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Abstract. Analog computers can be revived as a feasible
technology platform for low precision, energy efficient and
fast computing. We justify this statement by measuring the
performance of a modern analog computer and comparing it
with that of traditional digital processors. General statements
are made about the solution of ordinary and partial differen-
tial equations. Computational fluid dynamics are discussed
as an example of large scale scientific computing applica-
tions. Several models are proposed which demonstrate the
benefits of analog and digital-analog hybrid computing.

1 Introduction

Digital computing has transformed many — if not close to
all — aspects of industry, humanities and science. Turing
completeness allows statements to be made about the com-
putability and decidability of problems and computational
power of machines. Digital storage has undergone numer-
ous technological advances and is available in increasingly
vast amounts. Nevertheless, contemporary digital computing
is possibly not the last word in computing, despite its domi-
nance in the consumer market for the last 40+ years.

Fundamental research about non-traditional (also referred
to as unconventional or exotic) computing is taking place in
material sciences, chemistry but also in more exotic branches
such as biology and life sciences. Amongst others, beyond-
Turing computing (Siegelmann, 1995), natural computing
(Calude et al., 1999), neuromorphic computing (Schuman
et al., 2017; Ziegler, 2020) or quantum computing (Zhou
et al., 2020; Georgescu et al., 2014; Kendon et al., 2010) are
fields of active investigation. Being fundamental research at
heart, these disciplines come with technological challenges.
For instance, computing with DNA still requires the use
of large scale laboratory equipment and machinery (Deaton

et al., 1998). Currently, not only the low-temperature lab-
oratory conditions but also the necessary error correction
schemes challenge practical quantum computers (Wilhelm
et al., 2017). This currently negates any practical advan-
tage over silicon based digital computing. Furthermore, all
of these alternative (or exotic) computer architectures share
the characteristic that they are fundamentally non-portable.
This means they will have to be located at large facilities and
dedicated special-purpose computing centers for a long time,
if not forever. This is not necessarily a practical drawback,
since the internet allows for delocalization of systems.

In contrast to this, silicon based electronic analog com-
puting is a technology with a rich history, which operates
in a normal workplace environment (non-laboratory condi-
tions; Ulmann, 2020). Digital computers overtook their ana-
log counterparts in the last century, primarily due to their
ever-increasing digital clock speeds and their flexibility that
comes from their algorithmic approach and the possibility of
using these machines in a time-shared environment. How-
ever, today Moore’s law is coming to a hard stop and proces-
sor clock speeds have not significantly increased in the past
decade. Manycore architectures and vectorization come with
their own share of problems, given their fundamental limits
as described, for instance, by Amdahl’s law (Rodgers, 1985).
GPGPUs and specialized digital computing chips concen-
trate on vectorized, and even data flow-oriented program-
ming paradigms but are still limited by parasitic capacitances
which determine the maximum possible clock frequency and
provide a noticeable energy barrier.

Thanks to their properties, analog computers have at-
tracted the interest of many research groups. For surveys of
theory and applications, see for instance Bournez and Pouly
(2021) or the works of MacLennan (2004, 2012, 2019). In
this paper, we study the usability of analog computers for
applications in science. The fundamental properties of ana-
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log computers are low power requirements, low resolution
computation and intrinsic parallelism. Two very different
uses cases/scenarios can be identified: High performance
computing (HPC) and low energy portable computing. The
energy and computational demands for both scenarios are
diametrically-opposed and this paper is primarily focused on
HPC.

The paper is structured as follows: In Sect. 2, we review
the general assumptions about digital and analog comput-
ing. In Sect. 3, small scale benchmark results are presented
for a simple ordinary differential equation. In Sect. 4, a typ-
ical partial differential equation is considered as an example
for a large scale problem. Spatial discretization effects and
computer architecture design choices are discussed. Finally,
Sect. 5 summarizes the findings.

2 A Simple (Linear) Model for Comparing Analog and
Digital Performance

In this paper, we study different techniques for solving dif-
ferential equations computationally. Due to the different con-
ventions in algorithmic and analog approaches, a common
language had to be found and is described in this section.
Here, the term algorithmic approach addresses the classi-
cal Euler method or classical quasi-linear techniques in or-
dinary or partial differential equations (ODEs/PDEs), i.e.,
general methods of numerical mathematics. The term ana-
log approach addresses the continuous time integration with
an operational amplifier having a capacitor in the feedback
loop. The fundamental measures of computer performance
under consideration are the time-to-solution T , the power
consumption P and the energy demand E.

2.1 Time to solution

The time-to-solution T is the elapsed real time (lab time or
wall clock time) for solving a differential equation ∂tu=

f (u) from its initial condition u(t0) at time t0 to some target
simulation time tfinal, i.e., for obtaining u(tfinal). The speed
factor k0 := T/tfinal is the ratio of elapsed simulation time per
wall clock time. On analog computers, this allows to identify
the maximum frequency ν = k0/(2π s). On digital computers,
the time-to-solution is used as an estimator (in a statistical
sense) for the average k0. Relating this quantity to measures
in numerical schemes is an important discussion point in this
paper. Given the simplest possible ODE,

dy/dt = f (y) := y, (1)

one can study the analog/digital computer performance in
terms of the complexity of f (y). For a problem M times as
big as the given one, the inherently fully parallel analog com-
puter exhibits a constant time-to-solution, i.e., in other terms,

