built up,
which consists of the KIR components. This matrix is not

Figure 5. (a) Structure of the KIR matrix AKIR. (b) Matrix structure
of the two-dimensional FIT eigenvalue problem (Eq. 7).

sparse, non symmetric, complex-valued and has the same di-
mensions as the two-dimensional FIT system matrix A from
Eq. (7). The structure of the FIT and KIR matrix are shown
in Fig. 5.

After AKIR has been set up, it can be integrated into the
eigenvalue problem. For this, the AKIR matrix has to be added
to the system matrix A:

AK = A+AKIR,

with AK being the new system matrix of the nonlinear eigen-
value problem.

4 Computational examples

In order to evaluate the numerical errors of KIR, a representa-
tive computational example will be described in this section.
In the following examinations, a transversely open cylindri-
cal optical waveguide according to Fig. 4 will be considered.
The presented waveguide supports 4 propagating modes
which can be calculated analytically (Yeh and Shimabukuro,
2008). Using FIT with KIR, the numerically obtained eigen-
value solution for the monopole TE mode is compared with
the analytical solution. This specific monopole mode is cho-
sen, since the azimuthal angle of its field distribution in the
transverse plane doesn’t change, hence the comparison be-
tween the analytical and numerical solutions become eas-
ier. The analytical solution of the chosen mode’s propagation
constant is given by kz = 520.728 m−1. In order to quantify
the field error, the following L2 norm is used:

|| − ||2 =

√
1
A

∑
i
| − |

2ai, (10)

withA=
∑
iai , , being the analytical and numer-

ical solution, respectively, A being the computational area
inside Br and ai being the area of individual cells i. In this
particular case of the equidistant mesh in both coordinate di-
rections all ai areas in the computational domain are equal.
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5 Investigation of KIR properties

The boundary formulation presented here has two parame-
ters that can be used to adjust the accuracy and computation
cost of the calculation. Both parameters will be introduced in
the following subsections. Additionally, a particular KIR for
spatially symmetrical structures is discussed.

5.1 Solution of the nonlinear eigenvalue problem

The solution of linearized subsystems of the nonlinear eigen-
value problem can be obtained using a fixed point itera-
tion (FPI), which is used here to calculate individual eigen-
value pairs. The first eigenvalue kz in Eq. (3) is estimated
by the averaged kz,avg within the iterative solution process,
which leads to a sequence of linear eigenvalue problems.
Knowing the material properties of the computational do-
main, known limits for the smallest and highest propagation
constants can be specified as

kz,min =min
(√
εiµi

)
k0, kz,max =max

(√
εiµi

)
k0, (11)

where εi and µi are the relative permittivity
and permeability of an individual cell, respec-
tively. Considering a real-valued kz parameter,

kz,avg is set to the mean value between kz,min and kz,max in
the initial iteration of the FPI. On the subsequent iterations,
kz,avg is set to one of the obtained solutions. The amount of
required iterations depends on the required relative accuracy
between individual iterations.

The numerical errors of the eigenvector depend on the dif-
ference |kz,avg− kz|. The convergence of the FIT model with
KIR is shown in Fig. 6, with the L2 error on the ordinate
and the mesh cell size on the abscissa. Calculations with FIT
result in a convergence order between 1 and 2 if the error
is calculated using field integrals. If instead one uses field
strength in order to calculate the error, a convergence or-
der between 0.5 and 1 is obtained. In the numerical example
specified in Fig. 4 a cylindrical figure is being discretized by
a quadratic mesh. Additionally electric field strength is be-
ing used to calculate the error. These two reasons lead to the
convergence order of 0.51, shown in Fig. 6. Two additional
calculations were performed at different fixed kz,avg and one
was conducted using the FPI. In this particular example it
is evident, that (i) the error stagnates if no FPI is used and
(ii) the error offset is decreasing when kz,avg is getting closer
to the analytical value.

5.2 Distance to the boundary

One of the important parameters is defined as the distance L
between the reference contour Br and the boundary Bc as
specified in Fig. 4. Changing this value affects the ratio be-

Figure 6. Convergence study of FIT with KIR for the numerical
example specified in Fig. 4, with and without FPI. The solution ob-
tained with FIT and KIR converges wit the order of 0.51.