TMA := T
1
A, i.e., TMA = T

M
A (M)=O(1), (2)

In contrast, a single core (i.e., nonvectorized, nor superscalar
architecture) digital computer operates in a serial fashion and
can achieve a time-to-solution

TMD =M · T
1

D, i.e., TMD = T
M

D (M)=O(M). (3)

Here, T 1 refers to the time-to-solution for solving Eq. (1),
while TM refers to the time-to-solution for solving a prob-
lem M times as hard. M ∈ N is the measure for the algo-
rithmic complexity of f (y). f (M)=O(g(M)) refers to the
Bachmann-Landau asymptotic notation. The number of com-
putational elements required to implement f (y) on an analog
computer or the number of instructions required for comput-
ing f (y) on a digital computer could provide numbers forM .
This is because it is assumed that the evaluation of f (y) can
hardly be numerically parallelized. For a system of N cou-
pled ODEs dyi/dt = fi(y1, . . .,yN ), the vector-valued f can
be assigned an effective complexity O(NM) with the same
reasoning. However, an overall complexity O(M) is more re-
alistic since parallelism could be exploited more easily in the
direction of N (MIMD, multiple instruction, multiple data).

Furthermore, multi-step schemes implementing higher or-
der numerical time integration can exploit digital paralleliza-
tion (however, in general the serial time-to-solution of a nu-
merical Euler scheme is the limit for the fastest possible dig-
ital time integration). Digital parallelization is always lim-
ited by the inherently serial parts of a problem (Amdahl’s
law, Rodgers, 1985), which makes the evaluation of f (y)
the hardest part of the problem. Section 4 discusses complex
functions f (y) in the context of the method of lines for PDEs.

It should be emphasized that, in the general case, this esti-
mate for the digital computer is a most optimistic (best) esti-
mate, using today’s numerical methods. It does not take into
account hypothetical algorithmic “shortcuts” which could
archive solutions faster than O(M), because they imply some
knowledge about the internal structure of f (y) which could
probably also be exploited in analog implementations.

2.2 Power and energy scaling for the linear model

For a given problem with time-to-solution T and average
power consumption P , the overall energy is estimated by
E = PT regardless of the computer architecture.

In general, an analog computer has to grow with the prob-
lem sizeM . Given constant power requirements per comput-
ing element and neglecting increasing resistances or parasitic
capacitances, in general one can assume the analog computer
power requirement PMA for a size M problem to scale from a
size 1 problem P 1

A as PMA = P
1
A·M . In contrast, a serial single

node digital computer in principle can compute a problem of
any size serially by relying on dynamic memory (DRAM),
i.e., PMD = P

1
D. That is, the digital computer power require-

ments for running a large problem (PMD ) are (at first approxi-
mation) similar to running a small problem P 1

D. Typically, the
DRAM energy demands are one to two orders of magnitude
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Table 1. A linear model for work: The computational cost C of
evaluating f (u) in the ODE ∂u/∂t = f (u) is expected to grow as
C ∈O(M). The effects on time-to-solution T , power P and energy
E demands are shown.

(Quantity) Digital Analog

T (M) [s] O(M) O(1)
P (M) [W] O(1) O(M)
E(M) [J] O(M) O(M)

smaller than those of a desktop or server grade processor and
are therefore negligible for this estimate.

Interestingly, this model suggests that the overall energy
requirements to solve a large problem on an analog and dig-
ital computer, respectively, are both EMD and EMA =O(M),
i.e., the analog-digital energy ratio remains constant despite
the fact that the analog computer computes (runs) linearly
faster with increasing problem sizeM . This can be easily de-
duced by E = P · T . In this model, it is furthermore

EMA

EMD
=
MP 1

A

P 1
D

T 1
A

MT 1
D
=
P 1
A

P 1
D

T 1
A

T 1
D
= const. (4)

The orthogonal performance features of the fully-parallel
analog computer and the fully-serial digital computer are also
summarized in Table 1.

When comparing digital and analog computer power
consumption, the power consumption under consideration
should include the total computer power including admin-
istrative parts (like network infrastructure, analog-to-digital
converters or cooling) and power supplies. In this work, data
of heterogenous sources are compared and definitions may
vary.

2.3 Criticism and outlook

Given that the digital and analog technology (electric rep-
resentation of information, transistor-based computation) is
quite similar, the model prediction of a similarly growing en-
ergy demand is useful. Differences are of course hidden in
the constants (prefactors) of the asymptotic notation O(M).
Quantitative studies in the next sections examine this prefac-
tor in O(M).

The linear model is already limited in the case of serial
digital processors when the computation gets memory bound
(instead of CPU-bound). Having to wait for data leads to a
performance drop and might result in a worsened superlinear
TMD .

Parallel digital computing as well as serial analog com-
puting has not yet been subject of the previous discussion.
While the first one is a widespread standard technique, the
second one refers to analog-digital hybrid computing which,
inter alia, allows a small analog computer to be used repeat-
edly on a large problem, effectively rendering the analog part
as an analog accelerator or co-processor for the digital part.

Parallel digital computing suffers from a theoretical speedup
limited due to the non-parallel parts of the algorithm (see also
Gustafson, 1988), which has exponential impact on TMD . This
is where the intrinsically parallel analog computer exhibits its
biggest advantages. Section 4 discusses this aspect of analog
computing.

3 A performance survey on solving ordinary
differential equations (ODEs)

In this section, quantitative measurements between contem-
porary analog and digital computers will be made. We use the
Analog Paradigm Model-1 computer (Ulmann, 2019, 2020),
a modern modular academic analog computer and an ordi-
nary Intel© Whiskey Lake “ultra-low power mobile” proces-
sor (Core i7-8565U) as a representative of a typical desktop-
grade processor. Within this experiment, we solve a simple1

test equation d2y/dt2 = λy (with real-valued y and λ=±1)
on both a digital and analog computer.

3.1 Time to solution

The digital computer solved the simple ordinary differential
equation (ODE) with simple text-book level scalar bench-
mark codes written in C and Fortran and compiled with
GCC. Explicit (forward) integrator methods are adopted
(Euler/Runge-Kutta). The algorithm computed N = 2× 103

timesteps with timestep size 1t = 5× 10−4 each (see also
Sect. 4 for a motivation for this time step size). Therefore,
it is tfinal =N1t = 1. No output2 was written during the
benchmark to ensure the best performance. The time per ele-
ment update (per integration step) was roughly (45± 35) ns.
For statistical reasons, the computation was repeated and av-
eraged 105 times. Depending on the order of the integra-
tion scheme, the overall wall clock time was determined as
TD = (75± 45) µs in order to achieve the simulation time
tfinal.

In contrast, the equation was implemented with integrating
(and negating, if λ=−1) operational amplifiers on the Ana-
log Paradigm Model-1. The machine approached tfinal = 1 in
a wall-clock time TA = 1s/k0 with k0 ∈ {1,10,102,103,104

}

the available integration speed factors on the machine (Ul-
mann, 2019). The Analog Paradigm Model-1 reached the so-
lution of y′′ = y at tfinal = 1 in a wall-clock time TA = 100 µs
at best.

Note how TA/TD ≈ 1, i.e., in the case of the smallest pos-
sible reasonable ODE, the digital computer (2020s energy

1This equation is inspired by the Dahlquist and Jeltsch (1979)
test equation y′ = λy used for stability studies. The advantage of
using an oscillator is the self-similarity of the solution which can be
observed over a long time.

2Both in terms of dense output or any kind of evolution track-
ing. A textbook-level approach with minimal memory footprint is
adopted which could be considered an in-place algorithm.

https://doi.org/10.5194/ars-19-105-2021 Adv. Radio Sci., 19, 105–116, 2021



108 S. Köppel et al.: Using analog computers in today’s largest computational challenges

efficient desktop processor) is roughly as fast as the Analog
Paradigm Model-1 (modern analog computer with an inte-
gration level comparable to the 1970s).

Looking forward, given the limited increase in clock fre-
quency, with a faster processor one can probably expect an
improvement of TD down to the order of 1 µs. For an ana-
log computer on a chip, one can expect an improvement of
TA down to the order of 1 µs–10 ns. This renders TA/TD ≈

10−(1±1) as a universal constant.
Summing up, with the given numbers above, as soon as the

problem complexity grows, the analog computer outperforms
the digital one, and this advantage increases linearly.

3.2 Energy and power consumption

The performance measure codes likwid (Hager et al.,
2010; Röhl et al., 2017; Gruber et al., 2020) and perf
(de Melo, 2010) were used in order to measure the overall
floating-point operations (FLOP) and energy usage of the
digital processor. For the Intel mobile processor, this pro-
vided a power consumption of PD = 10W during comput-
ing. This number was derived directly from the CPU per-
formance counters. The overall energy requirement was then
ED = PDTD = (0.9± 0.6)mJ. Note that this number only
takes the processor energy demands into account, not any
other auxiliary parts of the overall digital computer (such as
memory, main board or power supply). For the overall power
consumption, an increase of at least 50 % is expected.

The analog computer energy consumption is estimated as
PA ≈ 400 mW. The number is based on measurements of ac-
tual Analog Paradigm Model-1 computing units, in particular
84 mW for a single summer and 162 mW for a single integra-
tor. The overall energy requirement is then EA = PATA =
40µJ.

Note that PD/PA ≈ 25, while ED/EA ≈ (2.25±1.5). The
conclusion is that the analog and digital computer require a
similar amount of energy for the given computation, a re-
markable result given the 40-year technology gap between
the two architectures compared here.

For power consumption, it is hard to give a useful projec-
tion due to the accumulating administrative overhead in case
of parallel digital computing, such as data transfers, non-
uniform memory accesses (NUMA) and switching network-
ing infrastructure. It can be assumed that this will change the
ratio ED/EA further in favor of the analog computer for both
larger digital and analog computers. Furthermore, higher in-
tegration levels lower EA: the Analog Paradigm Model-1
analog computer is realized with an integration level com-
parable with 1970s digital computers. We can reasonably ex-
pect a drop of two to three orders of magnitude in power
requirements with fully integrated analog computers.

3.3 Measuring computational power: FLOP per Joule

For the digital computer, the number of computed floating-
point operations (FLOP3) can be measured. The overall
single core nonvectorized performance was measured as
F ≈ 1GFLOP/s. A single computation until tfinal required
roughly FD = 3kFLOP. The ratio FD/PD = 100MFLOP/J
is a measure of the number of computations per energy unit
on this machine. This performance was one to two orders
less than typical HPC numbers. This is because an energy-
saving desktop CPU and not a high-end processor was bench-
marked. Furthermore, this benchmark was by purpose single-
threaded.