Figure 7. Numerical error over the increasing ratio Rmin/Rmax for
the computational example shown in Fig. 4. The distribution of the
L2-Error is shown for two calculations in (a) and (b).

tween Rmin, Rmax, which are the closest and furthest dis-
tances between the evaluated field on Bc and the reference
elements on Bs.

As shown in Fig. 7, the evaluated numerical error increases
in two cases: (i) if the distance to the boundary becomes
too small, thus the evaluated Green’s function gets closer to
the singularity and (ii) if the ratio Rmin/Rmax increases. The
choice of an optimal value for L depends on the application.

Apart from the numerical error, the distance parameter
also affects the computational cost. In Fig. 7 the determined
amount of floating point operations (FLOP) dependent on
the ratio Rmin/Rmax is shown. Although the adjustment of
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Figure 8. Example of a horizontally symmetrical structure.

the distance parameter has a relatively low influence on the
overall error, the distribution of the corresponding L2 error
shows significant differences.

5.3 KIR for symmetrical structures

Symmetrical waveguides may support modes with a sym-
metric field distribution with regard to one of the axes of
the chosen coordinates. In that case, a dedicated boundary
condition can be imposed for the numerical simulation. This
reduces the size of the computational domain in the given
two-dimensional case by a factor of two of even four de-
pending on the amount of symmetry planes. In case of the
example given in Fig. 8 the computational domain can be di-
vided in two parts and only one of those must be taken into
account for the calculation. For the selected domain, a ded-
icated boundary condition must be specified on the dashed
symmetry line.

The proposed boundary condition KIR can naturally be
used in combination with symmetry-enforcing boundary
conditions. However, some implementation details must be
particularly considered. Since in case of Fig. 8 one half of
the reference sources on Br is missing, these values must be
considered using the a priori knowledge of the symmetry. A
simplified example in Fig. 9 is used to explain the application
of the method. Without the symmetry boundary, for example
the value of eA is calculated using:

eA =
∑12

n=1
enf (rn) , (12)

with rn as the distance between the edge n and the edge A
and f (rn) as the function calculating the weights of the
Kirchhoff-Integral. Field values e7–e12 can be calculated us-
ing the knowledge of the values e1–e6 and the waveguide
symmetry.

Using a symmetry boundary condition leads to a reduction
of the system matrix by the factor of two.

Figure 9. Schematic of a model with a possible symmetry plane and
its implication on the field evaluation formulation.

Figure 10. Visualization of the obtained error in the L2 norm as a
function of the considered reference sources in percent represented
as parameter P as well as the corresponding amount of FLOP for
the computational example shown in Fig. 4.

5.4 Reduction of reference sources

The evaluation of the Kirchhoff Integral requires the integra-
tion over a closed surface. If the reference point is close to
the respective surface, only a small fraction of the entire sur-
face may contribute to the value on account of the weighting
with the Green’s functions kernel. If this situation holds, con-
sidering a fraction of the entire surface is sufficient to obtain
an adequate solution.

Another KIR parameter, further referred to as parameter P
defines the amount of reference sources in percentage used
for evaluating an individual field value. On the one hand, the
overall computational cost decreases with the number of ref-
erence sources. On the other hand, lower values of P leads
to a higher numerical error (see Fig. 10). Similar investiga-
tions in form of a convergence study also shows the depen-
dency on the fraction of the considered reference sources as
can be seen in Fig. 11. For this particular example it is rec-
ognizable, that considered reference sources between 25 %
and 100 % show a similar convergence behavior. The inten-
tionally introduced reduction of reference sources leads to
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Figure 11. Convergence study of FIT with KIR as a function of the
mesh cell size and the fraction of the reference sources considered.
Calculations are performed for the representative example shown in
Fig. 4, with 1x < R/10.

a smaller amount of DoF in the system matrix specified in
Eq. (7), which in turn decreases the overall computational
cost as expected.

6 Sources of KIR approximations

The presented KIR boundary representation contains three
types of approximations that will be addressed in this sec-
tions:

1. numerical derivative of the electric field strength;

2. numerical integration of the electric field strength;

3. numerical integration of the Green’s function.

6.1 Numerical derivative of the electric field strength

The evaluation of the Kirchhoff Integral (Eq. 3) requires the
calculation of a derivative of the electric field strength. In
order to evaluate this quantity numerically within the frame-
work of FIT, a central differential quotient is used:

1f

1x
:=
f (x+1x)− f (x−1x)

21x
.