In this non-vectorized benchmark, the reduced resolution
of the analog computer was ignored. In fact it is slightly
lower than an IEEE 754 half precision floating-point, com-
pared to the double precision floating-point numbers in the
digital benchmark. One can then assign the analog computer
a time-equivalent floating-point operation performance

FA := FD
TA

TD
≈ 10(1±1)FD = 3× 10(4±1) FLOP. (5)

The analog computer FLOP-per-Joule ratio (note that
FLOP/J= FLOPs/W) is

FA

EA
=

3× 10(4±1)FLOP
40µJ

= 7.5× 108±1 FLOP/J. (6)

That is, the analog computer’s “FLOP per Joule” is slightly
larger than for the digital one. Furthermore, one can expect
an increase of FA/EA by 10–100 for an analog computer
chip. See for instance Cowan (2005) and Cowan et al. (2005),
who claim 20GFlop/s. We expect 300GFlop/s to be more
realistic, thought (Table 2).

Keep in mind that the FLOP/s or FLOP/J measures are
(even in the case of comparing two digital computers) al-
ways problem/algorithm-specific (i.e., in this case a Runge
Kutta solver of y′′ = y) and therefore controversial as a com-
parative figure.

4 PDEs and many degrees of freedom

This section presents forecasts about the solution of large
scale differential equations. No benchmarks have been car-
ried out, because a suitable integrated analog computer on
chip does not yet exist. For the estimates, an analog computer
on chip with an average energy consumption of about PN =
4 mW per computing element (i.e., per integration, multipli-
cation, etc.) and maximum frequency ν = 100 Mhz, which is

3sic! We either argue with overall FLOP and Energy (Joule)
or per second quantities such as FLOP/s (in short FLOPS)
and Power (Watt). In order to avoid confusion, we avoid the
abbreviation “FLOPS” in the main text. Furthermore, SI pre-
fixes are used, i.e., kFLOP= 103 FLOP, MFLOP= 106 FLOP and
GFLOP= 109 FLOP.
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Table 2. Small scaling summary: Measured benchmark (Intel© pro-
cessor vs. Analog Paradigm Model-1) and expected/projected ana-
log chip results.

Measured Projected

Digital Analog (M1) Analog Chip

T [µs] 75± 45 100 10−(0.5±0.5)

k0 ∼ 1/1t [Hz] 3× 104 104 106.5±0.5

P [W] 10 0.4 10−2

E = P · T [µJ] 900± 600 40 10−(2.5±0.5)

F [FLOP/s] 109 3× 10(4±1) 7× 105

F/E [FLOP/J] 108 7.5× 108±1 3× 1011

refered to as the analog maximum frequency νA in the fol-
lowing, was assumed.was assumed.4 These numbers are sev-
eral orders of magnitude better than the PN = 160 mW and
ν = 100 kHz of the Analog Paradigm Model-1 computer dis-
cussed in the previous section. For the digital part, different
systems than before are considered.

In general, the bandwidth of an analog computer depends
on the frequency response characteristics of the elements,
such as summers and integrators. The actual achievable per-
formance also depends on the technology. A number of ex-
amples shall be given to motivate our numbers: In 65 nm
CMOS technology, bandwidths of over 2 GHz are achiev-
able with integrators (Breems et al., 2016). At unity-gain fre-
quencies of 800 MHz to 1.2 Ghz and power consumption of
less than 2 mW, integrators with a unity-gain frequency of
400 Mhz are achievable (Wang et al., 2018).

4.1 Solving PDEs on digital and analog computers

Partial differential equations (PDEs) are among the most im-
portant and powerful mathematical frameworks for describ-
ing dynamical systems in science and engineering. PDE solu-
tions are usually fields u= u(r, t), i.e., functions5 of spatial
position r and time t . In the following, we concentrate on
initial value boundary problems (IVBP). These problems are
described by a set of PDEs valid within a spatial and temporal
domain and complemented with field values imposed on the
domain boundary. For a review of PDEs, their applications
and solutions see for instance Brezis and Browder (1998).
In this text, we use computational fluid dynamics (CFD) as
a representative theory for discussing general PDE perfor-
mance. In particular, classical hydrodynamics (Euler equa-
tion) in a flux-conservative formulation is described by hy-
perbolic conservation laws in the next sections. Such PDEs

4Summation will be done implicitly on chip by making use of
Kirchhoff’s law (current summing) so that no explizit computing
element are required for this operation.

5The explicit dependency on r and t is omitted in the following
text.

have a long tradition of being solved with highly accurate
numerical schemes.

Many methods exist for the spatial discretization. While fi-
nite volume schemes are popular for their conservative prop-
erties, finite difference schemes are in general cheaper to im-
plement. In this work, we stick to simple finite differences
on a uniform grid with some uniform grid spacing 1r . The
evolution vector field u(r, t) is sampled on G grid points per
dimension and thus replaced by uk(t) with 0≤ k < G. It is
worthwhile to mention that this approach works in classical
orthogonal “dimension by dimension” fashion, and the num-
ber of total grid points is given by GD. The computational
domain is thus bound by �= [r0,rG]

D. A spatial deriva-
tive ∂if is then approximated by a central finite difference
scheme, for instance ∂ifk ≈ (fk+1−fk−1)/(21x)+O(1x2)

for a second order accurate central finite difference approxi-
mation of the derivative of some function f at grid point k.

Many algorithmic solvers implement numerical schemes
which exploit the vertical method of lines (MoL) to rewrite
the PDE into coupled ordinary differential equations (ODEs).
Once applied, the ODE system can be written as ∂tu

k
=

Gk(u,∇u) with uk denoting the time evolved (spatial) de-
grees of freedom andGk functions containing spatial deriva-
tives (∂iuj ) and algebraic sources. A standard time stepping
method determines a solution u(t1) at later time t1 > t0 by ba-
sically integrating uk(t1)=

∫ t1
t0
Gk(u(t))d t+uk(t0). Depend-

ing on the details of the scheme, Gk is evaluated (probably
repeatedly or in a weak-form integral approach) during the
time integration of the system. However, note that other in-
tegration techniques exist, such as the arbitrary high order
ADER technique (Titarev and Toro, 2002, 2005). The par-
ticular spatial discretization method has a big impact on the
computational cost of Gi . Here, we focus on the (simplest)
finite difference technique, where the number of neighbor
communications per dimension grows linearly with the con-
vergence order of the scheme.

4.2 Classical Hydrodynamics on analog computers

The broad class of fluid dynamics will be discussed as popu-
lar yet simple type of PDEs. It is well known for its efficient
description of the flow of liquids and gases in motion and
is applicable in many domains such as aerodynamics, in life
sciences as well as fundamental sciences (Sod, 1985; Chu,
1979; Wang et al., 2019). In this text, the simplest formu-
lation is investigated: the Newtonian hydrodynamics (also
refered to as Euler equations) with an ideal gas equation
of state. It is given by a nonlinear PDE describing the time
evolution of a mass density ρ, it’s velocity vi , momentum
pi = ρvi and energy e = t + ε, with the kinetic contribution
t = ρ v2/2 and an “internal” energy ε, which can account for
forces on smaller length scales than the averaged scale.

Flux conservative Newtonian hydrodynamics with an ideal
gas equation of state are one of the most elementary and
text-book level formulations of fluid dynamics (Toro, 1998;
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Harten, 1997; Hirsch, 1990). The PDE system can be written
in a dimension agnostic way in D spatial dimensions (i.e.,
independent of the particular choice for D) as

∂u

∂t
−∇ ·f = S with ∇ ·f =

nd∑
i

∂f i

∂xi
, (7)

u=

 ρ

pj

e

 ,f i = f i(u,v)=

 pi

pivj −pδij

vi (e+p)

 , (8)

with i,j ∈ [1,D]. Here, the pressure p = ρε(0− 1) defines
the ideal gas equation of state, with adiabatic index 0 = 2
and δij is the Kronecker delta. A number of vectors are im-
portant in the following: The integrated state or evolved vec-
tor u in contrast to the primitive state vector or auxiliary
quantities v(u)= (p,vi), which is a collection of so called
locally reconstructed quantities. Furthermore, the right hand
sides in Eq. (7) do not explicitly depend on the spatial deriva-
tive ∂ iρ, thus the conserved flux vector f = f (∇q,v) is only
a function of the derivatives of the communicated quantities
q = (e,pi) and the auxiliaries v. Furthermore, q and v are
both functions of u only.

S = 0 is a source term. Some hydrodynamical models can
be coupled by purely choosing some nonzero S, such as the
popular Navier Stokes equations which describe viscous flu-
ids. Compressible Navier Stokes equations can be written
with a source term S =∇ ·F v , with

diffusion fluxes F v
= (0,τ ij ,

∑
k
τ ikvk − qj )T , (9)

viscous stress τ ij = µ(∂ ivj + ∂jvi −
2
3
(∂kvk)δij ), (10)

and heat flux qi =−(cpµ/Pr)∂ iT , (11)

with specific heats cp, cv , viscosity coefficient µ, Prandtl
number Pr and temperature T determined by the perfect
gas equation of state, i.e., T = (e−v2)/(2cv). The computa-
tional cost from Euler equation to Navier Stokes equation is
roughly doubled. Furthermore, the partial derivatives on the
velocities and temperatures also double the quantities which
must be communicated with each neighbor in every dimen-
sion. We use Euler equations in the following section for the
sake of simplicity.

4.3 Spatial discretization: Trading interconnections vs.
computing elements

Schemes of (convergence) order F shall be investigated,
which require the communication with F neighbour ele-
ments. For instance, a F = 4th order accurate stencil has
to communicate and/or compute four neighbouring elements
f k−2,f k−1,f k+1,f k+2. Typically, long-term evolutions are
carried out with F = 4 or F = 6. In the following, for sim-
plicity, second order stencil (F = 2) is chosen. One identifies
three different subcircuits

uk(f k+1,f k−1) :=

∫ (
f k+1−f k−1

)
d t/(21x), (12)

with f k±1 := f k(qk±1,vk) and vk := vk(uk) according to
their previous respective definitions. Figure 1 shows this
“building block” for a single grid point, an exemplar for up
toD = 2 dimensions with an F = 2nd order finite difference
stencil. The circuit identifies a number of intermediate ex-
pressions which are labeled as these equations:

(13)

Just like in Fig. 1, all expressions which are vanishing in a
single spatial dimension are colored in red. Furthermore, note
how the index i denotes the x-direction and k the y-direction,
and that there are different fluxes f j in the particular direc-
tions. Equation (13) is closed with the element-local auxil-
iary recovery

(14)

Note that one can trade neighbor communication (i.e.,
number of wires between grid points) for local recomputa-
tion. For instance, it would be mathematically clean to com-
municate only the conservation quantities u and reconstruct
v whenever needed. In order to avoid too many recomputa-
tions, some numerical codes also communicate parts of v. In
an analog circuit, it is even possible to communicate parts of
the finite differences, such as the1vi,k quantities in Eq. (13).