The order of this approximation is O(1x2), which is the
same for FIT in the used formulation with field integrals as
eigenvector components. Since this approximation depends
on the mesh size, it is not possible to analyze its sole influ-
ence on the overall convergence rate independently because
changing the mesh size will also affect the approximations
of FIT.

6.2 Numerical integration of the electric field strength

The Kirchhoff Integral (Eq. 3) allows the evaluation of the
electric field strength at any position in a given region. How-
ever, for the used FIT formulation, integrals of electric fields

Table 1. L2 error for different orders of Gaussian quadrature for the
numerical integration of the Green’s function. The relative gain is
defined as |fg− fm|/|fg|, with fg and fm being the solution using
Gaussian quadrature and midpoint rule respectively.

Order of Gaussian Relative gain to the
quadrature midpoint rule integral

2 9× 10−4

4 2× 10−3

8 9× 10−3

are required, as described in Sect. 3.2. Thus, a numerical in-
tegration of the result is needed, which is simply achieved by
the midpoint rule:∫ b

a

f (x)dx := (b− a) · f
(
a+ b

2

)
.

The approximation error here is also O(1x2), which is again
the same for FIT in the used formulation with field integrals
as eigenvector components. Just like the approximation of
the derivative, here it is also not possible to analyze the sole
influence of this error on the overall convergence rate.

6.3 Numerical integration of the Green’s function

In the one-dimensional Kirchhoff Integral (Eq. 3) both, the
electric field strength and the Green’s function are integrated
over a contourC. The integration over an individual cell edge
with an assumed constant field quantity allows to pull out the
electric field from the actual integral. Hence, the remaining
Green’s function and its derivative can be integrated sepa-
rately. For example by using the Gaussian quadrature (Stoer,
2005). The error for a Gaussian quadrature of the order 2n+2
is defined as

Q(n)(f )=
f (2n+2)(θ)

(2n+ 2)

∫ b

a

p2
n+1(x)dx

with

f ∈ C2n+2, θ ∈ [a,b]

and

pn+1 =
∏n

j=0

(
x− λj

)
.

This approximation can be evaluated independent of the
mesh cell size. Using the example described in Sect. 4, the
L2 error was calculated with Gaussian quadrature orders
n= 2, 4, 8. In Table 1, selected results are displayed as a rel-
ative difference to the midpoint rule integral. The accuracy
gain between the midpoint rule and higher order Gaussian
quadrature is relatively low, as this example shows.
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14 M. Patrushev et al.: Transparent boundary condition for the calculation of eigenmodes

Figure 12. Layout of an open two-wire transmission line. Pa-
rameters are as follows: mesh cell size 1x = 0.3 mm, fre-
quency= 16 GHz, diameter d = 3 mm, distance S = 12 mm.

7 Applications of KIR

In this section, the presented KIR boundary is compared with
closed and absorbing boundaries PEC, PMC and PML. All
required algorithms were implemented within the framework
of FIT in a custom MATLAB® code. The PML was realized
as a uniaxial PML (UPML) as described in Tischler (2004).
In order to compare different boundary conditions with each
other, three different computational examples are examined.

First, the numerical solution and its error is obtained us-
ing KIR. Next, the distance to the boundary is varied such
that the same eigenvector accuracy, defined by the L2 norm
(Eq. 10) is obtained for PEC, PMC and PML termination.
Compared quantities are given by the distance between both
boundaries, the amount of degrees of freedom (DoF), the
amount of FLOP, the amount of nonzero elements (NZE) in
the eigenvalue matrix and the amount of mesh cells.

7.1 Transmission line

A transversely open double cylindrical wire transmission line
as show in Fig. is used as the first application. For this
configuration an analytical solution for the TEM mode with
kz = k0 exists and is used as a reference solution. In Table 2
the simulation results obtained are summarized and it is ap-
parent that the KIR boundary uses less DoF and less cells
then the other examined types of boundaries. For this calcu-
lation with KIR only one FPI step was needed, since the only
existing propagation mode in this example is know in ad-
vance. The solution obtained with PEC shows a higher dis-
tance between boundaries Br and Bc than in the case with
PMC. This is due to the fact, that the PEC boundary intro-
duces an additional conductor, which distorts the physical
model.

Table 2. Comparison between different boundary conditions used to
terminate the transmission line model from Fig. as a computational
example. This shows that the computational effort needed for the
simulation is lower for the calculation performed using KIR.

Boundary BDa DoF GFLOP NZEb Cellsc

KIR 5.5 mm 4000 3.9 300 000 1300
PEC 26 mm 70 000 48 520 000 23 000
PMC 25 mm 67 000 33 510 000 22 000
PML 19 mm 40 000 89 300 000 13 000

a Distance between boundaries Br and Bc. b Number of Non-Zero-Elements.
c Amount of cells.

Table 3. Comparison between different boundary conditions used
to terminate the optical waveguide from Fig. 4 as a computational
example. This shows that the computational effort needed for the
simulation is lower for the calculation performed using KIR.

Boundary BDa DoF GFLOP NZEb Cellsc

KIR 3.7 mm 2500 0.7 63 000 800
PEC 13 mm 6700 0.7 45 000 2200
PMC 23 mm 18 000 3 120 000 6000
PML 49 mm 65 000 40 460 000 21 00

a Distance between boundaries Br and Bc. b Number of Non-Zero-Elements.
c Amount of cells.

7.2 Optical waveguide

An uncoated optical waveguide as shown in in Fig. 4 is con-
sidered in the second application example. The model itself
is described in Sect. 4.

Results for the comparison between different boundary
conditions with the KIR boundary is shown in the Table 3.
For this calculation with KIR two FPI steps were needed.
Two iterations were needed to reach the solution with KIR.
Although the amount of FLOP for calculations with PEC and
KIR boundaries are equal, the amount of DoF differs by the
factor of 2.5. What is more important is the fact, that the
obtained solution spectrum with the PEC boundary is pol-
luted with modes that do not correspond to the initial physi-
cal model.

7.3 Microstrip line

A microstrip line, displayed in Fig. 13 is used as a represen-
tative example. Since no analytical solution for this problem
can be found, a numerical reference solution was calculated
using the commercial CEM Software CST MICROWAVE
STUDIO®. For the comparison the quasi TEM mode is cho-
sen here.

In Table 4 the compiled results show that the model with
the KIR boundary requires less DoF and less mesh cells than
the other models calculated using classical boundaries on
the microstrip line described above. For this calculation with
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Figure 13. Microstrip line with a dielectric substrate and PEC
elements. Following parameters for this model are used: h1 =
0.12 mm, h2 = 0.012 mm, l1 = 1.2 mm, l2 = 0.12 mm, εr = 4,
mesh width 1x = 0.012 mm, frequency= 16 GHz.

Table 4. Comparison between different boundary conditions used
to terminate the microstrip line from Fig. 13 as a computational
example. This shows that the computational effort needed for the
simulation is lower for the calculation performed using KIR.

Boundary BDa DoF GFLOP NZEb Cellsc

KIR 0.04 mm 4700 19 650 000 1600
PEC 1.00 mm 97 000 299 780 000 32 000
PMC 0.36 mm 19 000 28 150 000 6300
PML 0.98 mm 82 000 663 710 000 27 000

a Distance between boundaries Br and Bc. b Number of Non-Zero-Elements.
c Amount of cells.

KIR one FPI step was needed. The solution obtained with
the PMC model shows computational costs in the same order
of magnitude as the one, calculated using KIR. Nevertheless,
with the remaining boundaries the eigenvalue spectrum con-
tains modes that do not exist in the transversely open waveg-
uide (e.g. complex modes).

8 Conclusions

An alternative boundary condition KIR for transversally
open waveguides was defined and successfully implemented
within the framework of FIT. Various parameters and approx-
imations of KIR were introduced and discussed. Finally, a
comparison between conventional boundary conditions and
KIR was performed. In contrast to classical boundary condi-
tions, KIR representation results in a better approximation of
the physical problem. This significantly lowers the computa-
tion time.

Data availability. All the calculations performed for this paper (be-
sides the one calculated using CST MICROWAVE STUDIO) were
calculated using a custom MATLAB code. Neither the CST code
nor the MATLAB code are publicly available. Also the underlying
data is not publicly available – only the research data displayed in
this paper.
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