The number of analog computing elements required to
solve the Euler equation on a single grid point is determined
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Figure 1. Overview circuit showing the blocks f , u and v. The three labeled blocks are distinguished by colour. Information flow is indicated
with arrows. The overall circuit is given for lowest order (RK1) and in one spatial dimension. The red circuitry is the required addition for two
spatial dimensions. All computing elements are drawn “abstractly” and could be directly implemented with (negating) operational amplifiers
on a very large Analog Paradigm Model-1 analog computer.

as Nsingle = 5D+ 5F(D+ 2)+ 9, with D being the number
of spatial dimensions and F the convergence order (i.e., basi-
cally the finite difference stencil size). Typical choices of in-
terest are convergence orders of F ∈ [2,6] in D ∈ [1,3] spa-
tial dimensions. Inserting the averaged F = 3± 1 and D =
2±1 intoNsingle yields an averagedNsingle ≈ (84±40) com-
puting elements per spatial degree of freedom (grid point)
required for implementing Euler equations.

Unfortunately, this circuit is too big to fit on the Ana-
log Paradigm Model-1 computer resources available. Con-
sequently the following discussion is based on a future im-
plementation using a large number of interconnected analog
chips. It is noteworthy that this level of integration is nec-
essary to implement large scale analog computing applica-
tions. With PN = 4 mW per computing element, the average
power per spatial degree of freedom (i.e., single grid point)
is PND = (336± 160)mW.

4.4 Time to solution

Numerical PDE solvers are typically benchmarked using a
wall-clock time per degree of freedom update measure TDOF,
where element update typically means a time integration
timestep. In this measure, the overall wall clock time is nor-
malized (divided) by the number of spatial degrees of free-
dom as well as the number of parallel processors involved.

The fastest digital integrators found in literature carry out
a time per degree of freedom update TDOF = 101±1 µs. Val-
ues smaller than 1 µs require already the use of sophisticated
communication avoiding numerical schemes such as dis-
continuous Galerkin (DG) schemes.6 For instance, Dumbser
et al. (2008) demonstrate the superiority of so called PNPM
methods (polynomial of degree N for reconstruction and M
for time integration, where the limit P0PM denotes a stan-
dard high-order finite volume scheme) by reporting TDOF =

0.8 µs for a P2P2 method when solving two-dimensional Eu-
ler equations. Diot et al. (2013) report an adaptive scheme
which performs no faster than TEU = 30 µs when applied to
three-dimensional Euler equations. The predictor-corrector
arbitrary-order ADER scheme applied by Köppel (2018) and
Fambri et al. (2018) to the general-relativistic magnetody-
namic extension of hydrodynamics reported TDOF = 41 µs as
the fastest speed obtained. The non-parallelizable evaluation
of more complex hydrodynamic models is clearly reflected
in the increasing times TDOF.

Recalling the benchmark result of TDOF ∼ 45 ns from
Sect. 3.1, the factor of 1000 is mainly caused by the in-
evitable communication required for obtaining neighbor val-

6h−p methods, which provide both mesh refinement in grid
spacing h as well as a “local” high order description typically in
some function base expansion of order p. For reviews, see for in-
stance Cockburn and Shu (2001) or Shu (2016).
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ues when solving f (y,∇y) in ∂ty = f (y). Switched net-
works have an intrinsic communication latency and one can-
not expect TDOF to shrink significantly, even for newer gen-
erations of supercomputers. A key advantage of analog com-
puting is that grid neighbor communication happens contin-
uously in the same time as in the grid-local circuit. That is,
no time is lost for communication.

One can do a comparison with the analog computer with-
out knowing the simulation time step size 1t . The reasoning
is based on the maximum frequency, i.e., the shortest wave-
length which can be resolved with a (first order in time7) nu-
merical scheme is fsim := 1/(101t), c.f., Fig. 2. The factor
10= 2 · 5 includes a factor of 2 due to the Nyquist-Shannon
sampling theorem, while the factor of 5 is chosen to take into
account that a numerical scheme can marginally reconstruct
a wave at frequency f = 1/(21t) by two points while it can
be obtained perfectly by the analog computer (down to ma-
chine precision without any artifacts). The integration of sig-
nals beyond the maximum frequency results in a nonlinear
response which heavily depends on the electrical details of
the circuit (which are beyond the scope of the analog com-
puter architecture discussed in this paper). One can demand
that the numerical integrator time resolution is good enough
to reconstruct a signal without prior knowledge on the wave
form even at the maximum frequency.8 This drives the de-
mand for 5 additional sampling points per half-wave, in or-
der to make analog and digital outcome comparable (see also
Fig. 2).

It is noted that this argument is relevant as long as one is
interested in obtaining and preserving the correct time evolu-
tion (of a system described by the differential equation) with
an analog or digital computer, respectively. In general, it is
not valid to reduce the computational correctness within the
solution domain of an initial value problem as this will inval-
idate any later solution.

By assigning the numerical PDE solver a maximum fre-
quency identical to the highest frequency which can be
evolved by the scheme in a given time, one introduces an
effective digital computer maximum frequency

νD
= 1/(10TDOF)= 101±1 kHz. (15)

Note how the mapping of simulation time (interval) 1t to
wall-clock time (interval) TDOF results in a mapping of sim-
ulation frequency fsim to wall-clock (or real-time) frequency
νD (Fig. 2).

7For a high order time integration scheme, the cutoff increases
formally linearly as f0 ∼ p/(10TDOF). That is, for a fourth order
scheme, the digital computer is effectively four times faster in this
comparison.

8Note that on a digital computer, the maximum frequency is
identical to a cutoff frequency (also refered to as ultraviolet cutoff).
On analog computers, there is no such hard cutoff as computing el-
ements tend to be able to compute with decreased quality at higher
frequencies.

The calculated νD
= 10−2±1 MHz has to be contrasted

with νA = 100 MHz of the analog computer chip. One can
conclude that analog computers can solve large scale high
performance computing at least νA/νD

= 103±1 times faster
than the digital ones, when TA and TD are the analog and
digital time to solution. Since T ∼ 1/ν, the resolution time
reduces accordingly and TA/TD = 10−3±1.

This is a remarkable result as it already assumes the fastest
numerical integration schemes on a perfectly scaling paral-
lel digital computer. In practical problems, these assump-
tions are hardly ever met: The impossibility of (ideal) par-
allelization is one of the major drawbacks of digital comput-
ing. Nevertheless, the above results show that even without
these drawbacks, the analog computer is orders of magni-
tude faster. Notably, while it needs careful adjustment both
the problem and the code for a high-performance computer
to achieve acceptable parallel performance, when using an
analog computer these advantages come effortless. The only
way to reduce the speed or timing advantage is to choose a
disadvantegeous or unsuitable number scaling.

In this study the low resolution of an analog computer
(which is effectively IEEE 754 half precision floating-point)
has been neglected. In fact, high order time integration
schemes can invest computing time in order to achieve ma-
chine level accuracy which a typical error 1fdigital ∼ 10−10

on some evolved function or field f and an error definition
1fsimulation := (fsimulation− fexact)/fexact. An analog com-
puter is limited by its intrinsic accuracy with a typical error
1fanalog ∼ 10−(4±1) (averaging over the Analog Paradigm
Model-1 and future analog computers on chip).

4.5 Energy and power consumption

One expects the enormous speedup TA/TD of the analog
computer to result in a much lower energy budget ED =

(TD/TA)EA = 103±1EA for a given problem. However, as
the power requirement is proportional to the analog com-
puter size, PA =NPND, the problem size (number of grid
points) which can be handled by the analog computer is
limited by the overall power consumption. For instance,
with a typical high performance computer power consump-
tion of PA = 20MW, one can simultaneously evolve a grid
with N = PA/PND = 1011±0.5 points. This is in the same
order of magnitude as the largest scale computational fluid
dynamics simulations evolved on digital high performance
computer clusters (c.f., Green 500 list, Subramaniam et al.,
2013, 2020). Note that in such a setup, the solution is ob-
tained on average 103±1 times faster with a purely analog
computer and consequently also the energy demand is 103±1

times lower.
Just to depict an analog computer of this size: Given 1000

computing elements per chip, 1000 chips per rack unit, 40
units per rack still requires 2500 racks to build such a com-
puter in a traditional design. This is one order of magni-
tude larger than the size of typical high performance cen-
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Figure 2. Analog signal sampling vs. numerical time integration: The time evolved sine with maximum frequency k = 2π/λ has just the
wavelength λ=1t , with 1t being the timestep size of the explicit Euler scheme. The Nyquist-Shannon theorem allows to determine wave
length and phase position with two sampling points per wave length. However, a first order reconstruction of numerical data shows a triangle
(zigzag) function. In contrast, the full wave is clearly visible at analog integration. More sampling points close the gap between analog and
numerical representation.

ters. Clearly, at such a size the interconnections will also
have a considerable power consumption, even if the monu-
mental engineering challenges for such a large scale inter-
connections can be met. On a logical level, interconnections
are mostly wires and switches (which require little power,
compared to computing elements). This can change dramati-
cally with level converters and an energy estimate is beyond
the scope of this work.

4.6 Hybrid techniques for trading power vs. time

The analog computers envisaged so far have to grow with
problem size (i.e., with grid size, but also with equation com-
plexity). Modern chip technology could make it theoretically
possible to build a computer with 1012 analog computing el-
ements, which is many orders of magnitude larger than any
analog computer that has been built so far (about 103 com-
puting elements at maximum). The idea of combining an ana-
log and a digital computer thus forming a hybrid computer
featuring analog and digital computing elements is not new.
With the digital memory and algorithmically controlled pro-
gram flow, a small analog computer can be used repeatedly
on a larger problem under control of the digital computer
it is mated to. Many attempts at solving PDEs on hybrid
computers utilized the analog computer for computing the
element-local updated state with the digital computer loop-
ing over the spatial degrees of freedom. In such a scheme,
the analog computer fulfils the role of an accelerator or co-
processor. Such attempts are subject of various historical
(such as Nomura and Deiters, 1968; Reihing, 1959; Vichn-
evetsky, 1968, 1971; Volynskii and Bukham, 1965; Bishop
and Green, 1970; Karplus and Russell, 1971; Feilmeier,
1974) and contemporary studies (for instance Amant et al.,
2014; Huang et al., 2017).

A simple back-of-the-envelope estimation with a mod-
ern hybrid computer tackling the N = 1011 problem is de-
scribed below. The aim is to trade the sheer number of com-
puting elements with their electrical power P , respectively,

against solution time T . It is assumed that the analog-digital
hybrid scheme works similarly to numerical parallelization:
The simulation domain withN degrees of freedom is divided
into Q parts which can be evolved independently to a cer-
tain degree (for instance in a predictor-corrector scheme).
This allows to use a smaller analog computer which only
needs to evolve N/Q degrees of freedom at a time. While
the power consumption of such a computer is reduced to
PA→ PA/Q, the time to solution increases to TA→QTA.
Of course, the overall required energy remains the same,
EA = PATA = (PA/Q)(QTA).

In this simple model, energy consumption of the digital
part in the hybrid computer as well as numerical details of the
analog-digital hybrid computer scheme have been neglected.
This includes the time-to-solution overhead introduced by
the numerical scheme implemented by the digital computer
(negligible for reasonably small Q) and the power demands
of the ADC/DAC (analog-to-digital/digital-to-analog) con-
verters (an overhead which scales with (D+ 2)GD/Q, i.e.,
the state vector size per grid element).

Given a fixed four orders of magnitude speed differ-
ence νD/νA = 104 and a given physical problem with grid
size N = 1011, one can build an analog-digital hybrid com-
puter which requires less power and is reasonably small
so that the overall computation is basically still done in
the analog domain and digital effects will not dominate.
For instance, with Q chosen just as big as Q= νD/νA,
the analog computer would evolve only N/Q= 107 points
in time, but run 104 times “in repetition”. The required
power reduces from cluster-grade to desktop-grade PA =
(N/Q)PND = 3.3 kW. The runtime advantage is of course
lost, TD/TA = (Qν

A)/νD
= 1.

Naturally, this scenario can also be applied to solve larger
problems with a given grid size. For instance, given an analog
computer with the size ofN = 1011 grid points, one can solve
a grid of size QN by succesively evolving Q parts of the
computer with the same power PA as for a grid of size N .
Of course, the overall time to solution and energy will grow
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withQ. In any case, time and energy remain (3±1) orders of
magnitude lower than for a purely digital computer solution.

5 Summary and outlook

In Sect. 2, we have shown the time and power needs of
analog computers are orthogonal to those of digital com-
puters. In Sect. 3, we performed an actual miniature bench-
mark of a commercially available Analog Paradigm Model-
1 computer versus a mobile Intel© processor. The results
are remarkable in several ways: The modern analog com-
puter Analog Paradigm Model-1, uses integrated circuit tech-
nology which is comparable to the 1970s digital integration
level. Nevertheless it achieves competitive results in compu-
tational power and energy consumption compared to a ma-
ture cutting-edge digital processor architecture which has
been developed by one of the largest companies in the world.
We also computed a problem-dependent effective FLOP/s
value for the analog computer. For the key performance
measure for energy-efficient computing, namely FLOP-per-
Joule, the analog computer again obtains remarkable results.

Note that while FLOP/s is a popular measure in scientific
computing, it is always application- and algorithm-specific.
Other measures exist, such as transversed edges per second
(TEPS) or synaptic updates per second (SUPS). Cockburn
and Shu (2001) propose for instance to measure the efficiency
of a PDE solving method by computing the inverse of the
product of the (spatial-volume integrated) L1-error times the
computational cost in terms of time-to-solution or invested
resources.

In Sect. 4, large scale applications were discussed on the
example of fluid dynamics and by comparing high perfor-
mance computing results with a prospected analog computer
chip architecture. Large scale analog applications can be-
come power-bound and thus require the adoption of analog-
digital hybrid architectures. Nevertheless, with their O(1)
runtime scaling, analog computers excel for time integrating
large coupled systems where algorithmic approaches suffer
from communication costs. We predict outstanding advan-
tages in terms of time-to-solution when it comes to large
scale analog computing. Given the advent of chip-level ana-
log computing, a gigascale analog computer (a device with
∼ 109 computing elements) could become a game changer
in this decade. Of course, major obstacles have to be ad-
dressed to realize such a computer, such as the interconnec-
tion toplogy and realization in an (energy) efficient manner.

Furthermore, there are a number of different approaches
in the field of partial differential equations which might be
even better suited to analog computing. For instance, solv-
ing PDEs with artificial intelligence has become a fruitful
research field in the last decade (see for instance Michoski
et al., 2020; Schenck and Fox, 2018), and analog neural net-
works might be an interesting candidate to challenge digi-
tal approaches. Number representation on analog computers

can be nontrivial when the dynamical range is large. This
is frequently the case with fluid dynamics, where large den-
sity fluctiations are one reason why perturbative solutions fail
and numerical simulations are carried out in the first place.
One reason why indirect alternative approaches such as neu-
ral networks could be better suited than direct analog com-
puting networks is that this problem is avoided. Furthermore,
the demand for high accuracy in fluid dynamics can not eas-
ily fulfilled by low resolution analog computing. In the end,
it is quite possible that a small-sized analog neural network
might outperform a large-sized classical pseudo-linear time
evolution in terms of time-to-solution and energy require-
ments. Most of these engineering challenges have not been
discussed in this work and are subject to future studies.
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